- 1. Путь как физическая скалярная величина характеризуется...
- А) проекцией на координатные оси
- В) направлением
- С)) модулем
- D) модулем и направлением
- Е) затрудняюсь ответить
- 2. Тело нельзя принять за материальную точку в случае...
- А) движения поезда по маршруту Минск Москва
- В) движения Земли вокруг Солнца
- С) движения спутника вокруг Земли
- D)) движения стрелки часов по циферблату
- Е) затрудняюсь ответить
- 3. Основная задача кинематики...
- А) установить причины движения тел
- В) изучить условия равновесия тел
- С))определить положение тела в пространстве в любой момент времени
- D) определить скорость движения
- Е) затрудняюсь ответить
- 4. Материальная точка это...
- А) тело, которое условно принимается за неподвижное
- В) тело, которое движется с постоянной скоростью
- С)) тело, размерами которого можно пренебречь в данных условиях
- D) тело, находящееся в пределах видимости
- Е) затрудняюсь ответить
- 5. Что называется перемещением?
- А) Путь, который проходит тело
- В)) Вектор, соединяющий начальную и конечную точки траектории движения тела за данный промежуток времени
- С) Длина траектории движения
- D) Путь, который проходит тело за единицу времени
- Е) нет правильного ответа
- 6. Даны уравнения движения тела: $x = v_x t$ и $y = y_o + v_y t$. Запишите уравнение траектории движения тела, если $v_x = 25$ см/с, $v_y = 1$ м/с, $y_o = 0.2$ м.
- A) y = 0.2 + 0, 4x
- B) y = 0.2 + 1.4x
- C) y = 2 + 4x
- D)) y = 0.2 + 4x
- E) y = 0.2 + x
- 7. Какое из уравнений описывает равномерное движение?
- A) $x = v_{ox}t + a_x t^2/2$
- B)) $x = x_0 + v_x t$
- C) $v_x = v_{ox} + a_x t$
- D) $x = x_0 + v_{ox}t + a_x t^2/2$
- Е) затрудняюсь ответить

- 8. Центростремительное ускорение материальной точки при движениях по окружности с постоянной по модулю скоростью выражается формулой:
- A) $a = \Delta r/\Delta t$
- B) $a = (v^2 v_o^2)/2S$
- (C)) $a = v^2/R$
- D) $a = 2S/t^2$
- Е) затрудняюсь ответить
- 9. Угловая скорость при движении материальной точки по окружности с постоянной по модулю скоростью выражается формулой:
- A) $\omega = \pi v$
- B) $\omega = \pi/T$
- C)) $\omega = \Delta \varphi / \Delta t$
- D) $\omega = v/2R$
- Е) затрудняюсь ответить
- 10. Какая из перечисленных величин является векторной?
- А)) скорость
- В) координата
- С) пройденный путь
- D) время
- Е) затрудняюсь ответить
- 11. Если проекция ускорения движения тела $a_x > 0$ и векторы скорости и ускорения сонаправлены, то...
- А) тело остановилось
- В)) скорость увеличивается
- С) скорость движения уменьшается
- D) скорость не изменяется
- Е) затрудняюсь ответить
- 12. Как направлен вектор ускорения при движении тела по окружности с постоянной по модулю скоростью?
- А) От центра окружности
- В)) К центру окружности
- С) Против направления вектора скорости
- D) По направлению вектора скорости
- Е) затрудняюсь ответить
- 13. Какое движение совершают капли дождя при падении на землю?
- А) вначале замедленное, а потом когда сопротивление воздуха уравновесит силу тяжести капли, равномерное
- В)) сначала ускоренное, а потом когда сопротивление воздуха уравновесит силу тяжести капли, равномерное
- С) движение от начала до конца равномерное
- Д) движение только равноускоренное
- Е) сначала равноускоренное, а потом из-за преодоления каплей силы сопротивления воздуха –равнозамедленное
- 14. Ведро выставлено на дождь. Изменится ли скорость наполнения ведра водой, если подует ветер? Почему?

- А)) не изменится, так как вертикальная составляющая скорости капель дождя не изменится
- В) изменится, так как вертикальная составляющая скорости капель дождя изменится
- С) изменится, так как вертикальная составляющая и горизонтальная составляющие скорости капли дождя изменятся
- D) изменится, так как горизонтальная и вертикальная составляющие скорости капли дождя не изменятся
- Е) нет правильного варианта
- 15. Векторы скорости и ускорения тела составляют прямой угол в любой момент времени. Как движется это тело?
- А)) движется равномерно по окружности
- В) движется прямолинейно равномерно
- С) движется прямолинейно неравномерно
- Д. движется криволинейно равноускоренно
- Е. движется криволинейно равнозамедленно
- 16. В центрифуге стиральной машины белье при отжиме движется по окружности с постоянной по модулю скоростью в горизонтальной плоскости. При этом вектор его ускорения направлен
- А) по радиусу от центра окружности
- В)) по радиусу к центру окружности
- С) вертикально вниз
- D) по направлению вектора скорости
- Е) вертикально вверх
- 17. Длина нити математического маятника увеличилась в 16 раз. Как изменится при этом период колебаний маятника?
- А)) увеличится в 4 раза;
- В) уменьшится в 16 раз;
- С) уменьшится в 4 раза;
- D) останется неизменной;
- Е) увеличится в 16 раза.
- 18. Какова размерность средней скорости в механике?
- A)) m/c
- В) м.с
- C) M^2 .c
- D) $M \cdot c^2$
- E) M/c^2
- 19. Какова формула ускорения равноускоренного движения?

A)
$$\vec{a} = \Delta \vec{v}_i \cdot t^2$$

$$\mathbf{B} \vec{a} = \Delta \vec{v}_i \cdot t$$

$$C)) \ \vec{a} = \frac{\vec{v} - \vec{v}_0}{t}$$

D)
$$\vec{a} = \frac{\vec{v}}{t^2}$$

E)
$$\vec{a} = \frac{\vec{v}}{t^3}$$

20. Какова формула пути равноускоренного движения?

A))
$$\vec{S} = \vec{S}_0 + \vec{v}_0 \cdot t + \frac{\vec{a}t^2}{2}$$

B)
$$\vec{S} = \vec{S}_0 + \vec{\upsilon}_0 \cdot t$$

C)
$$\vec{S} = \frac{\vec{a}t}{2}$$

D)
$$\vec{S} = \frac{\vec{a}^2 t^2}{2}$$

E)
$$\vec{S} = \frac{\vec{a}}{t}$$

21. Как пишется формула ускорения через скорость?

A)
$$\vec{a} = (\frac{d\vec{S}}{dt})^2$$

B)
$$\vec{a} = \frac{d^2 \vec{v}}{dt^2}$$

C)
$$\vec{a} = (\frac{d\vec{v}}{dt})^2$$

D)
$$\vec{a} = \frac{d\vec{S}}{dt}$$

E))
$$\vec{a} = \frac{d\vec{v}}{dt}$$

22. Какова формула полного ускорения вращательного движения?

A))
$$a = \sqrt{a_u^2 + a_t^2}$$

$$\mathbf{B})\,a = a_{_{\boldsymbol{\mathcal{U}}}} + a_{_{\boldsymbol{\mathcal{U}}}}$$

$$C) \ a = a_u - a_t$$

$$D a = \frac{a_u + a_t}{2}$$

E)
$$a = a_u \cdot a_t$$

23. Укажите формулу углового движения:

A)
$$\varepsilon = \frac{\Delta S}{\Delta t}$$

B)
$$\varepsilon = \frac{\Delta v}{\Delta t}$$

C))
$$\varepsilon = \frac{\Delta \omega}{\Delta t}$$

- D) $\varepsilon = \frac{\Delta R}{\Delta t}$
- E) $\varepsilon = \frac{\Delta a}{\Delta t}$

24. Укажите формулу полного ускорения при вращении тела:

- A)) $a = \sqrt{(\omega^2 R) + (\varepsilon R)^2}$
- B) $a = \frac{dv}{dt}$
- C) $a = \frac{dS}{dt}$
- D) $a = \omega^2 R$
- E) $a = \varepsilon R$

25. Какова размерность углового движения в системе СИ?

- A) .paд/ c^3
- В)рад/с
- C)рад $^2/c$
- D)рад $^2/c^2$
- E)) рад/ c^2

26. Как связана круговая частота ω с частотой ν?

- A)) $\omega = 2\pi v$
- B) $\omega = 2\pi v^2$
- C) $\omega = 2\pi v^3$
- D) $\omega = 2\pi\sqrt{v}$
- E) $\omega = \frac{2\pi}{v}$

27. Какова размерность периода колебаний в системе СИ?

- А) сутки
- В) мин
- С) час
- D)) сек
- Е) месяц

28. Тело движется по закону X =4 +5t.Какова его скорость?

- A)) $5\frac{M}{ce\kappa}$
- B) $4\frac{M}{ce\kappa}$
- C) $3\frac{M}{ce\kappa}$
- D) $2\frac{M}{ce\kappa}$
- E) $1\frac{M}{ce\kappa}$

29. Тело движется по закону X =2 +3t. Какова его скорость?
A) $7\frac{M}{ce\kappa}$
B) $4\frac{M}{}$
сек
C) $5\frac{M}{ce\kappa}$
D) 6——
сек
E)) $3\frac{M}{ce\kappa}$
30. В каких единицах стоит выражать время при использовании Международной системы
(СИ)?
A)) В секундах В)В сутках
С)В годах
D)В часах Е)В минутах
L)D williyitax
31. Какая из пяти перечисленных физических величин не является скалярной?
А) МассаВ)) Перемещение
С)Плотность
D)Температура E)Длина
32. Какая из перечисленных ниже пяти физических величин не является векторной? A) Ускорение
В)Скорость
С)Перемещение
D)Сила E)) Длина
33. Опыт с крутильными весами впервые провел:
A) Ом
В) Кулон
С) ДжоульD)) Кавендиш
Е) затрудняюсь ответить
34. III закон Ньютона математически можно записать так: (векторы не указаны)
A) $F = ma$
B) $F = \mu N$ C)) $F_1 = -F_2$
D) $F_x = -kx$
Е) затрудняюсь ответить

- 35. Как формулируется II закон Ньютона?
- А) Тело движется равномерно в инерциальной системе, если воздействие других тел не скомпенсировано
- В)) Ускорение, приобретаемое телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально его массе
- С) Направление ускорения тела совпадает с направлением равнодействующей всех сил, действующих на тело
- D) Модуль ускорения тела прямо пропорционален модулю равнодействующей всех сил и обратно пропорционален массе тела
- Е) затрудняюсь ответить
- 36. Какая из приведенных ниже формул выражает ІІ закон Ньютона? (векторы не указаны)
- A) P = ma
- B)) a = F/m
- C) $F = \mu N$
- $D)F = GMm/R^2$
- Е) затрудняюсь ответить
- 37. Какая из приведенных формул выражает закон всемирного тяготения?
- A) $F = k\Delta l$
- B) $F = kq_1q_2/r^2$
- C) $F = GM/R^2$
- D)) $F = GMm/R^2$
- Е) нет правильного ответа
- 38. Закон сохранения импульса формулируется следующим образом:
- А) При взаимодействии любого числа тел, составляющих замкнутую систему, общая сумма их импульсов остается неизменной
- В) Сумма импульсов данных тел остается постоянной независимо от действия внешних сил
- С)) Векторная сумма импульсов тел, входящих в замкнутую систему, остается неизменной при любых движениях и взаимодействиях тел системы
- D) Точная формулировка не приведена
- Е) нет правильного ответа
- 39. І закон Ньютона можно объяснить формулой:
- A) F = mg
- B)) $F = m(v-v_0)/t$
- C) $a = (v-v_0)/t$
- D) S = vt
- Е) затрудняюсь ответить
- 40. Что называется центром масс (центром тяжести)?
- А) Геометрический центр тела
- В) Точка опоры
- С)) Точка, в которой приложена сила тяжести
- D) Точка приложения сил, действующих на тело
- Е) затрудняюсь ответить
- 41. Что называется математическим маятником?

- А) Физическое тело, совершающее колебания
- В) Тело, у которого точка подвеса находится выше центра тяжести
- С)) Материальная точка, подвешенная на невесомой нерастяжимой нити
- D) Груз, подвешенный на пружине
- Е) затрудняюсь ответить
- 42. Как можно сформулировать 1 закон Ньютона в механике?
- A)) Если $\overrightarrow{F} = 0$, то $\overrightarrow{v} = const$
- В) Если $\overrightarrow{F} = 0$, то $\overrightarrow{a} = const$
- C) Если $\overrightarrow{F} = 0$, то s = const
- D) Если $\overrightarrow{F} = 0$, то $\overrightarrow{ma} = const$
- E) Если $\overrightarrow{F} = 0$, то $\overrightarrow{mv} = const$
- 43. Какова размерность силы в системе СИ?
- A) $H = \kappa c \cdot \frac{M^3}{c^3}$
- B) $H = \kappa \varepsilon^2 \cdot \frac{M}{c^2}$
- C) $H = \kappa \varepsilon \cdot \frac{M^2}{c^2}$
- D) $H = \kappa \varepsilon \cdot \frac{M}{c^3}$
- E) $H = \kappa \varepsilon \cdot \frac{M}{c^2}$
- 44. Чему равно среднее значение ускорения свободного падения на поверхности Земли?
- A)) $g = 9.8 \frac{m}{c^2}$
- B) $g = 9.0 \frac{m}{c^2}$
- C) $g = 11 \frac{m}{c^2}$
- D) $g = 12 \frac{m}{c^2}$
- E) $g = 8 \frac{m}{c^2}$
- 45. Как зависит ускорение свободного падения от массы М и радиуса R Земного шара?
- $A) g = \frac{M^2}{R^2}$
- B) $g = G \frac{M}{R}$

C)
$$g = \frac{M}{R^3}$$

D)
$$)g = G\frac{M}{R^2}$$

E)
$$g = G \frac{M^3}{R}$$

46. Каково примерно численное значение 1 первой космической скорости?

A))
$$v_1 \approx 7.9 \frac{\kappa M}{ce\kappa}$$

B)
$$v_1 \approx 7 \frac{\kappa M}{ce\kappa}$$

C)
$$v_1 \approx 9 \frac{\kappa M}{ce\kappa}$$

D)
$$v_1 \approx 10 \frac{\kappa M}{ce\kappa}$$

E)
$$v_1 \approx 11 \frac{\kappa M}{ce\kappa}$$

47. Каково минимальное значение 3 космической скоростями?

A)
$$v_2 \approx 35 \frac{\kappa M}{ce\kappa}$$

B)
$$v_2 \approx 20 \frac{\kappa M}{ce\kappa}$$

C)
$$v_2 \approx 25 \frac{\kappa M}{ce\kappa}$$

D)
$$v_2 \approx 30 \frac{\kappa M}{ce\kappa}$$

E))
$$\nu_3 \approx 17 \frac{\kappa M}{ce\kappa}$$

48. Вес тела – это...

- А) сила, с которой тело притягивает Землю
- В) сила, с которой тело действует на опору
- С) сила, с которой тело действует на подвес
- D))сила, с которой тело вследствие земного притяжения действует на опору или подвес, неподвижные относительно него
- Е) затрудняюсь ответить
- 49. Сила как физическая величина характеризуется...
- А) направлением и точкой приложения
- В) модулем и точкой приложения
- С) направлением и модулем
- D)) направлением, модулем и точкой приложения
- Е) затрудняюсь ответить

- 50. Какая из перечисленных физических величин относится к основным единицам Международной системы (СИ)?
- А) Плотность
- В) Скорость
- C)) Macca
- D)Работа
- Е)Мощность
- **51**. Из приведенных выражений выберите размерность работы, выраженную через основные единицы СИ.
- А) 1 кг
- В) 1 кг•м/с
- D)) 1 $K\Gamma \cdot M^2/c^2$
- E) 1 $\kappa \Gamma \cdot M/c^2$
- 52. По какой формуле следует рассчитывать работу силы F, направленной под углом α к перемещению?
- A) $A = (F/\Delta r)\cos \alpha$
- B) $A = F\Delta r \cdot \sin \alpha$
- C)) $A = F\Delta r \cdot \cos \alpha$
- D) $A = (F/\Delta r)\sin \alpha$
- Е) затрудняюсь ответить
- 53. Закон сохранения механической энергии формулируется следующим образом:
- А) Движение не создается и не уничтожается, а лишь меняет свою форму или передается от одного тела к другому
- В) Закон сохранения полной механической энергии является частным случаем общего закона сохранения и превращения энергии
- С)) В поле потенциальных сил полная механическая энергия системы есть величина постоянная
- D) Механическая энергия зависит от выбора системы отсчета.
- Е) нет правильного ответа
- 54. Механической работой называется скалярная физическая величина, равная...
- А) произведению силы на пройденный путь
- В) произведению силы на модуль перемещения
- С)) произведению модулей силы и перемещения на косинус угла между направлениями силы и перемещения
- D) Правильная формулировка не приведена
- Е) Отношение силы на перемещения
- 55. Мощностью называется скалярная физическая величина, равная...
- А) произведению совершенной работы на время работы
- В) произведению силы на путь, пройденный в направлении действия силы
- С)) отношению работы ко времени, за которое эта работа совершена

- D) точная формулировка не приведена
- Е) отношение силы на время
- 56. Какими видами энергии обладает вода в горном озере и вытекающей из него реке?
- А) в озере вода обладает кинетической энергией, а в реке- потенциальной
- В) в озере вода обладает тепловой, а в реке кинетической энергией
- С) в озере вода обладает внутренней, а в реке механической энергией
- D) в озере вода обладает кинетической и потенциальной, а в реке- только потенциальной энергией
- Е)) в озере вода обладает потенциальной и внутренней энергией, а в реке- потенциальной, кинетической и внутренней
- 57. Одинаковые массы льда и воды имеют одну и ту же температуру 0 градусов по Цельсию. Сравнить внутреннюю энергию льда и воды, а также кинетическую и потенциальную энергию их молекул. Выбрать верный ответ.
- 1- т.к. температура тел одинакова, то кинетическая энергия молекул тоже одинакова 2-внутренняя энергия воды больше внутренней энергии льда 3- потенциальная энергия молекул воды больше, чем потенциальная энергия льда 4- внутренняя энергия воды меньше внутренней энергии льда 5- кинетическая энергия молекул воды больше, чем у льда
- A) 1, 4, 5
- B) 3, 4, 5
- C) 1, 3, 4
- Д)) 1, 2, 3
- E) 1, 2, 5
- 58. Почему работа при подъеме тела с ускорением больше потенциальной энергии, приобретенной поднятым телом? Силой сопротивление пренебречь
- А) часть работы превращается во внутреннюю энергию тела
- В)) часть работы расходуется на приобретение телом кинетической энергии
- С) часть работы превращается в тепло
- Д) часть работы расходуется на работу против внешних сил
- Е) часть работы превращается в электромагнитную энергию
- 59. В какие виды энергии превращается потенциальная энергия опускающегося в жидкости тела?
- А)) во внутреннюю энергию жидкости
- В) в кинетическую энергию жидкости
- С) в потенциальную энергию жидкости
- D) в механическую энергию тела
- Е) во внутреннюю энергию тела
- 60. Как называется единица работы в системе СИ?
- А) ватт
- В) эрг
- С) ньютон
- D)) джоуль
- Е)Галилей
- 61. Чему равна единица мощности в системе СИ?
- A)) $B_T = Дж/сек$
- B)BT = H/cek

- C)BT = $\kappa\Gamma/ce\kappa$
- D)Вт = тонна/сек
- E)BT = Γ /cek
- 62. Чему равно изменение полной энергии тела, совершающего работу А?
- A) $\Delta \varepsilon_{norm} = A^2$
- B)) $\Delta \varepsilon_{norm} = A$
- C) $\Delta \varepsilon_{norw} = A^3$
- $D) \Delta \varepsilon_{nonh} = \sqrt{A}$
- E). $\Delta \varepsilon_{nonh} = 0$
- 63. Если работа равна нулю, то как записывается закон сохранения энергии?
- A)) $E_k + E_p = const$
- B) $E_k E_p = const$
- C) $E_n E_k = const$
- .D) $E_k + E_p = 0$
- E) $E_k + E_n = \infty$
- 64. Пределом прочности называют:
- А) механическое напряжение, вызывающее деформации
- В) силу, вызывающую пластичную деформацию
- С) механическое напряжение, при котором деформируется кристаллическая решетка
- D)) минимальное механическое напряжение, приводящее к разрушению
- Е) силу, модуль которой больше модуля силы упругости
- 65. Как формулируется закон Гука?
- А) Сила, деформирующая тело, пропорциональна абсолютному удлинению
- В)) Сила упругости, возникающая при деформации тела, прямо пропорциональна величине абсолютного удлинения
- С) Действие равно противодействию
- D) Сила упругости возникает при изменении формы и размеров твердых тел, а также при сжатии жидкостей и газов
- Е) затрудняюсь ответить
- 66. Что называется моментом силы?
- А) Кратчайшее расстояние от оси вращения до линии действия силы
- В)) Произведение модуля силы на плечо
- С) Отношение модуля силы к плечу
- D) Среди ответов нет правильного
- Е) Произведение силы на время
- 67. По какой из представленных формул можно определить силу упругости?

A) $F = GMm/(R+H)^2$ B) $F = mg$ C) $F = \mu N$ D)) $F = k\Delta l$ E) затрудняюсь ответить
68. Будут ли работать воздушный насос и гидравлическая машина в состоянии невесомости?
А)) будут, т. к. передача давления жидкостью объясняется действием силы упругости В) не будут, т. к. передача давления обусловлено силами упругости, которые зависят от веса жидкости
С) не будут, т. к. передача давления обусловлено силами отталкивания молекул при их сближении
D) не будут, т. к. передача давления осуществляется внутренней энергией сжатого воздуха
Е) будут, т. к. передача давления жидкостью объясняется действием молекулярных сил
69. Мерой деформации растяжения является
А)) напряжения;
В) относительное уравнение;
С) модуль Юнга;
D) сила упругости;
Е) модуль сдвига.
70. Упругой называется деформация, которая
А)) полностью исчезает после прекращения действия силы ;
В) частично остается после прекращения действия силы ;
С) частично исчезает после прекращения действия силы;
D) полностью сохраняется после прекращения действия силы;

Е) соответствует пределу прочности

A) $\vec{M} = \vec{r} \cdot \vec{F}$ B) $\vec{M} = I^2 \cdot \vec{\varepsilon}$ C) $\vec{M} = I \cdot \vec{\varepsilon}^2$ D)) $\vec{M} = I \cdot \vec{\varepsilon}$ E) $\vec{M} = \vec{r} \cdot \vec{F}^2$

A)) $\kappa z \cdot m^2$ B) $\kappa z \cdot m$ C) $\kappa z^2 \cdot m$ D) $\kappa z^2 \cdot m^2$ E) $\kappa z^3 \cdot m^2$

71. Какова основная формула динамики вращательного движения?

72. Какова размерность момента инерции в системе СИ?

- 73. Какова формула момента силы?
- A) $\overrightarrow{M} = \overrightarrow{r} x \overrightarrow{F}^3$
- B) $\overrightarrow{M} = \overrightarrow{r} x \overrightarrow{F}^2$
- C) $\overrightarrow{M} = \overrightarrow{r^2} x \overrightarrow{F}$
- D) $\overrightarrow{M} = \overrightarrow{r^3} x \overrightarrow{F}$
- E)) $\overrightarrow{M} = \overrightarrow{r} x \overrightarrow{F}$
- 74. При каком условии тело тонет в жидкости?
- A) $p_{x} > p_{T}$
- B)) $p_x < p_T$
- C) $p_{xx} = p_{xx}$
- D) $V_{xx} = V_{T}$
- Е) Правильного ответа нет
- 75. Что принимается за единицу давления в СИ?
- A) H M
- B)) H/M^2
- C) $1/M^3$
- D) H m²
- Е) затрудняюсь ответить
- 76. Банка с водой, имеющая на дне и в боковой стенке отверстие, свободно падает дном вниз. Будет ли выливаться из отверстия вода? Почему?
- А)) нет, т.к. при свободном падении вода не будет оказывать давление на дно и стенки сосуда
- В) да, т.к. при свободном падении скорость истечения воды увеличивается
- С) будет, т.к. при падении давление внутри воды, а также на дно и стенку возрастает
- D) будет, т.к. внешнее давление больше давления воды в банке
- Е) нет, но причина такого явления не ясна
- 77. Почему два подвешенных листа бумаги приближаются друг к другу, если между ними продувать воздух?
- А) поток воздуха увлекает за собой листы бумаги
- В)) с увеличением скорости потока воздуха между листами уменьшается давление
- С) с увеличением скорости потока воздуха между листами понижается температура
- D) с увеличением скорости потока воздуха между листами увеличивается давление
- Е) с увеличением скорости потока воздуха между листами повышается температура
- 78. Как меняются динамическое и статическое давление при увеличении скорости течения жидкости?
- А) не меняются
- В) динамическая- понижается, статическая не меняется
- С)) динамическая- повышается, статическая понижается
- D) динамическая- не меняется, статическая понижается
- Е) динамическая- понижается, статическая повышается

- 79. При выдувании получили два мыльных пузыря разного диаметра, в каком из них воздух находится под большим давлением?
- А) в пузыре большего диаметра воздух находится под большим давлением
- В) в пузыре меньшего диаметра воздух находится под меньшим давлением
- С) в большом и малом пузыре воздух находится под одинаковым давлением
- D) правильный ответ не дан
- Е))в пузыре меньшего диаметра воздух находится под большим давлением
- 80. Под каким давлением находится воздух внутри мыльного пузыря?
- А) молекулярным
- В)) избыточным
- С)с гидростатическим
- D) атмосферным
- Е) динамическим
- 81. Можно ли считать воздушный шар материальной точкой при определении Архимедовой силы F, действующей на шар в воздухе? Выберите неверные утверждения.
- 1. Шар материальной точкой в этом случае считать можно. 2. Понятие материальной точки применимо в случаях соразмерности размеров тела и проходимых этим телом расстояний. 3. В этом случае сила Архимеда, равная весу газа в объеме воздушного шара, связана с объемом, что для материальной точки неприемлемо.
- A)) 1
- B) 2
- C) 3
- D) 1 и 2
- E) 1, 2, 3
- 82. Атомы и молекулы расположены вплотную друг другу, но свободно смещаются друг относительно друга и не образуют периодически повторяющуюся внутреннюю структуру. В каком состоянии находится вещество?
- А)) в жидком состоянии.
- В) в твердом состоянии
- С) в газообразном состоянии
- D) в виде плазмы
- Е) такое состояние не существует в природе
- 83. Воздушные пузырьки, поднимающиеся из воды, будут двигаться равномерно при соблюдении следующего соотношения между действующим на него
- A)) $F_{APX} = F_{TSK} + F_{CO\Pi P}$
- B) $F_{APX} = F_{TRX}$
- C) $F_{APX} = F_{THW} F_{CO\Pi P}$
- D) $F_{APX} = F_{CO\Pi P}$
- E) $F_{CO\Pi P} = F_{TSM} + F_{APX}$
- 84. Принцип действия гидравлической машины основан на
- А) законе Карно
- В) законе Ньютона
- С) законе Архимеда
- D)) законе Паскаля
- Е) законе Дальтона

- 85. При подъеме вверх поршня в цилиндре водяного насоса вода поднимается вверх вслед за ним потому, что
- А)) атмосферное давление снаружи больше давления разряженного воздуха в цилиндре насоса
- В) жидкость обладает свойством расширения и заполняет любое пустое пространство
- С) пустой сосуд втягивает воду
- D) воздух обладает способностью заполнять пустоту. Он стремиться в цилиндр насоса и вталкивает туда находящуюся на его пути воду.
- Е) нет правильного ответа
- 86. Жидкость пропускается по тонкой трубке диаметром 1,8 мм. Длина трубки 5,5 см. Какой должна быть разность давлений на концах трубки, чтобы поддерживать поток жидкости на уровне 5,6 мл/мин? Вязкость жидкости равна $\eta = 0,2 \Pi a \cdot c$.
- A)) $4 \cdot 10^3 \Pi a$;
- B) $5 \cdot 10^5 \Pi a$;
- C) $4 \cdot 10^2 \Pi a$;
- D) $10^{3} \Pi a$;
- E) $10\Pi a$.
- 87. Жидкости, вязкость которых не зависит от режима их течения, называются:
- А)) ньютоновскими;
- В) неньютоновскими;
- С) идеальными;
- D) вязкость всех жидкостей зависит от режима их течения;
- Е) смачивающими.
- 88. Вязкостью жидкости называется её способность:
- А))оказывать сопротивление взаимному смещению слоёв;
- В) к текучести;
- С) образовывать капли на поверхности твёрдых тел;
- D) смачивать стенки сосуда;
- Е) не смачивать стенки сосуда.

- 89. Какое из давлений в жидкости зависит от скорости её течения? А)) гидродинамическое; В) статическое; С) гидростатическое; D) ни одно из перечисленных давлений не зависит от скорости течения; Е) максимальное давление. 90. Объём жидкости, протекающей по трубе за 1 с: А)) пропорционален разности давлений на концах трубы и обратно пропорционален её гидравлическому сопротивлению; В) пропорционален произведению разности давлений на концах трубы и её гидравлическому сопротивлению; С) пропорционален гидравлическому сопротивлению трубы и обратно пропорционален разности давлений на её концах; D) пропорционален квадрату разности давлений на концах трубы; Е) обратно пропорционален квадрату разности давлений на концах трубы. 91. Объем данного количества газа при постоянной температуре обратно пропорционален его давлению. А) закон Шарля В)) закон Бойля-Мариотта С) закон Гей-Люссака D) закон Дальтона Е) затрудняюсь ответить 92. При постоянном давлении, для постоянной массы идеального газа справедлив закон: А) закон Шарля В) закон Бойля-Мариотта С)) закон Гей-Люссака D) закон Дальтона Е) затрудняюсь ответить 93. Три макропараметра (давление, объем и температура) для 1 моля вещества связаны законом:
 - А) Шарля В) Бойля-Мариотта

- С) Менделеева-Клапейрона
- D)) Клапейрона
- Е) затрудняюсь ответить
- 94. Для смеси химически не взаимодействующих газов, для определении их общего объема применим закон:

А) закон Шарля В) закон Бойля-Мариотта С) закон Гей-Люссака D))закон Дальтона Е) затрудняюсь ответить
95. В замкнутой системе тел алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующих в теплообмене, равна нулю. Это формулировка: А) первого закона термодинамики В) второго закона термодинамики С) третьего закона термодинамики D)) уравнения теплового баланса E) затрудняюсь ответить
96. Единицей количества вещества в СИ является: A) кг B)) моль C) г D) кмоль E) затрудняюсь ответить
97. Абсолютная температура измеряется в: A) ° C B) ° F C) ° R D))К E) затрудняюсь ответить
98. Концентрация частиц идеального газа измеряется в СИ: A))1/м ³ В) 1/моль С) 1/л D) см ³ Е) затрудняюсь ответить
99. Единица измерения равная Дж/(моль•К) соответствует: А) постоянной Больцмана В))молярной газовой постоянной С) постоянной Авогадро D) удельной энергии E) затрудняюсь ответить
100. Постоянная Больцмана в СИ имеет размерность: А) Дж/кг В)) Дж/К С) Н/м D) кг • К Е) затрудняюсь ответить

- 101. Количество теплоты, сообщенное системе, расходуется на увеличение ее внутренней энергии и на работу, совершаемую системой против внешних сил. Это формулировка:
- А)) первого закона термодинамики
- В) второго закона термодинамики
- С) третьего закона термодинамики
- D) уравнения теплового баланса
- Е) затрудняюсь ответить
- 102. Изменение внутренней энергии системы равно сумме сообщенного ей количества теплоты и работы, произведенной над системой внешними силами. Это формулировка:
- А)) первого закона термодинамики
- В) второго закона термодинамики
- С) третьего закона термодинамики
- D) уравнения теплового баланса
- Е) затрудняюсь ответить
- 103. Количество теплоты это...
- А) энергия поступательного движения молекул идеального газа
- В) энергия взаимодействия молекул газа при постоянном движении
- С) внутренняя энергия любого тела при постоянной температуре
- D)) часть внутренней энергии, которая передается при теплообмене
- Е) внутренняя энергия, которая не появляется и не исчезает бесследно
- 104. В СИ единицей внутренней энергии является:
- А) калория
- В)) джоуль
- С) ватт
- D) H•M
- Е) Затрудняюсь ответить
- 105. Из приведенных выражений выберите размерность теплоты, выраженную через основные елинипы СИ.
- А) 1 кг
- В) 1 кг м/с
- С) 1 кг M/c^2
- D)) 1 $\kappa \Gamma \cdot M^2/c^2$
- Е) затрудняюсь ответить
- 106. Идеальный газ участвует в изотермическом процессе. Первый закон термодинамики для этого процесса имеет вид:
- A) $Q = \Delta U + A$
- B) $Q = \Delta U$
- C)) Q = A
- D) $0 = \Delta U + A$
- Е) затрудняюсь ответить
- 107. Для изохорного процесса в идеальном газе первый закон термодинамики имеет вид:
- A) $Q = \Delta U + A$
- B)) $Q = \Delta U$
- C) Q = A
- D) $0 = \Delta U + A$
- Е) затрудняюсь ответить

- 108. Найдите неверное утверждение.
- А)) внутренняя энергия одноатомного газа при изохорическом охлаждении увеличивается пропорционально термодинамической температуре
- В) внутренняя энергия тела определяется кинетической энергией частиц, составляющих тело, потенциальной энергией их взаимодействие, а также энергией электронной оболочки атома и внутриядерной энергией
- С) внутреннюю энергию тела можно изменить: 1.совершением работы, 2. теплообменом.
- D) внутренняя энергия идеального газа зависит от температуры идеального газа
- E) если в некотором процессе давление идеального газа увеличится в 3 раза, а объем уменьшится в 2 раза, то внутренняя энергия газа (масса газа const) увеличится в 1,5 раза
- 109. Идеальный газ совершил работу 300 Дж и при этом, внутренняя энергия газа увеличилась на 300 Дж. Какое количество теплоты отдал или получил газ в этом процессе?
- А) отдал 600 Дж
- В) отдал 300 Дж
- С)) получил 600 Дж
- D) получил 300 Дж
- Е) отдал 250 Дж
- 110. Укажите формулу внутренней энергии 1 моля идеального газа:

A))
$$\varepsilon = \frac{i}{2}RT$$

B)
$$\varepsilon = \frac{mv^2}{2}$$

C)
$$\varepsilon = \frac{mk^2}{2}$$

$$\mathrm{D})\,\varepsilon = \frac{i}{2}\,R$$

$$E)\varepsilon = \frac{i+2}{2}R$$

111. .Какова формула внутренней энергии?

A))
$$\Delta U = C_v \Delta T$$

$$\mathbf{B})\Delta U = C_p \Delta T$$

C)
$$\Delta U = A\Delta T$$

D)
$$\Delta U = B \Delta T$$

$$E)\Delta U = Q\Delta T$$

112. Какова общая формула работы в термодинамике?

A)
$$\Delta A = F\Delta V$$

B))
$$\Delta A = p\Delta V$$

C)
$$\Delta A = p\Delta l$$

$$D) \Delta A = p \Delta S^2$$

E)
$$\Delta A = p\Delta l^2$$

113. Какова формула теплоты для нагрева тела?

- A) $\Delta Q = \chi \Delta t^0$
- $\mathbf{B})\,\Delta Q = \lambda \Delta t^0$
- C) $\Delta Q = L \Delta t^0$
- $D) \Delta Q = q \Delta t^0$
- E)) $\Delta Q = cm\Delta t^0$
- 114. Из всех циклических процессов в термодинамике, идущих при данной минимальной и максимальной температурах, наибольшим коэффициентом полезного действия обладает цикл Карно. Это формулировка:
- А) первая теорема Карно
- В)) вторая теорема Карно
- С) третий закон термодинамики
- D) первый закон термодинамики
- Е) затрудняюсь ответить
- 115. Третьему началу термодинамики соответствует следующая формулировка:
- А) Изменение внутренней энергии системы равно сумме сообщенного ей количества теплоты и работы, произведенной над системой внешними силами.
- В) Из всех циклических процессов в термодинамике, идущих при данной минимальной и максимальной температурах, наибольшим коэффициентом полезного действия обладает цикл Карно.
- С) Количество теплоты, сообщенное системе, расходуется на увеличение ее внутренней энергии и на работу, совершаемую системой против внешних сил.
- D)) Абсолютный нуль температуры недостижим; к нему можно лишь асимптотически приближаться.
- Е) затрудняюсь ответить
- 116. Коэффициент полезного действия η цикла Карно равен:
- A) $(T_1-T_2)/T_2$
- B)) T_1-T_2 / T_1
- C) $T_1/(T_1-T_2)$
- D) $T_2/(T_1-T_2)$
- Е) нет верного ответа
- 117. Невозможно построить такую циклически действующую тепловую машину, вся деятельность которой сводилась бы только к совершению механической работы и соответствующему охлаждению нагревателя. Эта формулировка второго начала термодинамики предложена:
- А) Клаузиусом
- В) Джоулем
- С) Карно
- D)) Томсоном
- Е) затрудняюсь ответить
- 118. Если в некотором процессе работа газа и изменение его внутренней энергии равны по модулю, то такой процесс является
- А) изотермическим.

- В)) адиабатическим.
- С) изохорическим.
- D) термодинамическим.
- Е) изобарическим.
- 119. Почему для просолки огурцов их надо держать в рассоле несколько дней, а картофель, опущенный в кипящий суп, просаливается в течение 15-20 мин?
- А) с повышением температуры скорость протекания диффузии в жидкостях понижается
- В) чем выше температура, тем вязкость в жидкостях
- С)) чем выше температура, тем больше скорость протекания диффузии
- D) в кипящей воде давление увеличивается
- Е) картофель быстрее впитывает в себя соль, чем огурцы
- 120. Газообмен в легких человека с проникновением кислорода и углекислого газа через стенки альвеол основан на...
- А)) диффузии
- В) теплопроводности
- С) внутреннего трения
- D) излучении
- Е) дыхании
- 121. Почему зимой в меховой куртке человеку тепло? Выберите верное утверждение.
- А) меховая куртка имеет большую массу, в ней сохраняется много тепла из теплого дома. На морозе она понемногу отдает этот запас тепла человеку.
- В) в мехе много воздуха. Теплоемкость воздуха очень велика и имеющиеся в мехе тепло передается человеку.
- С)) в мехе много воздуха. Воздух обладает малой теплопроводностью, что способствует сохранению тепла, выделяемого телом человека
- D) мех обладает способностью повышать температуру любого тела
- Е) правильного ответа нет
- 122. Какова формула явления диффузии?
- A) $\Delta M = DS \cdot \Delta \tau$
- B) $\Delta M = \rho S \Delta \tau$
- C) $\Delta M = DV \cdot \Delta \tau$
- D) $\Delta M = D\rho \cdot \Delta \tau$

E))
$$\Delta M = D(\frac{\Delta \rho}{\Delta r}) S \cdot \Delta \tau$$

123. Какова формула явления внутреннего трения?

A))
$$F = \eta(\frac{\Delta v}{\Delta x}) \cdot S$$

B)
$$F = \eta \rho \cdot S$$

C)
$$F = \rho \cdot S\tau$$

D)
$$F = \eta v \cdot S$$

E)
$$F = \eta \Delta x \upsilon$$

124. Какова формула явления теплопроводности?

- A) $\Delta Q = \chi \Delta T \cdot \tau$
- $\mathbf{B})\Delta Q = \chi S \Delta \tau$
- C)) $\Delta Q = \chi(\frac{\Delta T}{x})S\tau$
- $D) \Delta Q = \chi \Delta x \cdot \tau$
- $E)\Delta Q = \chi \Delta v \cdot \tau$
- 125. При полном несмачивании поверхности жидкостью краевой угол θ равен:
- Α) π
- B)) $\pi/2$
- C)0
- \vec{D}) $3\pi/2$
- Е) затрудняюсь ответить
- 126. Высота уровня смачивающей жидкости в капилляре диаметром d отличается от высоты уровня в широком сосуде на величину h, равную:
- A) $h = \sigma/2\rho gd$
- B)) $h = \sigma/\rho gd$
- C) $h = 2\sigma/\rho gd$
- D) $h = 4\sigma/\rho gd$
- Е) затрудняюсь ответить
- 127. Какова формула коэффициента поверхностного натяжения?
- A)) $\alpha = \frac{F}{l}$
- $\mathrm{B})\alpha = \frac{F}{S}$
- C) $\alpha = \frac{Q}{S}$
- D) $\alpha = \frac{A}{S}$
- $E)\alpha = \frac{U}{S}$
- 128. При кристаллизации температура вещества:
- А) увеличивается
- В) уменьшается
- С)) не изменяется
- D) равна 0 °C
- Е) затрудняюсь ответить
- 129. При конденсации температура вещества:
- А) увеличивается
- В) уменьшается
- С)) не изменяется
- D) равна 0 °С

- Е) затрудняюсь ответить
- 130. При плавлении внутренняя энергия вещества:
- А) не изменяется
- В))увеличивается
- С) уменьшается
- D) равна 0 °C
- Е) затрудняюсь ответить
- 131. Как называется температура, при которой находятся в динамическом равновесии лед, вода и водяной пар, заключенные в одном сосуде, т. е. не происходит изменения количества льда, воды и водяного пара в результате процессов плавления и отвердевания, испарения и конденсации?
- А) критическая точка
- В) критическая температура
- С) температура инверсии
- D) абсолютная температура
- Е)) тройная точка воды
- 132. В герметически закрытом сосуде находится вода и водяной пар. Как изменится концентрация молекул водяного пара при нагревании сосуда?
- А)) увеличится
- В) уменьшится
- С) не изменится
- D) будет равным 0
- Е) все варианты ошибочны
- 133. Найти неверное утверждение.
- А) Вода превращается в лед при постоянной температуре 0. При этом выделяется энергия.
- В) Водяной пар конденсируется. При этом выделяется энергия.
- С) При таянии льда теплота поглощается.
- D) В широком колене U образного сосуда, наполненного водой, плавает кусок льда. Когда лед растает, уровень воды не изменится в обоих коленах.
- Е)) все ответы неверны
 - 134. Что называется сублимацией?
 - А) вещество в состоянии плазмы
 - В)) переход вещества из твердого состояния в газообразное
 - С) переход газа в жидкое состояние
 - D) газообразное состояние
 - Е)критическое состояние вещества
- 135. Как называется процесс перехода вещества из твердого состояния в газообразное?
 - А)) сублимация
 - В) изотермический
 - С) изобарический
 - D)адиабатический
 - Е) насыщенный пар

136.При какой температуре стирается грань между газом и жидкостью ? А) парообразования В) кипение С)) критической D) затвердевания E) насыщенного пара
137.По физическому признаку кристаллы делятся на: А)ионные и молекулярные; В) ионные и металлические; С)атомные и молекулярные; D) молекулярные, атомные и ионные; Е)) ионные, атомные, металлические и молекулярные.
138.Сколько типов кристаллических систем известны? A) 5 B) 4 C)) 7 D) 6 E) 2.
139. Какая природа межмолекулярных взаимодействий у молекулярных кристаллов? А)электрические В)ядерные С) электростатические D)) ван-дер-ваальсовая E) магнитное
 140. Что называется постоянной кристаллической решетки? A)) расстояние между двумя соседними атомами B) расстояние между двумя электронами C) расстояние между I и III атомами D) расстояние между двумя дефектами E) нет верного ответа
141. На сколько изменится сила взаимолействия от расстояния г межлу прумя

- 141. На сколько изменится сила взаимодействия от расстояния г между двумя точечными зарядами q_1 и q_2 при переходе их от среды с диэлектрической проницаемостью ($\varepsilon=3$) к диэлектрической проницаемости ($\varepsilon=1$)?
- А) не изменится В))увеличится в 3 раза С)уменьшится в 3 раза D) увеличится в 17 раз E) уменьшится в 17 раз
- 142. Закон дискретности электрических зарядов определяется выражением?

A))
$$q = \pm Ne$$
 B) $q = e_1 + e_2$ C) $q = \pm \frac{N}{q}$ D) $q = \pm \frac{e}{N}$ E) $q = \pm q_i$

143. Каким выражением определяется взаимодействие точечных зарядов, помещенных в вакуум?

A) $F = k \frac{q_1 q_2}{r_2}$	B)) $F = k \frac{q_1 q_2}{r^2}$	C) $F = \frac{q_1 q_2}{\varepsilon r^2}$	D) $F = k \frac{q_1 q_2}{r}$	E) $F = k \frac{q_1 q_2}{r^2} r$
12	,	CI CI	,	1

- 144. Каким прибором измеряется степень заряженности тела?
- А) Электрометром
- В) Вольтметром
- С)) Электроскопом
- D) Омметром
- Е) Амперметром
- 145. Как определяется напряженность Е результирующего поля, созданного системой электрических зарядов?

A))
$$\vec{E} = \Sigma \vec{E_i}$$
 B) $\vec{E} = k \frac{q}{r^2} \frac{\vec{r}}{r}$ C) $\vec{E} = \frac{\Sigma \vec{E_i}}{r}$ D) $\vec{E} = \sum_i \frac{n}{E_i}$ E) $\vec{E} = q \Sigma \vec{E_i}$

- 146. Какое поле является потенциальным?
- А)) Совершаемая работа не зависит от формы траектории
- В) Совершаемая работа зависит от формы траектории
- С) Не совершается работа
- D) В таких полях совершается минимальная работа
- Е) в таких полях электрический заряд не обладает энергией
- 147.Вычислите число электронов заряда 96 мкКл (e =1,6·10 $^{-19}$ Кл). A) 3 · 10 15 B)) 6 · 10 14 C) 5 · 10 12 D) 2 · 10 16 E) 4 · 10 4

A)
$$3 \cdot 10^{15}$$

B))
$$6 \cdot 10^{14}$$

C)
$$5 \cdot 10^{12}$$

D)
$$2 \cdot 10^{16}$$

- 148. Как выражается единица электрической постоянной ε_0 ?
- A) $\frac{A}{M}$
- B) $\frac{K\pi}{H}$
- $C))\frac{\Phi}{M}$
- D) $\frac{K\pi}{H \cdot M}$
- E) $\frac{H \cdot M}{K_{\pi}}$
- 149. Какой из нижеуказанных физических величин является количественной характеристикой электростатического поля?
- А)) напряженность электрического поля
- В) кулоновские силы
- С) количество электрических зарядов
- О) потенциал электростатического поля
- Е) нет верного ответа
- 150. Разность потенциалов определяется выражением:

A)
$$\varphi_1 - \varphi_2 = \frac{q}{A}$$

B)
$$\varphi_1 - \varphi_2 = -\frac{q}{A}$$

C)
$$\varphi_1 - \varphi_2 = \frac{q}{A} + C$$

D))
$$\varphi_1 - \varphi_2 = \frac{A}{q}$$

E)
$$\varphi_1 - \varphi_2 = -\frac{A}{q}$$

- 151. Поток напряженности определяется выражением:
- A)) $d\Phi = Edscos \alpha$
- B) $d\Phi = Edssin \alpha$
- C) $d\Phi = Eldscos \alpha$
- D) $d\Phi = Edstg\alpha$
- E) $d\Phi = Edsltg \alpha$
- 152. Потенциалом в данной точке электрического поля называется:
- А)) работа, совершаемая силами поля при перемещении единичного положительного заряда из данной точки поля в бесконечность
- В) работа, совершаемая силами поля при перемещении отрицательного заряда
- С) работа, совершаемая силами поля для удаления положительных и отрицательных зарядов
- D) работа, совершаемая силами поля для удаления одноименных зарядов
- Е) нет верного ответа
- 153. Работа сил электростатического поля при перемещении заряда q на расстояние ℓ определяется выражением:
- A))A=0
- B) A(0
- C) A>0
- D) $A=qE \ell$
- E) $A=q\Delta \varphi \ell$
- 154. Энергия заряженного конденсатора определяется выражением:

A)
$$A = \frac{1}{2}C^2U^2$$
 B) $A = \frac{C^2}{2U^2}$ C)) $A = \frac{1}{2}CU^2$ D) $A = \frac{1}{2}\frac{C^2}{U^2}$ E) $A = \frac{1}{2}\frac{U^2}{C}$

B)
$$A = \frac{C^2}{2U^2}$$

C))
$$A = \frac{1}{2}CU$$

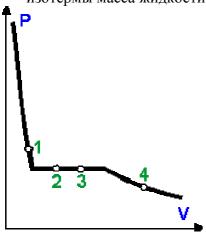
D)
$$A = \frac{1}{2} \frac{C^2}{U^2}$$

$$E)A = \frac{1}{2} \frac{U^2}{C}$$

155. Емкость плоского конденсатора определяется выражением:

A))
$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$
 B) $C = \frac{4\pi \varepsilon \varepsilon_0}{R_2 - R_1} \cdot R_1 \cdot R_2$ C) $C = \frac{2\pi \varepsilon \varepsilon_0 \ell}{\ell n \frac{R_2}{R_1}}$ D) $C = 4\pi \varepsilon \varepsilon_0 R$ E) $C = \frac{q}{U}$

- 156. Диэлектрическая проницаемость вещества, заполоненная между обкладками конденсатора определяется выражением:
- A) $\mathbf{c} \cdot \mathbf{q}$ B) $\mathbf{q} \cdot \mathbf{E}$
- C)) C/C₀ D) C·U E) C·d


- 157. Какая физическая величина определяется выражением q/U?
- А)) электроемкость В) потенциал
- С) работа

- D) сила тока
- Е) напряженность

158.Общая емкость батареи состоящей из двух последовательно соединенных конденсаторов с электроемкостями C_1 и C_2 определяется выражением:					
A)) $\frac{C_1 \cdot C_2}{C_1 + C_2}$ B) $C_1 + C_2$ C) $\frac{C_2}{C_1}$ D) $\frac{C_1}{C_2}$ E) $C_1 \cdot C_2$					
159. Каким выражением определяется общая емкость двух параллельно соединенных конденсаторов с электроемкостями C_1 и C_2 ?					
A)) C_1+C_2 B) $\frac{C_2}{C}$ C) $\frac{C_1}{C}$ D) $C_1 \cdot C_2$ E) $\frac{C_1 \cdot C_2}{C_1 + C_2}$					
160. Заряд одной пластины конденсатора равен +5H Кл, а заряд другой пластины равен -5H Кл. Чему равен заряд конденсатора? A)) 5 nK B) 0 C) 10 nK D) 50 nK E) 55 nK					
 161. Для чего служит конденсатор? А)) для накопления электрических зарядов В) для измерения силы тока С) для измерения напряжения D) для измерения напряженности E) для измерения температуры 					
 162. Единице какой физической величины соответствует выражение Дж/В²? А)) электроемкости В) электрического заряда С) силе тока D)мощности Е) потенциала 					
<u>163.</u> Единице какой физической величины соответствует выражение $\Phi \cdot B$? А)) электрического заряда В)энергии С) электроемкости D) силе тока E) сопротивления					
164. Укажите неправильный ответ: А) у аморфных тел отсутствует определенная температура плавления В) аморфные тела изотропны С) у аморфных тел свойства во всех направлениях одинакова D)) аморфные тела имеют конкретную температуру плавления Е) в аморфных телах в отличие от жидкости подвижность частиц довольно мала					
165. Как называется свойство зависимости физических характеристик кристаллов от направления? А) изотропностью В) плавлением С) сублимацией D)) анизотропностью Е) дефектностью					
166. Как изменится внутренняя энергия воды массой 2г при ее кристаллизации, если она имеет температуру 273 К? (λ =330 КДж/кг) А) увеличится на 660Дж В)) уменьшится на 660Дж					

- С) увеличится на 330Дж
- D) уменьшится на уменьшится на
- Е)не изменится
- 167. Как называются кристаллы в узлах кристаллической решетки которых располагаются поочередно ионы противоположного знака?
- А)) ионные
- В)атомные
- С)металлические
- D) молекулярные
- Е) полупроводниковые

168.На рисунке приведена изотерма конденсированной воды и пара. В какой точке изотермы масса жидкости в 2 раза больше массы пара?

- А) в точке 1
- В)) в точке 2
- С) в точке 3
- D) в точке 4
- Е) ни в какой из них
- 169 Как называется пар находящийся в равновесии со своей жидкостью?
- А) пересыщенным
- В)) насыщенным
- С) ненасыщенным
- D) перегреты
- Е) растянутым
- 170. Молярная теплоемкость твердых тел при низких температурах :
- А))не зависит от температуры и 3R;
- В)прямо пропорционально температуре;
- С) прямо пропорционально квадрату температуры;
- D) прямо пропорционально кубу температуры;
- Е) обратно пропорционально температуре.
- 171. Какие из нижеперечисленных кристаллов являются атомными?
- А) парафин, резина
- В)) алмаз, графит
- С) газы CO_2 , O_2 , N_2 твердом состоянии
- D) кристаллы брома и йода

- Е) медь, серебро.
- 172. Какие из нижеуказанных кристаллов металлические?
- А) CO_2 , O_2 , N_2 в твердом состоянии
- В) резина, парафин
- С)) золото, серебро
- D) алмаз, графит
- E) Ge, Si полупроводники
- 173. Как называется кристаллы в узлах кристаллической решетки, которых располагаются нейтральные атомы, удерживающиеся в узлах решетки гомополярными связями?
- А) металлическими
- В) молекулярными
- С) ионными
- D)) атомными
- Е) полупроводниковым
- 174. Каким выражением определяется закон Дюлонга и Пти?
- A)) $C_V = 3R$
- B) $C_V = 3Rn$
- C) $C_V = 3n$
- D) $C_{V} = 3RT$
- E) $C_V = 3Tn$
- 175. Как называется связь, обусловленная кулоновскими силами притяжения между разноименно заряженными ионами?
- А)ковалентная
- В) гомополярная
- С) ван-дер-ваальсовая
- D)) ионная
- Е) валентная
- 176. Шарик массой т и зарядом +q падает в электрическом поле. Зная, что силовые линии электрического поля направлены к земле, найдите ускорение шарика?
- A)) g+ $\frac{qE}{m}$
- B) g
- C) 2g
- D) $\frac{g}{2}$
- E) g- $\frac{qE}{m}$
- 177. Заряды концентрических металлических шаров радиусами R_1 =2см и R_2 =6см равны соответственно q_1 = 2мк Кл и q_2 = -6мк Кл. Чему равен потенциал этой системы на расстоянии 1 см от его центра?
- A) 1B
- B) 2B

- C) 3B
- D) 4B
- E)) 0
- 178. Каким выражением определяется в системе СИ сила взаимодействия точечных зарядов, помещенных в однородный диэлектрик?

A)
$$F = \frac{1}{4 \epsilon \epsilon_0} \frac{q_1 q_2}{r^2}$$

B)
$$F = \frac{1}{4\pi} \frac{q_1 q_2}{r^2}$$

A)
$$F = \frac{1}{4 \epsilon \epsilon_0} \frac{q_1 q_2}{r^2}$$
 B) $F = \frac{1}{4 \pi} \frac{q_1 q_2}{r^2}$ C) $F = \frac{1}{4 \pi \epsilon \epsilon_0} \frac{q_1 q_2}{r^2}$ D) $F = \frac{1}{4 \pi \epsilon} \frac{q_1 q_2}{r^2}$

D)
$$F = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$$

E))
$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

- 179. Как изменится сила кулоновского взаимодействия двух точечных зарядов при увеличении заряда каждого из них в 2 раза и при увеличении расстояния между ними в 2 раза?
- А)) не изменится
- В) увеличится в 2 раза
- С) уменьшится в 2 раза
- D) увеличится в 4 раза
- Е) уменьшится в 4 раза
- 180. Единице какой физической величины соответствует выражение $\frac{\kappa z \cdot M^2}{4 \cdot c^3}$?
- А)) потенциала
- В) напряженности поля
- С) электрического заряда
- D) силы тока
- Е) сопротивления
- 181. Два одинаковых металлических шарика имеют заряды $+0.8\cdot10^{-10}$ Кл и $-3.2\cdot10^{-10}$ Кл соответственно. Вычислите количество избыточных электронов после соприкосновения этих шариков.

A))
$$1.5 \cdot 10^9$$
 B) $2 \cdot 10^9$ C) $2.5 \cdot 10^9$ D) $3.0 \cdot 10^9$ E) $3.5 \cdot 10^9$

C)
$$2,5 \cdot 10^{\circ}$$

D)
$$3.0 \cdot 10^9$$

E)
$$3.5 \cdot 10^{9}$$

- 181. Единице, какой физической величины соответствует выражение $\frac{K\pi^2}{\pi}$?
- А) напряжения
- В) силы тока
- С) мощности
- D) сопротивления
- Е)) работы
- 182. Связь напряжения электростатического поля и разности потенциалов определяется выражением: B) E = Ud C) E = d/U D) $E = U^2/d$ E) $E = U/d^2$

A))
$$E = U/d$$

B)
$$E = Ud$$

C)
$$E = d/U$$

D)
$$E = U^2/e^2$$

E)
$$E = U/d^2$$

- 183. Как будет вести себя незаряженный шарик, помещенный в неоднородное электростатическое поле?
- А) будет двигаться к сторону силовых линий
- В) будет двигаться против силовых линий
- (C)) будет двигаться в том направлении, в котором возрастает величина \tilde{E} поля

- D) будет двигаться в том направлении, в котором убывает величина $\vec{\rm E}$ поля
- Е) будет оставаться в покое
- 184. Какую работу необходимо совершить для того, чтобы приблизить друг другу два заряда по 4 мкКл каждый на расстояние от 0,2 м до 0.1 м?
- А) -0,72Дж
- В)) 0,72Дж
- С) 0,6Дж
- D) 0,5Дж
- Е) -0,5 Дж
- 185. Напряженность электростатического поля точечного заряда q в вакууме определяется выражением:
- A) $\vec{E} = \frac{kq}{r^4} \vec{r}$
- B)) $\vec{E} = \frac{kq}{r^2} \vec{r}$
- C) $\vec{E} = \frac{\vec{k}q}{r^3}\vec{r}$
- D) $\vec{E} = \frac{kq}{r}\vec{r}$
- E) $\vec{E} = \frac{kq}{r^3} \vec{r}$
- 186. Заряженный металлический лист свернули в цилиндр. Как изменится поверхностная плотность заряда?
- А) не изменится В)) увеличится С) уменьшится D) уменьшится в 2 раза Е) нет верного ответа
- 187. Металлический шарик имеет заряд -1,6 нКл. Найдите количество "избыточных" электронов на шарике.
- A) $1.6 \cdot 10^{10}$

- B)) 10^{10} C) $2 \cdot 10^{10}$ D) $2 \cdot 10^{19}$ E) 10^{19}
- 188. Поверхностная плотность металлического шара с радиусом R определяется выражением:
- A) $\sigma = \frac{1}{R^2}$
- $B) \sigma = \frac{1}{4\pi R^2}$
- C) $\sigma = \frac{q}{4\pi R}$
- D)) $\sigma = \frac{q}{4\pi R^2}$
- E) $\sigma = \frac{q}{\epsilon R^2}$
- 189. Как изменится напряженность электростатического поля данной точки при увеличении в 4 раза величины заряда, помещенного в эту точку?
- А) увеличится в 4 раза

- В) уменьшится в 4 раза
- С) увеличится в 16 раза
- D) уменьшится в 16 раза
- Е)) не изменится
- 190. Как изменится потенциал поля при увеличении в 9 раз величины заряда, помещенного в эту точку?
- А) увеличится в 9 раз
- В) уменьшится в 9 раз
- С) увеличится в 81 раз
- D) уменьшится в 3 раза
- Е)) не изменится
- 191. Вектор электростатической индукции D определяется выражением:
- A) $D = \varepsilon E$
- B) $D = \varepsilon_0 E$
- C) $D = \frac{E}{\varepsilon_0}$
- D) $D = \varepsilon_0 \varepsilon$
- E)) $D = \varepsilon_0 \varepsilon E$
- 192. Емкость сферического конденсатора определяется выражением:

A))
$$c = \frac{4\pi\varepsilon\varepsilon_0}{R_2 - R_1}R_1R_2$$
 B) $c = \frac{4\pi\varepsilon\varepsilon_0}{R_2R_1}(R_1 - R_2)$ C) $c = \frac{2\pi\varepsilon\varepsilon_0 l}{\ln\frac{R_2}{R_2}}R_1R_2$

$$-R_2) \qquad \text{C) } c = \frac{2\pi\varepsilon\varepsilon_0 l}{\ln\frac{R_2}{R}} R_1 R_2$$

D)
$$c = \frac{\varepsilon \varepsilon_0}{d_1}$$

D)
$$c = \frac{\varepsilon \varepsilon_0}{d_1}$$
 E) $c = \frac{2\pi \varepsilon \varepsilon_0}{R_2 - R_1} R_1 R_2$

193. Емкости плоского и цилиндрического конденсаторов определяется выражением:

$$\mathrm{A)} \ c = \frac{\epsilon_0 \epsilon S}{d^2}; \quad c = \frac{2\pi \epsilon_0 \epsilon \ell}{\ln \frac{R_2}{R_1}}; \quad \mathrm{B)} \ c = \frac{\epsilon \epsilon_0 S}{d}; \ c = \frac{2\pi \epsilon_0 \epsilon \ell}{\ln \frac{R_2}{R_1}};$$

$$\mathrm{C))} \ c = \frac{\epsilon \epsilon_{_0} S}{d}; \ c = \frac{2\pi \epsilon \ \ell}{ln \frac{R_{_2}}{R_{_1}}}; \ \mathrm{D)} \ \frac{4\pi \epsilon \epsilon_{_0} S}{d}; \ c = \frac{2\pi \epsilon_{_0} \epsilon \ell}{ln \frac{R_{_2}}{R_{_1}}}; \ \mathrm{E)} \ c = \frac{2\pi \epsilon_{_0} S}{d}; \ c = \frac{2\pi \epsilon_{_0} \epsilon \ell}{ln \frac{R_{_2}}{R_{_1}}}; \ \mathrm{E}$$

194. Емкость уединенного проводящего шара определяется выражением:

A))
$$C = 4\pi\varepsilon\varepsilon_0 R$$
 B) $C = \frac{2\pi\varepsilon\varepsilon_0 \ell}{\ell n \frac{R_2}{R_1}}$ C) $C = \frac{q}{U}$ D) $C = \frac{4\pi\varepsilon\varepsilon_0}{R_2 - R_1} \cdot R_1 \cdot R_2$ E) $C = \frac{\varepsilon\varepsilon_0 S}{d}$

- 195. Как вычисляется энергия заряженного конденсатора?
- A) CU/2
- B) $q^{2}/2U$

C)) qU/2 D) qC/2 E) U ² /2q						
	_	_	лектроемкості ых конденсато	ь батареи конденса ров?	торов, состоящей	
A)) <i>nC</i>	B) C/n	C) 2 <i>Cn</i>	D) n^2C	E) $\sqrt{n} \cdot C$		
197. Каким выражением определяется электроемкость батареи конденсаторов, состоящей из п последовательно соединенных конденсаторов? A)) C/n B) nC C) $2Cn$ D) n^2C E) $\sqrt{n} \cdot C$						
	заряженного между обклад			5·10 ⁻⁴ <i>К</i> л равна 0,0	1 Дж. Найти	
A)) 40 B	в) <i>50 В</i>	с) 25 B	D) 0,01 B	E) 5 <i>kB</i>		
полюсам ист А)) 0,0004 Кл	конденсатора очника постоя а В) 0,04 Е) 4 К	нного напря: 4 <i>Кл</i>	жения 200В.	опит при его подкл	іючении к	
обкладками н	200. Энергия конденсатора емкостью 1мк Φ равна 8Дж. Вычислите напряжение между обкладками конденсатора? А))4кВ В) 2 кВ С) 3 кВ D)10 кВ Е)5 кВ					
201 <u>.</u> Единице	201 <u>.</u> Единице какой физической величины соответствует выражение $\frac{H}{\sqrt{\varOmega \mathscr{M} \cdot \Phi}}$?					
А)) напряженности электрического поля сопротивления D)магнитного потока E) магнитной индукции						
202. Какова емкость баратеи состоящей из 6 параллельно соединенных одинаковых конденсаторов? Емкость одного конденсатора 1,5 мкФ. А)) 9 мкФ В) 3 мкФ С) 6 мкФ D) 15 нФ E) 12 нФ						
203. Каким в A) <i>U+ST</i> B) <i>U-ST</i> C) <i>ST-U</i> D)) <i>U+PV</i> E) <i>δQ=dU</i>	ыражением ог	пределяется э	онтальпия?			
203. Какая в	еличина опред	целяется выра	ажением $\varepsilon \varepsilon_{\scriptscriptstyle 0} \lambda$	S/C?		
А)) расстояния между обкладками конденсатора В) электроемкость						

с) электрический за р) плотность энерга ер потенциал	•			
204. В каких единия А)) Дж/м ³ В) Дж				
емкость батареи.	_		${\cal D}$ соединены последовательно. Найти	
A)) $12 mk\Phi$ D) $600 mk\Phi$		C) 10 mkФ		
206. Энергия заря конденсатора.	женного конденса	атора емкостьн	о 8 $n\Phi$, равна 1 Дж. Найти заряд	
A)) 4 mk Кл D) 10 mk Кл	B) 2 mk Кл E) 8 mk Кл	С) 6 тк Кл		
$q=+8.10^8$ Кл?	В) увеличится 5 г	_	ра при заряжении зарядом тся 5 г D) увеличится 5 мг	
208Какую кинетическую энергию приобретает в вакууме электрон при перемещении между двумя точками с разностью потенциалов 2В? (Заряд электрона $1,6\cdot10^{-19}$ Кл) A)) $3,2\cdot10^{-19}$ Дж B) $4,2\cdot10^{-19}$ Дж C) $4,8\cdot10^{-19}$ Дж D) $5,2\cdot10^{-19}$ Дж E) $5,8\cdot10^{-19}$ Дж				
209. Единицей какой	й физической вель	ичины является	я выражение $\frac{\mathcal{L}\mathcal{H}}{A \cdot M \cdot c}$?	
А) магнитной инду С) удельного сопро E) силы тока	укции В) м	агнитного пото		
210. Если в электроq₂, то какую работу		-	да q ₁ перемещается точечный заряд заряду?	
$A)dA=k\frac{q_1q_2}{r^2}$				
A)dA=k $\frac{q_1q_2}{r^2}$ B)) dA=k $\frac{q_1q_2}{r}$ dr				
C) dA=k $\frac{q_1 q_2}{r^3}$ dr				

D) dA=k $\frac{q_1q_2}{r^2}$ dr

E)
$$dA = k \frac{q}{r} dr$$

211. Каким выражением определяется потенциальная энергия заряда q1 в поле заряда q2?

A)W_p=-k
$$\frac{q_1q_2}{r^2}$$

B)
$$W_p = -k \frac{q_1}{r^2}$$

C))
$$W_p = k \frac{q_1 q_2}{r}$$

D)
$$W_p = -k \frac{q_2}{r^2}$$

E)
$$W_p = -k \frac{q_1 q_2}{r^3}$$

212. Каким выражением определяется работа сил электростатического поля с разностью потенциальных энергий, которыми обладает точечный заряд q1 в начальной и конечной точках поля заряда q₂?

A))
$$A = kq_1 q_2 \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

B)
$$A = kq_1 q_2 \left(\frac{1}{r^2} - \frac{1}{r_2^2} \right)$$

C)
$$A = kq_1 q_2 \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

D)
$$A = kq_1 q_2 \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$

E)
$$A = kq_1 q_2 \left(\frac{1}{r^2} + \frac{1}{r_2^2} \right)$$

213. Каким выражением определяется плотность энергии электростатического поля?

A))
$$W = \frac{1}{2} \varepsilon \varepsilon_0 E^2$$

B)
$$W = \frac{1}{2} \varepsilon E^2$$

A))
$$W = \frac{1}{2} \varepsilon \varepsilon_0 E^2$$
 B) $W = \frac{1}{2} \varepsilon E^2$ C) $W = \frac{1}{2\varepsilon \varepsilon_0} E^2 d$ D) $W = \frac{1}{2\varepsilon_0} E^2$

D)
$$W = \frac{1}{2\varepsilon_0} E^2$$

E)
$$W = \frac{1}{2} \frac{\varepsilon}{\varepsilon_0} E^2$$

214. Каким выражением определяется энергия электростатического поля?

A))
$$W = \frac{\varepsilon \varepsilon_0 E^2}{2}$$
 B) $W = \frac{CU^2}{2}$ C) $W = \frac{mv^2}{2}$ D) $W = \frac{Li^2}{2}$ E) $W = \Im u$

B)
$$W = \frac{CU^2}{2}$$

$$C) W = \frac{mv^2}{2}$$

$$D) W = \frac{Li^2}{2}$$

215. Каким выражением определяется плотность энергии плоского конденсатора?

A) $\frac{\varepsilon \varepsilon_0 E^2}{2}$ B)) $\frac{C \hat{a}}{2}$ C) $\frac{\varepsilon \varepsilon_0 q^2}{2}$ D) $\frac{\varepsilon \varepsilon_0 U^2}{2}$ E) $\frac{E^2}{2\varepsilon \varepsilon_0}$							
216.Металлической шар с емкостью $3\cdot 10^{-12} \Phi$ заряженный до потенциала 600 В соединяется проволокой к Земле. Найти выделяемую в проволоке теплоту? А)) $0.54~mk$ Дж В) $1.8~mk$ Дж С) $20~mk$ Дж В) $21~mk$ Дж Е) $9~mk$ Дж							
217. Единицей какой физической величины является выражение $\sqrt{\mathcal{J}\mathscr{K}\cdot\Phi}$? A)) электрического заряда В) напряжения С) напряженности D) плотности энергии Е)силы							
218. Единицей какой физической величины является выражение $\frac{K_{\pi} \cdot \Phi \cdot B}{Bm \cdot C}$?							
A)) электроемкости B) энергии C)сопротивления D) электрического заряда E) силы							
219. Единицей какой величины является выражение $\sqrt{\frac{K_{7} \cdot B}{\kappa_{2}}}$?							
А)) Скорости В) потенциал С) работы D) силы тока E) ускорения							
220. Имеются четыре заряженные частицы. Частицы 1 и 2 обладают положительными электрическими зарядами, частицы 3 и 4 — отрицательными зарядами. Какие из этих частиц взаимно отталкиваются? А)) 1 и 2 между собой и 3 и 4 между собой В) Только 3 и 4 С) Только 1 и 2 D) 1 с частицами 3 и 4; 2 с частицами 3 и 4 Е) Все электрически заряженные частицы							
221. К одному концу незаряженного металлического стержня поднесен без соприкосновения положительный электрический заряд. Если от стержня в это время отделить его второй конец, то какой электрический заряд будет обнаружен на нем? А) В зависимости от времени. В) Отрицательный С) Любая часть стержня не имеет электрического заряда D) В зависимости от размеров определенной части знак заряда может быть положительным или отрицательным E)) Положительный							
222.Электрический заряд ${\bf q}$ на расстоянии ${\sf R}$ от точечного электрического заряда ${\bf Q}$ обладает потенциальной энергией ${\sf W}$. Какой потенциальной энергией будет обладать электрический заряд $1/2~{\bf q}$ на расстоянии $1/2~{\sf R}$ от заряда ${\bf Q}$? A) $6{\sf W}$ B)) $3/2~{\sf W}$ C) $18{\sf W}$ D)2/3W							

223. Водяная капля с электрическим зарядом +q соединилась с другой каплей, обладающей зарядом -q. Каким стал электрический заряд образовавшейся капли

E)1/6W

- A)) 0 B) -2q C) -q D) +q E) +2q
- 224. Как изменится сила кулоновского взаимодействия двух небольших заряженных шаров при увеличении заряда каждого из шаров в 2 раза, если расстояние между ними остается неизменным?
- А))увеличится в 4 раза
- В) увеличится в 2 раза
- С) не изменится
- D) уменьшится в 2 раза
- Е) уменьшится в 4 раза
- 225. Как изменится сила кулоновского взаимодействия двух точечных электрических зарядов при увеличении расстояния между ними в 2 раза?
- А) Не изменится
- В) Увеличится в 4 раза
- С) Увеличится в 2 раза
- Д)) Уменьшится в 4 раза
- Е) Уменьшится в два раза
- 226. Как изменится сила электростатического взаимодействия двух точечных электрических зарядов при перенесении их из вакуума в среду с диэлектрической проницаемостью ε =2, если расстояние между зарядами остается неизменным?
- А))Уменьшится в два раза
- В) Увеличится в четыре раза
- С) Увеличится в два раза
- D)Уменьшится в два раза
- Е) Не изменится
- 227. Как изменится по модулю напряженность электрического поля точечного заряда при увеличении расстояния от заряда в 2 раза?
- А))Уменьшится в 4 раза
- В) Увеличится в 4 раза
- С) Увеличится 2 раза
- D) Не изменится
- Е) Уменьшится в 2 раза
- 228. При перемещении электрического заряда q между точками с разностью потенциалов 8В силы, действующие на заряд со стороны электрического поля, совершили работу 4Дж. Чему равен заряд q?
- А)) 0,5 Кл
- В) По условию задачи заряд определить невозможно.
- С) 32 Кл.
- D) 2 Кл.
- Е) нет правильного ответа

- 229. При перемещении заряда 2Кл в электрическом поле силы, действующие со стороны этого поля, совершили работу 8Дж. чему равна разность потенциалов между начальной и конечной точками пути?
- A))4B
- B) 16B
- C) 0.25B
- D) по условию задачи разность потенциалов определить нельзя
- Е) нет правильного ответа
- 230. Число «избыточных» "N" электронов в отрицательно заряженном металлическом теле определяется выражением
- А) $N = q \cdot e \cdot m$, где е-заряд электрона, а q-заряд избыточных электронов
- B) $N = q \cdot e$
- C) $N = \frac{e}{q}$
- D)) $N = \frac{q}{e}$
- E) $N = \frac{e}{qm}$
- 231. Электрическое поле, создаваемое равномерно заряженным шаром вне его:
- A) $E = \frac{q}{r^2}$
- B)) $E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2}$
- C) $E = \frac{q}{\varepsilon_0 r^2}$
- D) $E = \frac{q}{\varepsilon r^2}$
- E) $E = \frac{1}{4\pi\varepsilon_0 r^2}$
- 232. Градиент потенциала определяется формулой
- A) $E = -\frac{dU}{dn}$ · $(\vec{n}_0$ -единичный вектор, совпадающий с направлением линии
- напряженности)
- B) $E = -\frac{dU}{dn} \cdot \vec{n}_0$
- C) $E = -\frac{\Delta U}{\Delta n}$.
- D) $E = -\frac{\Delta W}{\Delta n}$.
- E) $E = -\frac{dW}{dn}$.

233. Пространство между обкладками плоского конденсатора заполнено диэлектриком.

Зарядив конденсатор до разности потенциалов U_1 =2 кB, отключили его от источника напряджения. При утсранении диэлектрика напряжение на обкладках конденсатора увеличилось до U_2 =3 кB. Определить диэлектрическую проницаемость диэлектрика.

- A) 5.5
- B) 3,2
- C)) 1,5
- D) 6,1
- E) 2,4
- 234. Две параллельные металлические пластины заряжены отрицательными по модулю и противоположными по знаку электрическими зарядами. Между пластинами находится воздух. Как изменится разность потенциалов между пластинами и электроемкость такого конденсатора при уменьшении расстояния между пластинами?
- А)) Разность потенциалов уменьшится, электроемкость увеличится.
- В) Разность потенциалов уменьшится, электроемкость уменьшится
- С) Разность потенциалов увеличится, электроемкость увеличится
- D) Разность потенциалов увеличится, электроемкость уменьшится
- Е) Разность потенциалов не изменится, электроемкость увеличится
- 235. Две параллельные металлические пластины заряжены одинаковыми по модулю и противоположными по знаку электрическими зарядами. Между пластинами находится воздух. Как изменится разность потенциалов между пластинами и электроемкость такого конденсатора при увеличении расстояния между ними?
- А)) Разность потенциалов увеличится, электроемкость уменьшится
- В) Разность потенциалов увеличится, электроемкость увеличится
- С) Разность потенциалов увеличится, электроемкость уменьшится
- D) Разность потенциалов не изменится, электроемкость увеличится
- Е) Разность потенциалов не изменится, электроемкость уменьшится
- 236. Электрическое поле между параллельными разноименно заряженными металлическими пластинами при заполнении пространства между ними диэлектриком с диэлектрической проницаемостью ε-4 обладает энергией W. Какой энергией будет обладать поле между этими пластинами после удаления диэлектрика?
- A)W
- B) 1/4W
- C) 1/2W
- D)) 4W
- E) 2W
- 237. Электроемкостью проводника называется физическая величина
- А))численно равная заряду, который нужно сообщить проводнику, чтобы увеличить его потенциал на единицу
- В) численно равна потенциалу проводника при изменении его заряда на единицу
- С) численно равна произведению заряда проводника на его потенциал
- равная отношению потенциальной энергии к заряду
- Е) равная произведению потенциальной энергии на заряд

- 238. Электроемкость сферы или точечного заряда определяется формулой
- $A)) C = \frac{1}{k_0} \varepsilon \varepsilon_0 R$
- B) $C = \varepsilon \varepsilon_0 R$
- С) $C = q \varepsilon \varepsilon_0 R$, где R-радиус сферы, ε -диэлектрическая проницаемость среды, ε_0 электрическая постоянная, q -заряд который сообщили сфере
- D) $C = \varepsilon \varepsilon_0 SR$
- E) $C = k_0 \varepsilon \varepsilon_0 R$
- 239. Конденсатором называют
- А) систему, состоящую из проводника и диэлектрика
- В) систему состоящую из двух диэлектриков, разделенных проводником
- С) систему, состоящую из проводников, соединенных последовательно
- D) систему, состоящую из проводников., соединенных параллельно
- Е)) систему, состоящую из двух проводников разделенных слоем диэлектрика
- 240. Плоский конденсатор-
- А)) это система, состоящая из двух параллельных металлических пластин разделенных диэлектриком
- В) это два или несколько плоских проводящих пластин, соединенных между собой параллельно
- С) это несколько плоских пластин, соединенных между собой параллельно
- D) это система из двух диэлектриков, разделенных проводником
- Е) это несколько плоских диэлектриков, соединенных параллельно
- 241. Под электроемкостью конденсатора «С» понимается:
- А)) Отношение заряда одной из обкладок $\, {\bf q} \,$ к разности потенциалов $\, \phi_1 \phi_2 = U \,$ между его обкладками
- В) произведение заряда обкладок на разность потенциалов между ними
- С) соотношение заряда обеих обкладок на разность потенциалов между ними
- D) произведение заряда на обкладках на потенциальную энергию
- Е) отношение потенциальной энергии на заряд обкладок
- 242. Для увеличения емкости конденсаторы соединяют
- А))параллельно
- В) последовательно
- С) и параллельно и последовательно
- D) берут одиночный конденсатор
- Е) уменьшают число конденсаторов в батарее
- 243.Плоский конденсатор заряжен и отключен от источника постоянного напряжения. Как измениться напряженность электрического поля внутри конденсатора, при увеличения расстояния между обкладками конденсатора в четыре раза?
- А)) уменьшится в четыре раза
- В) увеличится в четыре раза
- С) .не изменится

- D) увеличится в 16 раз E) уменьшится в 16 раз 244. Как изменится элег
- 244. Как изменится электроемкость конденсатора при удалении из него диэлектрика с диэлектрической проницаемостью ε=2,?
- А)Увеличится в два раза.
- В)Увеличится в 4 раза
- С)Уменьшится в четыре раза
- D) Не изменится
- Е)) Уменьшится в два раза
- 245. Плоский воздушный конденсатор подключен к источнику постоянного напряжения. Как изменится электрический заряд на одной обкладке конденсатора при уменьшении расстояния между его пластинами в 2 раза?
- А))увеличится в 4 раза
- В) уменьшится в 2 раза
- С) уменьшится в 4 раза
- D) увеличится в 2 раза
- Е) не изменится
- 246. Конденсатор имеющий емкость С= 20 мкФ рассчитан на напряжение 150 В.

Определить какой ток пройдет через него (частота переменного тока $v = 50 \Gamma \mu$) .

- A)) 0.94 A;
- B) 0,35 A;
- C) 0.52A;
- D) 0,74A;
- E) 0,12 A.
- 247. Какими носителями электрического заряда создается электрическое поле в металлах?
- А)) только электронами
- В) электронами и положительными ионами
- С) положительными и отрицательными ионами
- D) положительными, отрицательными ионами и электронами
- Е) нет правильного ответа
- 248. Какие действия электрического поля наблюдаются при пропускании тока через металлический проводник?
- А)) нагревание и магнитные действия, химического действия нет
- В) Нагревание, химическое и магнитное действие
- С) химическое и магнитное действие, нагревания нет
- D) нагревание и химическое действие, магнитного действия нет
- Е) только магнитное действие

249. Электрическая цепь состоит из источника тока с ЭДС 6В, внутренним сопротивлением 2Ом и проводника с электрическим сопротивлением 1Ом. Чему равна сила тока в цепи? А)) 2A В) 18A С) 6A D) 3A E) 4A
250. Как изменится количество теплоты, выделяемое за единицу времени, в проводнике с постоянным электрическим сопротивлением при увеличении силы тока в цепи в 4 раза? А) увеличится в 4 раза В) уменьшится в 4 раза С) увеличится в 2 раза D)) увеличится в 16 раз Е) нет правильного ответа
251. Работа тока на участке цепи за 3с равна 6Дж. Чему равна сила тока в цепи, если напряженность на участке цепи равна 2В? А) 9А В) 4А С))1А D) 36A Е) нет правильного ответа
252. При увеличении напряжения на участке цепи в 2 раза мощность тока увеличилась в 4 раза. Как изменилась при этом сила тока в цепи? А)) увеличилась в 2 раза В) осталась неизменной С) увеличилась в 4 раза D) увеличилась в 8 раз Е) нет правильного ответа
253.Электрическое сопротивление медной проволоки 8 Ом. Проволоку потянули за концы в противоположные стороны и ее длина увеличилась вдвое. Каким стало электрическое сопротивление провода? А)4 Ом В) 8 Ом С) 16 Ом D) 64 Ом E))32 Ом
254.При напряжении 12 В через нить электрической лампы течет ток 2 А. Сколько тепла

выделит нить лампы за 5 мин?

А) 120 Дж В)) 7200 Дж С) 60 Дж

- D) 3600 Дж
- Е) Лампа тепла не выделит
- 255. Электрическая цепь состоит из источника электрического тока и электрической лампы. Как нужно подключить вольтметр и амперметр для определения электрического сопротивления лампы?
- А))Амперметр последовательно с лампой, вольтметр параллельно лампе
- В) Сначала нужно измерить ток в цепи амперметром затем отключить лампу и подключить к источнику тока вольтметр
- С) Амперметр и вольтметр последовательно с лампой
- D) Амперметр и вольтметр параллельно лампе
- Е) Вольтметр последовательно с лампой, амперметр параллельно лампе
- 256. Электрическое сопротивление медной проволоки 8 Ом. Каким будет сопротивление, если проволоку сложить вдвое?
- А) 8 Ом.
- B)) 2 O_M
- C) 32 O_M
- D) 64 O_M
- E) 4 O_M
- 257. Как и почему изменяется электрическое сопротивление металлов при увеличении температуры?
- А))Увеличивается из-за увеличения амплитуды колебаний положительных ионов кристаллической решетки
- В) Увеличивается из-за увеличения скорости движения электронов
- С) Уменьшается из-за увеличения скорости движения электронов
- D) Уменьшается из-за увеличения амплитуды колебаний положительных ионов кристаллической решетки
- Е) Уменьшается из-за увеличения концентрации свободных носителей электрического тока
- 258. Какие эффекты из перечисленных ниже наблюдаются при протекании электрического тока в сверхпроводниках?
- 1. нагревание проводника
- 2.медленное убывание силы тока со временем
- 3. возникновение магнитного поля
- А) 1 и 2
- В) Только 1
- С) 1 и 3
- D) 2 и 3
- Е))Только 3
- 259. Какими частицами не может создаваться электрический ток в вакууме?
- А))Нейтронами
- В) Только электронами
- С) Только положительными и отрицательными ионами
- D) Любыми электрически заряженными частицами
- Е) Ток в вакууме не может создаваться никакими частицами
- 260. Основной причиной возникновения дугового разряда является ...
- А) фотоэффект

- В)) термоэлектронная эмиссия С) высокое напряжение на электродах D) особенности строения электродов Е) нет верного ответа 261. Кинетическая энергия, которую дополнительно получит электрон, пройдя разность потенциалов 1 MB ($e=1,6\cdot10(-19)$ Кл), равна: А)) 1,6·10(-13)Дж В) 1, 6·10(-12)Дж С) 1,9·10(-11)Дж D) 1,6·10(-13)Дж Е) 1,3·10(-16)Дж 262. По тонкой катушке течет ток I = 7A, радиус витков r=10см. При каком числе витков N напряженность магнитного поля в центре катушки будет $H=245 \ A/m$? Считать катушку плоской. A) 3: B)) 7;C) 5;D) 1; E) 10. 263. Магнитное поле в центре кругового тока I (г-радиус) : A) $2\pi r\dot{I}$; B) $I/(2\pi r)$; C) $2r\dot{I}$; D)) $\dot{I}/2r$; E) $2\pi/Ir$. 264. Сила действующая на движущуюся заряженную частицу в магнитном поле (β угол между направлением скорости и магнитной индукцией): A)) $F = q \partial B \sin \beta$; B) $F = qB\ell \sin \beta$; C) $F = q \partial B \cos \beta$; D) $F = q\ell B$; E) F = q/9B.
- 265. В однородном магнитном поле проводник длиной 1 движется о скоростью υ под углом α к силовым линиям. Каким выражением определяется выражение работы силы Лоренца по перемещению свободного заряда q по проводнику?

A)) $ q v B \sin \alpha$
B) $ q \upsilon B l \sin \alpha$
C) $IvBl\sin\alpha$
D) $ q Bl\sin\alpha$
E) $ q vBl \cos \alpha$
266. Сила тока в соленоиде изменяется по закону I=10t-t ² . Индуктивность соленоида
L=10Гн. Какая э. д. с. самоиндукции будет в соленоиде через $\Delta t = 2c$?
A)) 60 B;
B) 80 B;
C) 90 B;
D) 100 B;
E) 120 B.
267. Электрон движется по окружности в однородном магнитном поле с индукцией
В=0,18Тл. Определите период обращения электрона ($e=1,6\cdot10^{-19}K\ell$, $m_e=9,1\cdot10^{-31}\kappa z$)
$A) \approx 8 \cdot 10^{-10} c \qquad ;$
B) $\approx 0.5 \cdot 10^{-10} c$;
C) $\approx 4.2 \cdot 10^{-10} c$;
D) $\approx 6 \cdot 10^{-10} c$;
E)) $\approx 2 \cdot 10^{-10} c$
268. Электрон под действием однородного магнитного поля обращается по окружности радиусом R с периодом T. Какими станут значения радиуса окружности и периода обращения электрона при увеличении индукции магнитного поля в два раза? A)) $\frac{R}{2}$, $\frac{T}{2}$ B) 2R, T C) $\frac{R}{2}$, T
E) R,2T
269. Чему равна индуктивность контура, если при силе тока 2A в нем существует магнитный поток 4 Вб? А) 0,5 Гн В)) 2 Гн С) 1 Гн. D) 18 Гн Е) нет правильного ответа

270. За 2 с магнитный поток, пронизывающий контур, равномерно уменьшился с 8 до 2 Вб. Чему было равно при этом значение ЭДС индукции в контуре? А)) ЗВ В) 12В С) 5В D) 4В E) 1В
271. Постоянный магнит вдвигается в металлическое кольцо северным полюсом. Притягивается кольцо к магниту или отталкивается от него? Какое направление имеет индукционный ток в кольце, если смотреть со стороны вдвигаемого магнита? А)) Отталкивается. Против часовой стрелки В) Притягивается. По часовой стрелке С) Притягивается. Против часовой стрелке D) Отталкивается По часовой стрелке Е) Не притягивается и не отталкивается. Сила тока равна нулю.
272. Четыре одинаковые катушки включены последовательно в электрическую цепь постоянного тока. Одна из катушек не имеет сердечника, в других имеется ферромагнитный, диамагнитный и парамагнитные сердечники. Магнитные потоки в катушках 1,2,3,4 удовлетворяют неравенству $\Phi_1 > \Phi_2 > \Phi_3 > \Phi_4$. В каком из катушек нет сердечника? А) 1
B) 2
C)) 3
D) 4
Е) нет правильного ответа
273. Чему равна индуктивность контура, если при силе тока 4A в нем существует магнитный поток 2 Вб? А)) 0,5 Гн В) 1 Гн С) 2 Гн D) 18 Гн E) нет правильного ответа
274. Если известно, что работа сил электрического поля при перемещении в нем электрического заряда по любой траектории равна нулю, то какое это поле, индуктивное или электростатическое? А)) .электростатическое В) индуктивное С) это поле может быть как индуктивным, так и электростатическим D) таким свойством не обладает ни индуктивное, ни электростатическое поле E) нет правильного ответа

275.Плоский виток провода площадью S расположен в однородном магнитном поле с индуктивностью \vec{B} , угол между вектором \vec{B} и плоскостью витка равен α . Чему равен магнитный поток через виток?

- A))BS sinα
- B) BS
- C) BS cosa
- D) BS/sinα
- E) BS/cosα

276. Как называется уравнение вида
$$(\Pi + \frac{a}{V^2})(V - b) = RT$$
?

- А) уравнение состояния идеального газа
- В)уравнение неразрывности
- С)) уравнение состояния реального газа
- D)основное уравнение молекулярно-кинетической теории газов
- Е) уравнение прямолинейного движения

277. В каких единицах измеряется внутреннее трение?

- A)) Па с
- В) Дж
- С) кал
- D) кг⁻м
- E) $\kappa \Gamma M^2$

278. Как выглядит уравнение Ван-дер-Ваальса для произвольного количества реального газа?

A))
$$(P + \frac{av^2}{V^2})(V - vb) = vRT$$
B)
$$(P + \frac{av^2}{V^2})(V + vb) = vRT$$
C)
$$(P - \frac{av^2}{V^2})(V + vb) = vRT$$

(P -
$$\frac{av^2}{V^2}$$
)(V + vb) = vRT

$$(P + \frac{av^2}{V^2}) \left(V + \frac{v}{b}\right) = vRT$$

(P -
$$\frac{av^2}{V^2}$$
)(V + vb) = RT

279. Были предложены различные варианты уравнения состояния реального газа. Какое из уравнений получило наиболее широкое признание?

- А) уравнение Майера
- В)) Ван-дер-Ваальса
- С) уравнение Максвелла
- D) уравнение Клапейрона-Менделеева
- Е) уравнение Пуассона

280.Что характеризует постоянная a в уравнении состояния реального газа?

- А) число молекул
- В) концентрацию молекул
- С) энергию молекул
- D) скорость молекул

- Е)) межмолекулярное взаимодействие
 - 281. При каких условиях поведение реальных газов может быть описано уравнением состояния идеального газа?
- А))при достаточно низких давлениях и высоких температурах
- В) в области высоких давлений и температур
- С) при низких давлениях и температурах
- D) при высоких давлениях и низких температурах
- Е) нет правильных вариантов
 - 282. В какое уравнение введением поправок было получено уравнение Ван-дер-Ваальса?
- А) Остроградского-Гаусса
- В))Клапейрона Менделеева
- С) Бернулли
- D) Пуассона
- Е) Клапейрона Клаузиуса
- 283. Уранение Ван-дер-Ваальса для одного моля реального газа имеет вид:

$$A)(p - \frac{a}{V_0^2})(V_0 - b) = RT$$

$$B)(p + \frac{a}{V_0^2})(V_0 + b) = RT$$

$$C)(p - \frac{a}{V_0})(V_0 - b) = RT$$

$$(D)(p-a)(V_0-b) = RT$$

$$E)(p + \frac{a}{V_0^2})(V_0 - b) = RT$$

- 284. Какая термодинамическая функция остается неизменной при дросселировании в опыте Джоуля-Томсона?
- А) энтропия
- В)) энтальпия
- С) свободная энергия
- D) термодинамический потенциал Гиббса
- Е) внутренняя энергия
- 285. Как называется вещество в газообразном состоянии при температуре ниже критической?
- А) насыщенный пар
- В) пересыщенный пар
- С))пар
- D) перегретая жидкость
- Е) жидкость
 - 286. Как называется пар, где число молекул переходящих за единицу времени через единичную площадь поверхности в жидкость больше числа молекул покидающих жидкость?
 - А) насыщенный пар

- Б) ненасыщенный пар
- С) сублимация
- Д) конденсация
- Е)) пересыщенный пар
- 287. Как называются вещества, ослабляющие поверхностное натяжение жидкости?
- А) активными
- В) объемно-активными
- С)) поверхностно-активными
- D) оптически-активными
- Е) внутренне-активными
- 288. Как называется угол между касательными к поверхностям жидкости и твердого тела?
- А) граничным
- В))краевым
- С) внешним
- D) тупым
- Е) смежным
- 289. Что характеризует постоянная **b** в уравнении Ван-дер-Ваальса?
- А) число молекул
- Б) скорость молекул
- С) энергию молекул
- Д)) собственный объем молекул
- Е) распределение молекул
- 290. Согласно теории вероятности, с учетом движения всех молекул, собственный объем \boldsymbol{b} для 1 моля газа определяется по формуле:

B)
$$b = N_A \cdot \frac{2}{3} \pi d^2$$

C)
$$b = N_A \cdot \pi d^2$$

D))
$$b = N_A \cdot \frac{2}{3} \pi d^3$$

E)
$$b = N_A \cdot \frac{2}{3}d^3$$

F)
$$b = N_A \cdot \frac{1}{3} \pi d^2$$

- 291. По какой формуле вычисляется внутренняя энергия реального газа при изохорическом процессе?
- A)) $dU = C_V dT$
- B) $dU=C_P dT$
- C) $dU = (C_V/C_P)dT$
- D) $dU=C_V(1-C_P)dT$

- E) $dU=C_V/dT$
- 292. Каково соотношение между кинетической и потенциальной энергией при адиабатическом изменении объема реального газа?
- А)) на сколько возрастает сумма потенциальной энергии молекул, на столько уменьшится сумма их кинетической энергии
- В) на сколько возрастает сумма потенциальной энергии молекул, на столько увеличится сумма их кинетической энергии
- С) на сколько уменьшится сумма потенциальной энергии молекул, на столько уменьшится сумма их кинетической энергии
- D) если сумма потенциальной энергии молекул увеличится в 2 раза, то сумма их кинетической энергии уменьшится в 4 раза
- Е) сумма потенциальной энергии молекул увеличится, а кинетической энергии остается неизменной
- 293. По какой формуле определяется кинетическая энергия реального газа r?

A)
$$E_k = \int_0^T C_V dT$$


B)
$$E_k = \int_0^T C_P dT$$

C)
$$E_k = \int_0^\infty C_P dT$$

D)
$$E_k = \int_0^T C_V/dT$$

E)
$$E_k = \int_0^\infty C_P/dT$$

- 294. Что называется критической температурой?
- А) температура при которой жидкость переходит в пар
- В) температура при которой пар переходит в жидкость
- С) температура кипения
- D)) температура при которой между жидкостью и паром установится динамическое равновесие
- Е) температура затвердевания
- 295. Укажите на неверное утверждение.
- А) для охлаждения газа Дьюар и Линда воспользовались эффектом Джоуля -Томсона
- В) внутренняя энергия 1 моля идеального газа равен $C_V T$
- С)) если при дросселировании реальный газ нагревается эффект Джоуля-Томсона называется положительным
- D) при адиабатическом расширении газа в вакууме его температура изменяется
- Е) при адиабатическом изменении объема реального газа его внутренняя энергия остается неизменной
- 296. Что за кривая приведена на рисунке?

- А)) изотерма Ван-дер-Ваальса
- В) изотерма двухатомного идеального газ
- С) кривая испарения
- D) кривая инверсии дифференциального эффекта Джоуля-Томсона
- Е) изотерма реального газа
- 297.. Что понимают под внутренней энергией реального газа?
- А)) сумму кинетической энергии теплового движения молекул и потенциальной энергии их взаимодействия
- В) разность кинетической энергии хаотического движения молекул и потенциальной энергии их взаимодействия
- С) кинетическую энергию теплового движения молекул
- D) потенциальную энергию взаимодействия молекул
- Е) ни один из вариантов
- 298. Эффект Джоуля-Томсона принято считать положительным, если
- A) $\Delta T \leq 0$
- B) $\Delta T = 0$
- C)) $\Delta T < 0$
- D) $\Delta T > 0$
- E) $\Delta T \geq 0$.
- 299. Как называется процесс медленного прохождения газа под действием перепада давления сквозь дроссель?
- А) изотермическим расширением
- В)) адиабатическим расширением

Сизобарическим сжатием

- D) изохорическим сжатием
- Е) политропным расширением
- 300. От чего зависит потенциальная энергия реального газа?
- А)) объема газа
- В) давления молекул
- С) рода газа
- D) температуры газа
- Е) скорости движения молекул