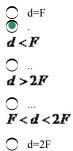
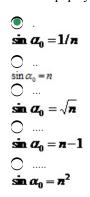

1313y_Ru_Æyani_Yekun imtahan testinin sualları

Fənn: 1313y Fizika-2


1 Укажи	те природу света
000000	только корпускулярная природа представляет собой продольные волны не волна, не поток корпускул корпускулярно – волновая только волновая природа
2 Укажи	те предмет фотометрии
000000	изучает волновую природу света изучает корпускулярную природу света изучает взаимодействие света с веществом занимается вопросами измерения интенсивности света и его источников изучает световую энергию оптического диапазона и связанные с ней величины
3 Укажи	те единицу измерения силы света в СИ.
00000	1лм 1лк 1нит 1 кд 1дп
4 Для че	го предназначен фотометр?
00000	устройство для сравнения природы света устройство для сравнения светового потока устройство для получения светового спектра устройство для сравнения силы света или светового потока различных источников света устройство для определения освещенности поверхности
5 кажите	е единицу измерения светимости в СИ.
000000	1лм 1 кд 1 нит 1лк 1 фот
6 Какая	величина характеризует оптическую плотность среды?
000000	показатель внутреннего трения среды вязкость среды диэлектрическая проницаемость среды показатель преломления среды магнитная проницаемость среды
7 При ка	жих условиях возникает полное внутреннее отражение света?
00000	свет должен переходить из оптически более плотной среды в менее плотную, угол падения должна быть больше предельного угла свет должен переходит из оптически менее плотной среды в более плотную, угол падения должна быть меньше предельного угла свет должен переходит из оптически менее плотной среды в более плотную, угол падения ра¬вен предельному углу. свет должен переходит из оптически менее плотной среды в более плотную свет должен переходит из оптически менее плотной среды в более плотную, угол падения должна быть больше предельного угла свет должен переходит из оптически менее плотной среды в более плотную, угол падения должна быть больше предельного угла свет должен переходит из оптически менее плотной среды в более плотную, угол падения должна быть больше предельного угла свет должен переходит из оптически менее плотной среды в более плотную, угол падения должна быть больше предельного угла свет должен переходит из оптически менее плотной среды в более плотную, угол падения должна быть больше предельного угла свет должен переходит из оптически менее плотной среды в более плотную, угол падения должна быть больше предельного угла свет должен переходит из оптически менее плотной среды в более плотную, угол падения должна быть больше предельного угла свет должен переходит из оптически менее плотной среды в более плотную.
8 Чему р	равна скорость света в вакууме?
3* 1	0 ⁸ m/cek
5* .	10° m/cek

3 *10 ⁷ м/сек 3*10 ⁶ м/сек
9 Углом преломления называют
угол между преломленным лучом и перпендикуляром, восстановленным в точку падения луча угол между падающим лучом и перпендикуляром, восстановленным в точку падения луча нет правильного ответа угол между падающим лучом и границей раздела двух сред угол между преломленным лучом и границей поверхности раздела сред
10 . Определите длину волны света в стекле, если она в вакууме равна 7710^{-7} м (n = 1,5)
4,66 10 ⁻⁷ M 4,43 10 ⁻⁷ M 4,86 10 ⁻⁷ M 4,55 10 ⁻⁷ M 4,23 10 ⁻⁷ M
11 На основе рисунка определите сумму углов падения и отражения.
40°
 60 dərəcə 100 dərəcə 50 dərəcə 40 dərəcə 80 dərəcə 12 Постоянная величина, входящая в закон преломления света, называется показателем преломления вакуума диэлектрической проницаемостью относительным показателем преломления магнитной проницаемостью показателем преломления воздуха
13 Изменение направления распространения света на границе раздела двух сред, называется
показателем преломления преломлением полным внутренним отражением дуализмом отражением
14 Падающий луч, отражённый луч и перпендикуляр к отражающей поверхности лежат
 в одной плоскости на одной прямой в двух плоскостях в перпендикулярных плоскостях на двух прямых
15 Луч света из воздуха падает на стеклянную плоскопараллельную пластинку.


Верного рисунка нет● На 3-м
○ На 4-м
○ На 1-м
○ На 2-м
16 Раздел оптики, занимающийся измерениями интенсивности света и его источников, называют
молекулярной оптикой
фотометриейквантовой оптикой
Волновой оптикой
С геометрической оптикой
17 Какую характеристику неизвестного вещества достаточно определить, чтобы узнать скорость света в нем?
плотность
О объем
показатель преломлениятемпературу
упругость
18 Как изменяется частота света при прохождении светового луча из воздуха в стекло (n =1,5)
увеличивается в 2,25 раза
не изменяется
увеличивает в 1,5 разауменьшается в 1,5 раза
уменьшается в 2,25 раза
19 Как изменяется длина волны света при прохождении света из воздуха в стекло (n =1,5)
уменьшается в 2,25 раза
увеличивается в 1,5 раза
уменьшается в 1,5 раза
не изменяетсяувеличивается в 2,25 раза
20 . По какой формуле определяется предельный угол полного внутреннего отражения? (удовлетворяются условия $n_1 > n_2$ и $n_2 > 1$)
O
$\mathbf{t}\mathbf{g}\boldsymbol{\alpha}_0 = \frac{\mathbf{n}_2}{\mathbf{n}_1}$
. (7)
O 1
$\sin \alpha_0 = \frac{1}{\mathbf{n}_1}$
$\mathbf{tg} \alpha_0 = \mathbf{n}_1$
O
$\sin \alpha_0 = \mathbf{n}_2$
$\sin \alpha_0 = \frac{n_2}{n_1}$
n_1
21.
По какой формуле определяется световой поток? (dw - энергия луча, проходящий за время t через повержность площадью $d\sigma$, $d\Omega$ - телесный угол).
$d\Phi = \frac{dw}{dt}$
O ₅
$\frac{d\hat{O}}{d\hat{O}} = d\mathbf{w} \cdot d\mathbf{\Omega}$

22 При выполнении какого условия, собирающая линза дает мнимое изображение?

23 По какой формуле опреде¬ляется предельный угол полного отражения?

24 По какой формуле определяется абсолютный показатель преломления среды?

25 Укажите единицу измерения оптической силы линзы?

\bigcirc	Ампер
\bigcirc	Тесла
\bigcirc	Ньютон
	диоптрия
\bigcirc	Генри

26 Величина обратная фокусному расстоянию называется

\cup	толщиной линзы
	оптической силой линзы
\bigcirc	оптическим центром линзы

Õ	прозрачностью линзы
\circ	мнимым фокусом
27 Какие Северно	е из нижеперечисленных являются искусственными источниками света? 1- Звезды, 2- Свеча, 3 – Спички, е сияние
	2 и 3
\sim	1, 3 и 4
\simeq	
\sim	1, 2 n 4
\sim	1 и 4
\circ	1, 2, 3 и 4
28 Укаж	ите искусственные источники света
\circ	звезды
	дуговой разряд
	удар молнии
	северное сияние
\circ	солнце
29 Какие	е источники называются изотропными световыми источниками?
\sim	
	источники, где сила тока зависит от направления излучения
	источники, где сила света не зависит от направления излучения.
\bigcirc	источники с силой света 1 канделла, линейными размерами которых можно пренебречь
\bigcirc	источники, где за единицу времени через единицу площади излучается энергия в 1 Дж
\circ	источники, линейными размерами которых можно пренебречь
30 Какое	е из нижеследующих величин являются единицей измерения телесного угла?
\cap	люкс;
\sim	стерадиан;
\sim	
\simeq	кандела
\simeq	нит;
21 E	фот
31 Едині	ица измерения какой величины является стерадиан?
\circ	яркости
$leve{\odot}$	телесного угла
$\tilde{\bigcirc}$	светового потока
\sim	светимости
\sim	излучения
\sim	nony teniny
32 Плосі	кое зеркало создает изображение.
\circ	перевернутое, мнимое, симметричное
	перевернутое, мнимое, уменьшенное
Ō	прямое, действительное, симметричное
Ŏ	прямое, действительное увеличенное
$leve{\odot}$	прямое, мнимое, симметричное
Ü	
33 Выпу	клое зеркало создает изображение.
\circ	перевернутое, мнимое, симметричное
\circ	перевернутое, мнимое, уменьшенное
Ō	прямое, мнимое, увеличенное
Ŏ	прямое, действительное увеличенное
Ŏ	прямое, мнимое, уменьшенное
34 Макс	имальное увеличение, даваемое оптическим микроскопом, не может превышать, примерно:
\bigcirc	увеличение микроскопа неограниченно
$\widetilde{\sim}$	20 000
$ \widetilde{\bullet} $	2 000
	2 000
$\overline{\mathcal{L}}$	200

35 При переходе света из менее плотной среды в более плотную, его длина волны находится по формуле:

$ \bigcirc \dots \\ \lambda = \lambda_{\circ}/n $
$ \bigcap_{\lambda = (n-1)\lambda_n} \dots $
$\bigcap_{\lambda_n = \lambda/n} \dots$
$\lambda = n_{21}\lambda$
$\lambda = \mathbf{n}_1 \lambda_c / \mathbf{n}_2$
36 Укажите формулу, определяющую световой поток.
$E = (J/R^2) \cos \varphi$
$ \Phi = dw/dt $ $ \Phi = 4\pi J $
$ \bigcirc d\Phi = Jd\Omega \bigcirc R = d\Phi/dS $
37 Укажите формулу, определяющую силу света
$E = \frac{I}{R^2}$
$ \bigcirc B = I/S \bigcirc E = d\Phi/dS $
38 Укажите единицу измерения освещенности в системе СИ.
канделанит
нитдиоптрияфот
люкс
39 По какой формуле определяется освещенность?
$ \begin{array}{l} $
$ \begin{array}{l} dE = Jd\Omega \\ R = d\Phi/dS \end{array} $
40 Единицей измерения, какой величины является 1 нит?
Световой поток приость
яркостьсила светаосвещенность
Светимость
41 Из предложенных формул выберите, соответствующую увеличению микроскопа:
$ \begin{array}{ll} \bigcirc & \dots \\ \gamma = f/d \end{array} $
$\gamma = D\Delta/(f_{ee}f_{ex})$
γ = tg Φ/tg Φ _e
O
$ \bigcap_{\gamma = f_{e6}/f_{ex}} $ $ \bigcap_{\gamma = d_{e}/F} $

42 Какой угол называется углом падения светового луча?

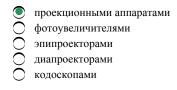
угол между падающим и отраженным лучами.
угол между преломленным лучом и перпендикуляром к границе раздела, восставленным в точке падения
угол между падающим лучом и перпендикуляром к границе раздела, восставленным в точке падения
угол между отраженным лучом и перпендикуляром к границе раздела, восставленным в точке падения
угол между падающим и преломленным лучами
43 Какой угол называется углом преломления?
угол между падающим и отраженным лучами.
угол между преломленным лучом и перпендикуляром к границе раздела, восставленным в точке падения
угол между падающим и перпендикуляром к границе раздела, восставленным в точке падения
угол между отраженным лучом и перпендикуляром к границе раздела, восставленным в точке падения.
угол между падающим и преломленным лучами
44 При каком соотношении показателей преломления преломленный луч отходит от нормали?
O
$n_2 / n_i = 1$
$n_2 < n_1$
$\bigcap_{n_2 > n_1}$
O
$n_2 n_i > 1$
45 По какой формуле определяется коэффициент линейного увеличения микроскопа?
O
$\Gamma = rac{F_{ob}}{F_{ok}}$
F_{ok}
\bigcap Γ =F/D
$\bigcap_{\Gamma=1/D} \Gamma=1/D$
$\Gamma = 1/F$
<u> </u>
25·Δ
$\Gamma = \frac{25 \cdot \Delta}{F_{ob} \cdot F_{ob}}$
46 Укажите формулу тонкой линзы
○ D=1/F
lacktriangle .
$1_{-(-1)}(1,1)$
$ \frac{1}{F} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right) $ $ \frac{h}{H} = \frac{d}{f}. $
$\stackrel{\smile}{h}\stackrel{\cdot \cdot }{d}$
$\frac{1}{H} = \frac{1}{F}$
n ,
$ \begin{array}{c} \bigcirc \dots \\ \Gamma = \frac{H}{h} \end{array} $
$ \bigcap_{\Gamma = \frac{f}{d}} $
$\Gamma = \frac{f}{f}$
- d
47 Укажите формулу тонкой собирающей линзы, на случай когда она дает мнимое изображе¬ние. (F-фо
расстояние линзы, d- расстояние от линзы до предмета, f-расстояние от линзы до изображения).

кусное

$$-\frac{1}{F} = \mathbf{d} + \mathbf{f}$$

$$\frac{1}{F} = \frac{1}{d} - \frac{1}{f}$$

$$\bigcap_{\mathbf{f}} \dots$$


48 По какой формуле определяется оптическая сила собирающей линзы?

49 По какой формуле определяется оптическая сила рассеивающей линзы?

50 Оптические приборы, предназначенные для получения на экране действительных увеличенных изображений объектов называются.....

51 Цветовое зрение осуществляется.....

32 HC	Kai	кои формуле определяется относительный показатель преломления среды?
	\bigcirc	
		n_1/n_2
	\bigcirc	
		n ₁ - n ₂
	<u> </u>	
	<i>n</i> –	tga —
	\bigcirc	
		v- C
	7 =	n_2/n_1
53 .		
	й фо	ормуле определяется длина волны в среде с показателем преломления n?
		олны в вакууме).
	\bigcirc	
		₌ λ ² ₀
	<i>n</i> –	· A U
		$=\lambda_0/n$
	\bigcirc	
	λ ₀ -	
	~~U	
	\bigcirc	
		= λ_0 - n
	1 -	$= \lambda_0 / n^2$
	~	
54 Vı	awı	ите единицу измерения показателя преломления среды?
J	аж	те единицу измерения показателя преломления ереды:
		безразмерная величина
	-	1/метр
	_	KΓ'M
	_	сек/м
	_	1/сек
55 Св	ето	вой луч переходит из среды с показателем преломления 1,6 во вторую среду. При каком значение показателя
прело	мле	ения второй среды будет наблюдаться полное внутрен¬нее отражение света?
		1,5
	\supseteq	1,7
	\bigcirc	1,9
	00000	1,8
	\bigcirc	2
56 Va	1400	устройство используется для измерения светимости поверхности?
oo Ka	KUC	устроиство используется для измерения светимости поверхности:
		люксметр
		фотометр
		микроскоп
		дозиметр
		рефрактометр
	\cup	рефиломотр
57 Ук	ажи	ите принцип работы светопроводов.
		полное внутреннее отражение света
		поглощение света
		поляризация света
		дифракция света
		интерференция света
58 Ук	ажи	ите безразмерную величину
	$\overline{}$	
	_	оптическая сила линзы
	lefton	увеличение линзы

ормупе определяется и	ов ов ов ов ов гво позволяет измерить показатель преломления среды?
ормуне определяется и	дающим и отраженным лучами составляет 30 градусов. Найти угол отражения, если угол падения 15 градуса ? ов о
 ∴ ∴ ∴ ∴ ∴ ∴ ҳ ⋅ α ⋅ α ⋅ α ⋅ α ⋅ α ⋅ α ⋅ α ⋅ α ⋅ α ⋅	дающим и отраженным лучами составляет 30 градусов. Найти угол отражения, если угол падения 15 градуса ? ов ов ов ов ов ов позволяет измерить показатель преломления среды?
 sin α₀ = 2/3 sin α₀ = 3/2 sin α₀ = 1/3 sin α₀ = 1/2 0 Угол между па величивается на 90 градусс 30 градусс 15 градусс 45 градусс 60 градусс 16 градусс 17 гелескоп дозиметр фотометр люксметр 2 Найти время по польсек 15n-сек 15n-сек 10n-сек 10n-сек 20n-сек 	15 градуса ? ов ов ов ов ов ов ов ов ов о
 sin α₀ = 2/3 sin α₀ = 3/2 sin α₀ = 1/3 sin α₀ = 1/2 0 Угол между па величивается на 90 градусс 30 градусс 15 градусс 45 градусс 60 градусс 16 градусс 17 гелескоп дозиметр фотометр люксметр 2 Найти время по польсек 15n-сек 15n-сек 10n-сек 10n-сек 20n-сек 	15 градуса ? ов ов ов ов ов ов ов ов ов о
 sin α₀ = 2/3 sin α₀ = 3/2 sin α₀ = 1/3 sin α₀ = 1/2 0 Угол между па величивается на 90 градусс 30 градусс 15 градусс 45 градусс 60 градусс 16 градусс 17 гелескоп дозиметр фотометр люксметр 2 Найти время по польсек 15n-сек 15n-сек 10n-сек 10n-сек 20n-сек 	15 градуса ? ов ов ов ов ов ов ов ов ов о
 ∴ sin α₀ = 3/2 ∴ sin α₀ = 1/3 ∴ sin α₀ = 1/2 0 Угол между па величивается на ○ 90 градусс ○ 30 градусс ○ 15 градусс ○ 45 градусс ○ 60 градусс ○ 15 градусс ○ 45 градусс ○ 15 градусс ○ 45 градусс ○ 45 градусс ○ 15 градусс ○ 45 градусс ○ 15 градусс ○ 15 градусс ○ 200 - cek ○ 15n-cek ○ 10n-cek ○ 10n-cek ○ 20n-cek 	15 градуса ? ов ов ов ов ов ов ов ов ов о
 ∴ sin α₀ = 3/2 ∴ sin α₀ = 1/3 ∴ sin α₀ = 1/2 0 Угол между па величивается на ○ 90 градусс ○ 30 градусс ○ 15 градусс ○ 45 градусс ○ 60 градусс ○ 15 градусс ○ 45 градусс ○ 15 градусс ○ 45 градусс ○ 45 градусс ○ 15 градусс ○ 45 градусс ○ 15 градусс ○ 15 градусс ○ 200 - cek ○ 15n-cek ○ 10n-cek ○ 10n-cek ○ 20n-cek 	15 градуса ? ов ов ов ов ов ов ов ов ов о
	15 градуса ? ов ов ов ов ов ов ов ов ов о
	15 градуса ? ов ов ов ов ов ов ов ов ов о
	15 градуса ? ов ов ов ов ов ов ов ов ов о
о	15 градуса ? ов ов ов ов ов ов ов ов ов о
о	15 градуса ? ов ов ов ов ов ов ов ов ов о
о	15 градуса ? ов ов ов ов ов ов ов ов ов о
0 Угол между па величивается на 90 градусс 30 градусс 15 градусс 45 градусс 60 градусс 1 Какое устройс пенескоп дозиметр фотометр люксметр 2 Найти время п пинескоп полиметр полиметр понескоп полиметр полиметр понескоп понескоп полиметр понескоп поне	15 градуса ? ов ов ов ов ов ов ов ов ов о
0 Угол между па величивается на 90 градусс 30 градусс 15 градусс 45 градусс 60 градусс 1 Какое устройс пенескоп дозиметр фотометр люксметр 2 Найти время п пинескоп полиметр полиметр понескоп полиметр полиметр понескоп понескоп полиметр понескоп поне	15 градуса ? ов ов ов ов ов ов ов ов ов о
0 Угол между па величивается на 90 градусс 30 градусс 15 градусс 45 градусс 60 градусс 1 Какое устройс пенескоп дозиметр фотометр люксметр 2 Найти время п пинескоп полиметр полиметр понескоп полиметр полиметр понескоп понескоп полиметр понескоп поне	15 градуса ? ов ов ов ов ов ов ов ов ов о
90 градуес 30 градуес 15 градуес 45 градуес 60 градуес 1 Какое устройст рефрактом телескоп дозиметр фотометр люксметр 2 Найти время пт 5n-sek 15n-cek 10n-cek 20n-cek	15 градуса ? ов ов ов ов ов ов ов ов ов о
90 градусс 30 градусс 15 градусс 45 градусс 60 градусс 1 Какое устройст рефрактом телескоп дозиметр фотометр люксметр 2 Найти время п 5n-sek 30n-cek 15n-cek 10n-cek	ов ов ов ов ов гво позволяет измерить показатель преломления среды?
 30 градуес 15 градуес 45 градуес 60 градуес 1 Какое устройс рефрактом телескоп дозиметр фотометр люксметр 1 Найти время п 30n-сек 15n-сек 10n-сек 20n-сек 	ов ов ов гво позволяет измерить показатель преломления среды?
 30 градуес 15 градуес 45 градуес 60 градуес 1 Какое устройс рефрактом телескоп дозиметр фотометр люксметр 1 Найти время п 30n-сек 15n-сек 10n-сек 20n-сек 	ов ов ов гво позволяет измерить показатель преломления среды?
15 градуес 45 градуес 60 градуес 1 Какое устройс префрактом телескоп дозиметр фотометр люксметр 2 Найти время п 5n-sek 30n-cek 15n-cek 10n-cek 20n-cek	ов ов гво позволяет измерить показатель преломления среды?
○ 60 градусс Полосек Оправления по положения по	гво позволяет измерить показатель преломления среды?
 Рефрактом телескоп дозиметр фотометр люксметр Найти время по по	гво позволяет измерить показатель преломления среды?
рефрактом телескоп дозиметр фотометр люксметр 2 Найти время пт	
рефрактом телескоп дозиметр фотометр люксметр 2 Найти время пт	
телескоп	летр
О дозиметр О фотометр О люксметр 2 Найти время п 5n-sek О 30n-cek О 15n-cek О 10n-cek 0 20n-cek	
фотометр Люксметр 2 Найти время п 5n-sek 30n-cek 15n-cek 10n-cek 20n-cek	
2 Найти время пу	
○ 5n-sek ○ 30n-cek ○ 15n-cek ○ 10n-cek ◎ . 20n-cek	
○ 5n-sek ○ 30n-cek ○ 15n-cek ○ 10n-cek ◎ . 20n-cek	рохождения светом расстояние, равное 3 м в среде с показателем преломления равным 2?
5n-sek	reaction to the control of the contr
○ 30n-cek ○ 15n-cek ○ 10n-cek ◎ . 20n-cek	
30n-cek 15n-cek 10n-cek 20n-cek	
○ 15n-cek ○ 10n-cek ● . 20n-cek	
○ 10n-cek ⑤ . 20n-cek	
10n-cek 20n-cek	
On · cek	
20n · cek	
3.	
J.	
уч света падает на гра	ницу раздела двух сред. В первой среде длина волны света равна
2710 ⁻⁷ м, а во второй (8?10 ⁻⁷ м. Найти относительный показатель преломления среды.
Ω Ω 4	
0,4 1,6	
0,8	
5	
2,5	
4 .	

	действительное, в размер предмета.
	мнимое, уменьшенное
	действительное, увеличенное
(действительное, уменьшенное
65 .	
	а проходит из среды с показателем преломления $n_{\rm L}$ =2,5 в среду с $n_{\rm c}$ =2. Как
	я при этом скорость света?
(увеличивается в 1,25 раза
(увеличивается в 5 раза
	увеличивается в 2 раза
(уменьшается в 2,5 раза
(уменьшается в 1,25 раза
66 Кто	из нижеследующих ученых первым осуществил измерение скорости света в других средах?
(Физо
(Галилей
(Майкельсон
(Ремер
Č	Фуко
67 В к	акой среде свет распространяется с наименьшей скоростью?
	в алмазе
(в вакууме
(в воздухе
	в стекле
() в воде
68 Оті	ношение скорости света в вакууме к скорости света в среде называется:
(магнитной проницаемостью среды
(относительным показателем преломления
(показателем рассеяния
(диэлектрической проницаемостью этой среды
(абсолютным показателем преломления этой среды
69 Vr	жите связь между яркостью и светимостью
0) J K	MANTE CONSUMENTAL IN CONTINUOUS INCOME.
($ ho$ R = π B
(E = de/dt
($\Phi = d\Phi/dS$
($R = 4\pi J$
($\int dR = Jd\Omega$
70 В ч	ем состоит разница между освещенностью и светимостью?
(освещенность характеризует точечный источник, а светимость- источник света с конечными размерами.
(освещенность и светимость оба характеризуют источник света с конечными размерами
	освещенность связан с освящаемой поверхностью, а светимость- с точечным источником
	освещенность характеризует точечный источник, а светимость – освещаемую поверхность.
(освещенность характеризует освещаемую поверхность, а светимость – источник света с конечными размерами.
71 Кан	ой угол называется предельным углом полного внутреннего отражения?
(угол падения, при котором угол преломления равно 90 градусов
	угол падения, при котором угол преломления равно 100 градусов
(угол падения, при котором угол преломления равно 30 градусов
(угол падения, при котором угол преломления равно 45 градусов
(угол падения, при котором угол преломления равно 60 градусов
72 .	
Какой за	кон выражает формула $\sin i / \sin r = \frac{n_2}{n_1} = n_{21}$?
	$n_{\rm t}$
(закон полного внутреннего отражения света
Ò	принцип Ферма
,	- ▲

O 3	вакон преломления света
73 При ка	ком значении угла падения, световой луч проходит во вторую среду без преломления?
	= 90 градусов
	= 0 градусов
	= 30 градусов = 45 градусов
	= 60 градусов
	ком соотношении показателей преломления сред () преломленный луч приближа тется к нормали?
\sim .	n2≈n1
_	n2>n1
_	n^2
	2 /n1>1
	n2 n1>1
_	ой формуле вычисляется увеличение, даваемое зрительной трубой?
O .	 17
$\Gamma =$	r n
_	
_	
$\Gamma =$	\overline{F}
O .	.
$\Gamma =$	<u>1</u>
	D
\circ	
$\Gamma = -$	$\frac{F_{ab}}{T}$
	F _{ok}
	<u>25-Δ</u>
Γ=	$\frac{-}{F_{ab} \cdot F_{ab}}$
-	вный угол полного внутреннего отражения для стекла составляет 41 градусов. При каком значение угла ветового луча произойдет полное внутреннее отражение света?
O 4	40 градусов
	12 градусов
	88 градусов
	25 градусов 30 градусов
	карактеристику изображения, полученного собирающей тонкой линзой, если предмет находится между
	рокусом и двойным фокусом.
Ξ .	увеличенное, перевернутое, действительное
	изображения не существует
_	/меньшенное, перевернутое, действительное /величенное, прямое, мнимое
_	нормальное, примос, мнимос нормальное нормальное нормальное нормальное, перевернутое, действительное
	ите не верное высказывание.
_	
I	стеклянная призма отклоняет падающий на неё луч не к основанию призмы, а в сторону преломляющего угла (угла при вершине призмы), если абсолютный показатель преломления окружающей среды больше абсолютного показателя материала, из которого изготовлена призма
■ I	все варианты не верны.
	предметы наблюдаемые через толстые стеклянные витрины иногда кажутся искривлёнными, т. к. оптическая плотность и толщина
	стекла в различных местах витрины может быть различной (из-за большого размера), что и создаёт некоторое смешение частей рассматриваемого предмета.

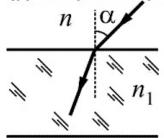
79 На пленке фотоаппарата получено уменьшенное изображение предмета. На основании этого можно утверждать, что объектив в виде собирающей линзы при фотографировании находился от фотопленки на расстоянии....

от закон прямолинейного распространения света

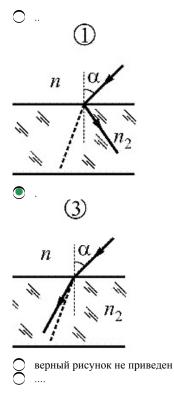
		больше фокусного, но меньше двух фокусных
	\circ	меньше фокусного
	\circ	равном фокусному
	Ŏ	в первом фокусе
	Ŏ	больше двух фокусных
80 П	[розр	рачное тело, ограниченное с двух сторон криволинейной поверхностью, называется:
	\circ	вогнутым зеркалом
	$\widetilde{\bigcirc}$	линзой
	$\widetilde{}$	параболоидом
	\simeq	сфероидом
	\sim	выпуклым зеркалом
81 Л	юбо	й световой луч, проходящий через оптический центр линзы
	_	
	\sim	преломляется
	\sim	отражается
	\odot	проходит через фокус
	\subseteq	рассеивается
		не преломляется
82 Л	инза	называется тонкой, если
	\bigcirc	правильного варианта нет
		толщина линзы мала по сравнению с радиусами сферических поверхностей
	\sim	толщина линзы во много раз больше радиусов сферических поверхностей
	\simeq	толщина линзы во много раз сольше раднуеов сферм теских поверхностем
	\simeq	толщина линзы равна фокусному расстоянию толщина линзы равна радиусам сферических поверхностей
	\cup	толщина линзы равна радиусам сферических поверхностеи
щурі	ить г	сса Марина Бородицкая написала этому дефекту зрения оду. С греческого миопия дословно переводится как слаз . Как называется дефект зрения, при котором изображение формируется не на сетчатке глаза, а перед ней е ваш ответ:
		Близорукость
	\circ	Косоглазие
	Ó	Слепота
	Ŏ	Аккомодация
	Ŏ	Дальнозоркость
84 P	азреі	шающая способность глаза определяется в:
	\circ	градусах
	$\widetilde{\bullet}$	секундах
	\sim	диоптриях
	\simeq	
	\simeq	метрах
	\cup	радианах
85 У	ГОЛ 1	полного внутреннего отражения света в СИ измеряется в:
		радианах
	\circ	градусах
	Ō	секундах
	$\tilde{\bigcirc}$	минутах
	$\tilde{\bigcirc}$	синусах угла
	Ŭ	
		ы и рассветы часто бывают красными. Чем объясняется образование красного цвета неба при рассвете и Выберите ваш ответ:
	_	
	٥	Световые волны красного цвета преломляются под меньшим углом
	\bigcirc	Световые волны красного цвета преломляются под большим углом
	\bigcirc	На Солнце бывают в этот момент бури
	Õ	Рассеивание световых волн всех цветов спектра, кроме красных
	Ŏ	Причиной этому солнечные ветры
87 T	очка	пересечения фокальной плоскости с главной оптической осью называется:
•		
	\bigcirc	центром криволинейной поверхности
		фокусом

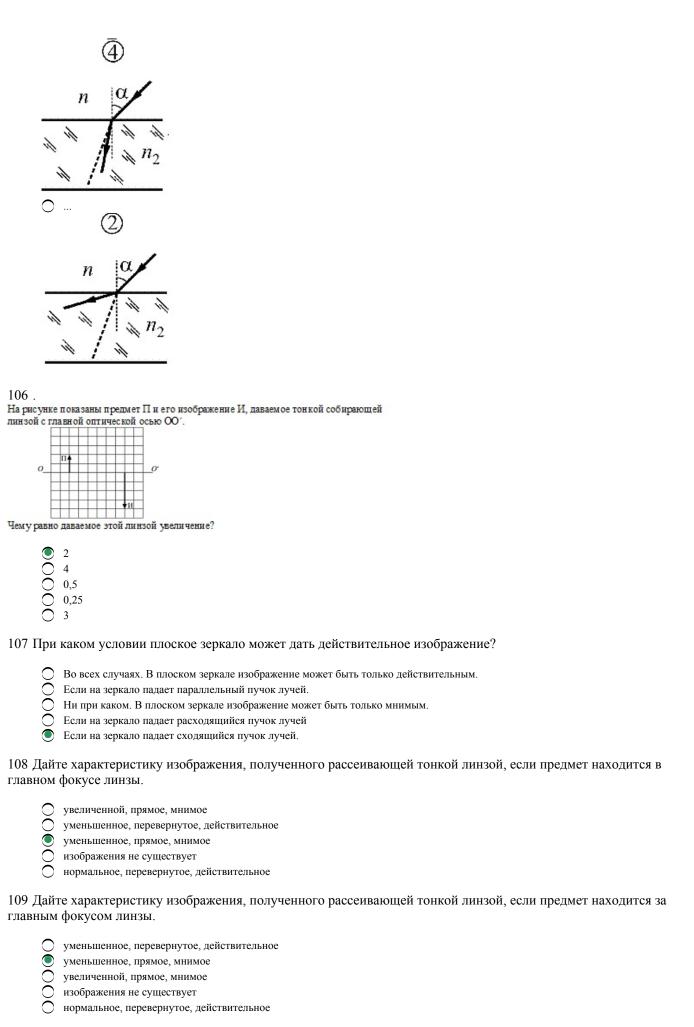
главным оптическим центром побочным фокусом нулевым фокусом		
88 При определенном угле падения светового луча, идущего из оптически более плотной среды в оптически менее плотную среду наблюдается эффект скольжения преломленного луча по границе раздела двух сред. Какое название получило данное явление? Выберите ваш ответ:		
явление полного преломления света природа данного явления не известна явление отражения света явление полного отражения света явление преломления света		
89 Солнечный свет падает на окружающие предметы, и все предметы приобретают различные цвета. Почему листья деревьев наблюдатель видит зелеными? Выберите ваш ответ:		
 При падении света на лист происходит отражение волн, соответствующих зеленой части спектра света, остальная часть спектра поглощается листом При падении света на лист происходит окраска цветом листа Явление не до конца изучено При падении света на лист происходит интерференция света, волны складываются, в результате появляется зеленый цвет листа. При падении света на лист происходит поглощение волн, соответствующих зеленой части спектра света, остальная часть спектра отражается листом 		
90 Хрусталик здорового человека по форме похож на		
 Вогнуто-выпуклую линзу двояковыпуклую линзу двояковогнутую линзу плосковогнутую линзу плоскопараллельную пластину 91 Как изменится угол между падающим и отражённым лучами при уменьшении угла падения на 10°? 		
увеличится на 20°		
уменьшится на 20° уменьшится на 10° уменьшится на 15° уменьшится на 10° уменьшится на 10°		
92 Лучи, падающий и отраженный, образуют друг с другом угол 140. Какой угол образует падающий луч с плоским зеркалом?		
70 20 30 10 40		
93 Источник света находится на расстоянии 0,7 м от линзы, имеющей фокусное расстояние 0,5 м. Изображение источника будет		
фимое уменьшенное точечным мнимое, увеличенное действительное, уменьшенное действительное, уменьшенное		
94 В каком случае угол преломления равен углу падения?		
нет правильного варианта		

	\bigcirc	когда показатели преломления двух сред одинаковы; падающий луч перпендикулярен к поверхности раздела сред
	\bigcirc	только тогда, когда показатели преломления двух сред одинаковы
	\bigcirc	только тогда. Когда падающий луч перпендикулярен к поверхности раздела сред
	\bigcirc	такое невозможно
95 Из	обр	ражение предмета в вогнутой линзе всегда
		мнимое, уменьшенное, прямое
	\bigcirc	действительное, уменьшенное, перевернутое
	Ŏ	действительное, увеличенное, перевернутое
	$\tilde{\bigcirc}$	действительное, увеличенное, прямое
	$\widetilde{\frown}$	мнимое, увеличенное, перевернутое
	\cup	
96 Уг	ол 1	падения равен углу отражения. Это
	\bigcirc	первый закон отражения
	$\tilde{\bigcirc}$	второй закон преломления
	$\widetilde{\frown}$	закон трех вторых
	\sim	второй закон отражения
	\sim	первый закон преломления
	\cup	первый закон преломления
97 Из	n	едложенных формулировок выберите правильную:
<i>)</i> / 113	, 11p	одложенных формулировок выосрите правильную.
		отношение синусов углов падения и преломления есть величина постоянная, равная относительному показателю преломления
	\cup	данных сред
	\bigcirc	верная формулировка отсутствует
	\simeq	отношение синусов углов падения и преломления есть величина относительная, равная разности абсолютных показателей
	\cup	преломления данных сред
	\bigcirc	отношение синусов углов падения и преломления есть величина постоянная, равная синусу угла отражения
	\preceq	отношение синусов углов падения и преломления есть величина постоянная, равная абсолютному показателю преломления первой
	$\overline{}$	среды
98 Пр	ои п	рохождении света через плоскопараллельную стеклянную пластинку
•		
	\bigcirc	луч меняет направление распространения
		луч смещается параллельно самому себе
	\tilde{c}	происходит полное поглощение световой энергии стеклом
	$\widetilde{}$	луч не меняет направления свое первоначального распространения
	\simeq	происходит полное отражение света на первой границе
	\cup	пропелодит полное отражение света на первои транице
99 3aı	кон	Снеллиуса определяется формулой:
)) Ju	KOII	Chesishiyea onpegesineres wopingsion.
	\bigcirc	$b \cdot \sin \Phi = (2m+1)\lambda/2$
	\sim	$\sin \alpha / \sin \beta = n2/n1$
	_	$\alpha = \arcsin(n2/n1)$
	=	
	\simeq	E = mc
	\cup	1/d + 1/f = 1/F
100 2	0.740	WELL THE OFFICE OF THE OPERATOR IN THE OPERATOR IN A CONTROL OF THE OPERATOR
		ны распространения света в прозрачных средах на основе представлений о свете как о совокупности световых
пучеи	і из	учают в
	$\overline{}$	1
	_	физике
	\bigcirc	геометрической оптике
	\circ	волновой оптике
	Ō	оптике
	\bigcirc	теории относительности
101 E	сли	в точке изображения пересекаются продолжения лучей, а не сами лучи пучка, то изображение:
	Ō	искаженное
		мнимое
	\bigcirc	перевернутое
	\bigcirc	симметричное
	\bigcirc	действительное
	-	
102 C	кор	ость распространения светового излучения в веществе зависит от
	1	
	\bigcirc	угла падения
	Ò	только частоты колебаний
	Ō	угла преломления
	-	


	только длины волны
\circ	свойств среды и длины волны
	те характеристику изображения, полученного собирающей тонкой линзой, если предмет находится между фокусом и оптическим центром.
0.000	уменьшенное, прямое, мнимое увеличенной, прямое, мнимое уменьшенное, перевернутое, действительное нормальное, перевернутое, действительное изображения не существует

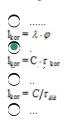
104 Длина волны красного луча в воде равна длине волны зеленого луча в воздухе. Вода освещена красным светом. Какой цвет видит при этом свете человек, открывающий глаза под водой?




105.

Луч света падает из жидкости с показателем преломления n на поверкность стеклянной пластинки с показателем преломления n_1 и преломляется. Пластинку заменяют на другую, имеющую показатель преломления n_2 .

На каком из приведенных ниже рисунков правильно показан ход преломленного луча после замены пластинки, если $n < n_2 < n_1$? Пунктирной линией на рисунках показан ход преломленного луча в пластинке с показателем преломления n_1


110 Дайте характеристику изображение, полученного собирающей тонкой линзой, если предмет находится в за двойным фокусным расстоянием.

увеличенное, прямое, мнимое уменьшенное, прямое, мнимое уменьшенное, перевернутое, действительное изображения не существует нормальное, перевернутое, действительное		
111 Дайте характеристику изображения, полученного собирающей тонкой линзой, если предмет находится между главным фокусом и оптическим центром		
 нормальное, перевернутое, действительное уменьшенное, перевернутое, действительное увеличенное, прямое, мнимое уменьшенное, прямое, мнимое изображения не существует 		
112 Какое условие должно выполнятся для равенства амплитуд волн отраженных от границы тонкой пластинки в прозрачной оптике? (n - коэффициент преломление тонкого слоя; ncт - коэффициент преломление стекла).		
$ \begin{array}{l} $		
113 С целью просветления оптики на линзу наносят тонкий слой ($n = 1,3$). Чему равен коэффициент преломления линзы?		
1 1,69 2,69 3,9 1,44		
$114~\mathrm{C}$ целью просветление оптики на линзу наносят тонкий слой пленки. Какая связь ме $^-$ жду коэффициентами преломления?		
1,1; 1,5 1,1; 1,21 1,1; 2,2 1,2; 1,69 1,2; 1,3		
115 . Каким выражением определяется скорость распространения света на основе электромагнитной теории Максвелла? (с – скорость света в вакууме; υ – скорост света в среде; ε ε - диэлектри ческая проницаемость среды; μ - магнитная проницаемость)		
$ \begin{array}{c} $		
116 Какие волны являются когерентными?		
 Волны с одинаковыми начальными фазами Волны с одинаковыми амплитудами Волны с одинаковыми частотами, разность фаз которых остается постоянном во вре¬мени Волны с одинаковыми фазами Волны, разность фаз которых меняется в зависимости от времени 		

117 Оптическая разность хода лучей идущих от когерентных источников с одинаковыми начальными фазами равна нечетному числу половины длины волны. Какова будет ампли¬туда результирующей волны в точке встречи, если амплитуда каждой отдельной волны равна А.

○ 2 ● 0 ○ A ○ 1,5 ○ 1	
118 . Какая связь между разност	ью (Δ) оптических и (d) геометрических длин путей?
$\Delta = n/d$ $A = n/d$ $A = d/n$ $A = n^2 d$ $A = nd$ $A = nd$ $A = 2dn$	
119 Единица измере При гидролизе каких с	ния оптической разности хода: олей pH > 7?
M M ³ CM ⁻¹ .	
120 Для чего примен	няется микроинтерферометры?
Для изучения для изучения для изучения для измерени	я дальних расстояний дисперсии поляризации света я поглощение света рования качественной обработки поверхностей
	льтирующая интенсивность в точке создаваемой интерференционными максимумами двумя ими интенсивность каждого, которых равна J0?
● 4 J0 ○ 0 ○ J02 ○ J0 ○ 2 J0	
122 При надувании причиной этого?	мыльные пузырьки приобретают радужную окраску определен¬ной толщины. Что является
интерференцфотоэффектдисперсияполяризациядифракция	ия
123 Как изменится ч два раза?	пастота света, если скорость светового луча при переходе из одной среды в другую уменьшается и
уменьшается не изменяется увеличивается уменьшается уменьшается	я я в 4 раза я в 2 раза
124 Какое явление п	оказывает волновую природу света?
дисперсияинтерференц	ия

эффект Комптонафотоэффектпоглощения света
125 Что такое интерференция?
 ○ огибание преград световыми волнами ○ преломление световых волн на границе двух сред ○ взаимное усиление или ослабление в результате наложения когерентных волн ○ расхождение от прямолинейного распространения когерентных волн ○ рассеивание световых волн
126 В каком интервале находится длина волны, действующая на человеческое зрение?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
127 . Предел интерференция в выражении J=J ₁ + J ₂ +2 $\sqrt{J_1J_2}$ coso?
\int_{\bullet} J1 \bullet . 2 $\sqrt{J_1J_2}\cos\alpha$ Ни какое \int_{\bullet} J1 и J2 \int_{\bullet} J2
128 Какое уравнение определяет интенсивность результирующей волны, которая получается при встрече двух когерентных вол с интенсивностями J1 и J2?
$ \int_{0}^{\infty} J = J_{1} + J_{2} + 2 ? \sqrt{J_{1}J_{2}} \cos (\alpha_{2} - \alpha_{1}) $ $ \int_{0}^{\infty} $ $ J = J_{1} - J_{2} - 2? \sqrt{J_{1}J_{2}} \cos (\alpha_{2} - \alpha_{1}) $ $ \int_{0}^{\infty} $ $ J = J_{1} J_{2} - 2? \sqrt{J_{1}J_{2}} \sin (\alpha_{2} - \alpha_{1}) $ $ \int_{0}^{\infty} J = 4J1 $
129 Радиус когерентности волн определяется следующим образом:
$ \begin{array}{c} $
130 Как определяется расстояние когерентности для когерентных волн?

O Ikor =	$= \varphi/\lambda$
131 Вып	олняется ли закон сохранение энергии при интерференции?
00•00	нет, потому, что энергия в точке максимума больше чем, конечной энергии света. да, потому, что энергия света превращается в другие виды да, потому, что в области интерференции энергии света распределяется между максимумами и минимумами. нет, потому, что энергия света не проникает в точки минимума. нет правильного ответа
132 Како	е условие является основной для получения устойчивой интерференционной картины?
00000	одинаковая интенсивность постоянная разность фаз разные амплитуды одинаковые амплитуды разные интенсивности
133 Како	е явление показывает волновую природу света?
	поглощение света, излучение света, фотоэффект интерференция, дифракция интерференция, поляризация дифракция, эффект Комптона фотоэффект, дифракция
134 Что	гакое монохроматическая волна?
00000	волны с одинаковой частотой волны с одинаковым коэффициентом преломления волны с одинаковой амплитудой волны с одинаковой скоростью волны с одинаковой фазой
135 В кал	ком приборе нашло свое применение явление интерференция?
0.000	в амперметре в спектрографе в ваттметре в вольтметре в гальванометре
136 Поче	ему световые волны, выходящие из двух различных источников не дают интерфе-ренционную картину?
00@00	потому что, волны выходящие из источников не направлены в одном направлении потому что, источники находятся очень далеко друг от друга потому что, эти волны не когерентны потому что, источники находятся очень близко друг другу потому что, эти волны немонохроматичны
137 Каж	дая точка среды, до которой дошло возмущение, сама становится источником
0000	первичных волн вторичных волн плоскопараллельных волн продольных волн поперечных волн
138 От к	аких величин зависит разность хода волн при интерференции в тонких пленок?
0.000	от толщины и коэффициента преломления пластинки, частоты света от толщины и коэффициента преломления пленки, от длины волны и угла паде¬ния от коэффициента преломления и угла падения от скорости света падающего на тонкую пленку от длины волны, частоты и амплитуды падающего света

 $1_{kor} = \lambda/\varphi$

139 Чему основывается рабочий принцип узкополосного оптического фильтра?

	на поляризацию света
	на прозрачную оптику
\sim	на дисперсию
\sim	на полное внутреннее отражение
\circ	на поглощение света
тонких г	ие из нижеследующих явлений утверждает, что свет имеет волновую природу? 1- радужное окрашивание иленок; 2 — появление световой точки в центре тени; 3 — выделение электронов от поверхности металлов ие освещения
\bigcirc	1 и 3
\simeq	только 3
	1 и 2
\sim	только 1
\simeq	2 и 3
\sim	ZnJ
141 . Чет	и определяется порядок максимума интерференции?
\circ	природой колебаний
	числом длин волн находящихся в оптической разности хода
\circ	фазой колебаний
\circ	частотой колебаний
\circ	периодом колебаний
142 Како	ого цвета интерференционная полоса располагается в спектре ближе к центральной полосе?
Q	желтая
Q	красная
•	фиолетовая
Ō	СИНЯЯ
\circ	зеленая
	освещении мыльной пленки белым светом наблюдаются разноцветные полосы. Какое физическое явление нивает появление этих полос?
	поляризация
O	интерференция
\sim	дифракция
\sim	дисперсия
\circ	фотоэффект
$\Delta=3\lambda/2$, 1	г от двух точечных когерентных монохроматических источников приходит в точку 1 экрана с разностью фаз в точку 2 экрана с разностью фаз Δ = λ . Одинакова ли в этих точках освещенность и если не одинакова, то в чке она больше?
_	
\circ	не одинакова, больше в точке 1
\bigcirc	одинакова и отлична от нуля
<u> </u>	не одинакова, больше в точке 2
Ŏ	одинакова и равна нулю
\circ	все варианты неверны
	ой из отрезков показанных на рисунке, соответствует разности хода лучей, посылаемых в точку А ками света?
	ками света!
S ₁	
•	A
M	
93	
$\overline{}$	AS
	AS S2M
\sim	S2M
\simeq	S1S2
\simeq	S1A
\circ	AM

146 акономерности, каких из перечисленных ниже явлений свидетельствуют о волновой природе света:1-радужные переливы светов в тонких пленках; 2-возникновение светового пятна в центре тени;3-освобождение электронов с поверхности металлов при освещении?

Ō	2 и 3
O	1 и 2
\sim	только 3
\sim	только 1 1 и 3
\circ	
	ему два мнимых изображения щели, полученных с помощью бипризмы Френеля, можно рассматривать как тные источники:
\bigcirc	так как они расположены на разных расстояниях от бипризмы.
O	так как они получены при раздвоении световой волны от щели в результате преломления в бипризме
\sim	так как они расположены на одинаковом расстоянии от щели
\sim	так как они расположены на одинаковом расстоянии от бипризмы так как они расположены на разных расстояниях от щели
148 B pe	зультате чего возникает интерференция света?
$\overline{}$	Thomas way or
	Правильный ответ отсутствует в результате сложения когерентных световых волн;
\tilde{C}	в результате распространения света в среде с резкими неоднородностями, размеры которых сравнимы с длиной волны;
Ŏ	в результате того, что колебания светового вектора волны каким-то образом упорядочены;
Ō	в результате того, что показатель преломления среды зависит от частоты (или длины) световой волны.
	помощи оптического клина получили интерференционные полосы, пользуясь излучением красного цвета. Как ся интерференционная картина, если воспользоваться излучением фиолетового цвета?
	интерференционные полосы будут ближе друг к другу
Ŏ	интерференционные полосы могут стать как ближе друг к другу, так и дальше друг от друга
Ō	интерференционные полосы исчезнут
Õ	интерференционные полосы будут дальше друг от друга
\circ	никак не изменится
150. Технология ния	«просветления» объективов оптических систем основана на использовании явле-
	дифракция
$\widetilde{\odot}$	интерференция
Ŏ	преломление
Q	поляризация
\circ	дисперсия
151 Какі	им явлением объясняются радужные полосы, наблюдаемые в тонком слое керосина на поверхности воды?
Ō	Дифракцией света
\circ	Полным внутренним отражением света
\bigcirc	Поглощением света
Ö	Интерференцией света Рассеянием света
Мыльны	ильный пузырь, витая в воздухезажигается всеми оттенками цветов, присущими окружающим предметам. й пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен)Какое явление описывает Марк Твен? те ваш ответ:
000	Дифракция света Явление интерференции света Предомление света
\sim	Преломление света Поляризация света
\sim	··· r ··· · · · · · · · · · ·

О Дисперсия света
153 И между водорослей гибких Горит чешуек серебро Мелькают радужные рыбки Какое физическое явление объясняет радужную окраску чешуи рыбы? Выберите ваш ответ:
 Интерференция света Поляризация света Люминесценция света Дисперсия света Дифракция света
154 Интерференционная картина, которая наблюдается на плосковыпуклой линзе, называется:
 волосами Вероники зонами Френеля зонами Гюйгенса интерференцией Рэлея кольцами Ньютона
155 На основе какого условия получается интерференционные максимумы и минимумы?
$\triangle = k\frac{\lambda}{2}; \ \Delta = (2m + \frac{1}{2})\lambda$ $\bigcirc \dots$ $\Delta = k\frac{\lambda}{2}; \ \Delta = (2m + \frac{1}{2})\lambda$ $\bigcirc \dots$ $\Delta = k\lambda; \ \Delta = (2m + 1)\frac{\lambda}{2}$ $\bigcirc \dots$ $\Delta = k\lambda; \ \Delta = (2m + 1)\lambda$ $\bigcirc \dots$ $\Delta = (2m + 1)\lambda; \ \Delta = (2m + \frac{1}{2})\frac{\lambda}{2}$
156 Лучи идущие из двух когерентных источников одинаковой интенсивности ($J1 = J2 = J0$) сходятся в одну точку. Чему равно максимум интенсивности волн в этой точке?
 ○ 0 ○ 2 J0 ○ 3 J0 ○ 4 J0 ○ J0
157 Чему равно разность пути приходящие в точку наблюдения от соседних зон Френеля в методе зон Френеля?

158 Две когерентные волны лучи каждой, проходя в воздухе расстояния d, создают интерференци¬онный максимум. Чему будет равна разность путей, если одна из волн пройдет это расстояние в среде с коэффициентом преломление n?

	d(n - 1)
\bigcirc	d .n
	2dn

$ \bigcirc d/n \\ \bigcirc d(n+1) $		
159 Какое из нижеследующих выражений выполняется для результирующей интенсивности при максимальном освещении двух когерентных волн с интенсивностями J1 и J2?		
 J=J2 J=J1J2 J>J1+J2 J=J1-J2 J=J1 		
160 Какова будет результирующая интенсивность, если поверхность освещается с двумя некоге трентными источниками, испускающими свет с равными интенсивностями?		
$I = 211$ $I = \frac{I_1}{4}$ $I = \frac{I_1}{2}$ $I = 411$ $I = 0$		
161 Кто является основоположником корпускулярной теории света?		
 Максвелл Ньютон Гюйгенс Френель Юнг 		
162 Какие лучи создают равнонаклонные интерференционные полосы?		
лучи, в которых разность хода меняется лучи, наклоненные под разными углами лучи, наклоненные под одним и тем же углом лучи с постоянной разностью хода лучи, отраженные от одинаковой толщины		
163 Какие из нижеследующих явлений показывают волновую природу света?		
характеристическое рентгеновское излучение поляризация, интерференция эффект Комптона фотоэффект тормозное рентгеновское излучение		
164 Волны от двух когерентных источников приходят в данную точку в одинаковой фазе. Амплитуда результирующего колебания в данной точке равна А, амплитуда колебаний в каждой волне равна а. Значение амплитуды результирующего колебания в этом случае будет следующим:		
 ↓ 4a ↓ 3a ℚ 2a ℚ a ℚ 0,5 a 		
165 Укажите формулу, определяющую оптическую длину пути:		
$ \begin{array}{c} $		

n =	$\frac{c}{v}$
	• • • • • • • • • • • • • • • • • • •
I =	\underline{E}
	st .
0	 mλ
∆ =	7
166 Интер	рференционная картина от красного источника представляет собой чередование:
	красных полос с темными
	светло-красных полос с темно-красными
_	оранжевых полос с темными в центре белая полоса, по обе стороны спектры
_	белых полос с темно-красными
167 Необ	ходимым условием интерференции является
	наличие сферических волн
_	когерентность накладываемых волн
=	наличие плоских волн
	немонохроматичность волн
	некогерентность накладываемых волн
	стно, что оптическое явление, называемое интерференцией света, связано с наложением когерентных волн. ны называются когерентными?
	Когерентными волнами называются монохроматические волны различных частот, у которых разность фаз не изменяется со временем
_	Когерентными волнами называются такие волны, у которых одинаковые частоты, а разность их фаз изменяется со временем
	Когерентными волнами называются волны одинаковой частоты, колебания в которых одинаково направлены и отличаются
	постоянной разностью фаз, не изменяющейся со временем Когерентными волнами называются волны с близкими частотами, у которых разность фаз не зависит от времени
	Когерентными волнами называются монохроматические волны различных частот, у которых разность фаз слабо изменяется со временем
169 Что н	азывается дифракцией света?
	взаимное усиление или ослабление встречающихся волн
_	отклонение света от направления прямолинейного распространение в резко неоднород¬ной среде
Ξ	отражение света на границе раздела двух сред
<u> </u>	прямолинейное распространение света в резко неоднородной среде преломление света на границе раздела среды
170 910 T	акое дифракционная решетка?
	система параллельных щелей одинакового размера, находящихся на равных расстоя¬ниях друг от друга
Ξ	система параллельных щелей разного размера, находящихся на одинаковом расстоя¬нии друг от друга
_	система параллельных щелей одинакового размера, находящихся на разных расстояниях друг от друга
Ĭ.	прибор, демонстрирующий прямолинейное распространение света прибор для получения изображений тел различной величины
	азывается постоянной дифракционной решетки?
	ширина щели
_	сумма ширины щели и непрозрачного промежутка между ними толщина дифракционной решетки
	ширина дифракционной решетки
	расстояние между щелями
172 .	
По какому ус	словию определяются дополнительные минимумы, образующиеся в
ди фракцион в	ной картине, получаемой от дифракционной решетки? (d – постоянная \cdot угол отклонения луча; λ - длина волны , m – порядок минимума m =
0,1,2,3,,)	y

\circ	
sin q	$p = \frac{\lambda}{d}$
\circ	$\varphi = m \lambda$
_	
cos	$v = \frac{\lambda}{d}$
\bigcirc	
dcos	$\varphi = \frac{\lambda}{2}$
границ н	е из нижеперечисленных явлений характеризует (при прохождении через отвер¬стия в экранах, вблизи епрозрачных тел и.т.п.) совокупность явлений при рас¬пространении света в резко выраженной неоднородной вязанной с волновой природой света?
\circ	амплитуда
O	дифракция
\circ	поляризация
\sim	интерференция
\cup	поглощение
174 Как п Гюйгенс	называется принцип, описывающий явление дифракции света на основе анализа законов интерференции и a?
\circ	принцип Вульфа – Брэгга
_	принцип Френеля – Фраунгофера
	принцип Фарадея – Кирхгофа
_	принцип Гюйгенса — Френеля
\circ	принцип Гюйгенса – Майкельсона
175 Как	называется метод разделения поверхности волны на сферические зоны?
Ō	метод распределения Гюйгенса
©	метод зон Френеля
\circ	метод Гюйгенса – Френеля
\sim	метод зон Гюйгенса метод распределения Френеля
176 Kom	у принадлежит первоначальное предположение о когерентности фиктивных источников?
170 1011	in in the second the second the second of the second of the second of the second the sec
Q	Фраунгофер
Õ	Вульф
\sim	Гюйгенс
	Брэгг Френель
	* penelib
	й из нижеследующих вариантов правильно характеризует по форме вторичные волны распространенных в ной изотропной среде?
\circ	Сферическо-выпуклые
	Сферические
Õ	Плоские
\circ	Выпуклые
\circ	Плоско-выпуклые
	я из нижеследующих формул определяет постоянную дифракционной решетки (а-ширина непрозрачной b – ширина щели)?
\cap	d=2a+b
Ŏ	d=a+b
Ō	d=a
Ō	d=b
\circ	d=a-b
179 Как	выражается принцип Гюйгенса – Френеля?
\circ	световые волны распространяются прямолинейно в изотропной среде
Ŏ	каждая точка волновой поверхности превращается в источник вторичных волн и эти волны интерферируются
	встречающиеся волны могут взаимно усиливать или ослабевать друг друга

Q	световые волны могут проникать в область геометрической тени преграды
\circ	световые волны, встречаясь, усиливают друг друга
180 Что	гакое дифракция Фраунгофера?
\circ	дифракция, наблюдавшиеся без помощи оптических систем
	дифракция плоских волн
Ŏ	дифракция сферических волн
\circ	дифракция монохроматических волн
\circ	дифракция когерентных волн
81 Для	какой цели используется дифракционная решетка?
\circ	для проверки прямолинейного распространение света
	для получения дифракционного спектра
	для получения изображения тела
Ō	для проверки закона преломления света
\circ	для наблюдения интерференции света
182 На к положен	аком принципе основано определение последующего положения волнового фронта на основе его заданного ия?
	неразрывности
_	Гюйгенса
$\tilde{\circ}$	Лапласа
$\tilde{\bigcirc}$	Томсона
Ŏ	Даламбера
183 Скол щелей?	ько дополнительных минимумов располагается между двумя максимумами при дифракции света от двух
	4
	1
\sim	2
\simeq	
0000C	2
184 .	
k sabucui	длина волны от угла дифракции для данной дифракционной решетки, если
$\frac{k}{d} = const?$	
\circ	при уменьшении длины волны, угол дифракции остается постоянной
	при увеличении длины волны, угол дифракции увеличивается
\circ	при увеличении длины волны, угол дифракции уменьшается;
\circ	при увеличении длины волны, угол дифракции остается постоянной;
\circ	при уменьшении длины волны, угол дифракции увеличивается
185 Как	отличаются по фазе колебания, возбуждаемые в точке М двумя соседними зо¬нами?
\circ	не отличаются
Ō	находятся в противофазе
Ō	сильно отличаются
Ō	отличаются мало
\circ	однофазные
186 Амп.	литуда результирующей волны в точке наблюдение М дается выражением:
	$A = A1A2 - A3A4 + A5A6 - A7A8 + \dots$
<u> </u>	$A = A1 - A2 + A3 - A4 + \dots$
Ō	A = A1 - A2 + A3 - A4 + A = A1 + A2 - A3 + A4 A = A12 + A22 - A32 + A42 +
Ō	$A = A12 + A22 - A32 + A42 + \dots$
\circ	$A = 2A1 + A2 - 2A3 + A4 + \dots$
187 На к	аких волнах наблюдается дифракция Френеля?
\circ	полусферических
	сферических
	плоских

сферическо-плоскихполуплоских
188 На каких волнах наблюдается дифракция Фраунгофера?
 сферическо−плоских плоских полусферических полуплоских сферических
189 Как зависит амплитуда результирующего колебания в точке наблюдения M от числа m зон Френеля, умещающихся на ширине щели BC ?
\bigcirc $A = \frac{1}{2} (A_4 + A_{m+1}), (m - \text{нечетныe})$
$A = \frac{1}{2} (A_1 + A_m), (m - \text{не четные})$
\bigcirc $A = \frac{1}{2} (A_1 - A_m), (m - \text{четные})$
$A = \frac{1}{2} (A_2 - A_m), (m - \text{нечетныe})$ \cdots
$A = \frac{1}{2} (A_3 + A_{m-1}), (m - \text{четные})$
190 Дифракция определяется нижеследующим выражением:
$ \bigcirc \dots bsin \varphi = \pm 3k \lambda/2, (\kappa=5,6,\dots) $
$ \oint_{\text{bsin } \varphi} \frac{1}{\varphi} = \pm 2m \lambda / 2, (m=1,2,) $
bsin $\varphi = \pm 3m\lambda/2$, (m=2,3,) bsin $\varphi = \pm 4m\lambda/2$, (m=3,4,)
$\bigcirc \dots$ $b\sin \varphi = \pm 5m\lambda/2, (b\sin \varphi = \pm 2m\lambda/2, (m=4,3,)$
191.
По какой формуле определяется внешний радиус m - ой зоны? (здесь b — расстояние до точки наблюдение M от поверхности волны, a — радиус поверхности волны, r_m — радиус наружный границы m -ой зоны)
$\mathbf{r}_{\mathrm{m}} = \sqrt{\frac{ab}{m\lambda}} m\lambda$
$r_{m} = \sqrt{\frac{ab}{a+b}} m\lambda$ \vdots $r_{m} = \sqrt{\frac{a+b}{2ab}} m\lambda$
$ \bigcirc \dots \\ r_{m} = \sqrt{\frac{a^{2}b}{a-b}} 3m\lambda $
$ \begin{array}{ccc} \Gamma_{m} & \sqrt{a-b} & ML \\ & & \cdots \\ \Gamma_{m} & \sqrt{a-b} & 2i\sigma n \end{array} $
$C_{\rm m} = \sqrt{\frac{a+b}{ab}} k \lambda$
192 От каких факторов зависит число зон Френеля m при неизменном положении источника света?
 от диаметра отверстия и от 1/2 расстояния между отверстием и экраном от высоты отверстия и от 1/5 расстояния между отверстием и экраном от периметра отверстия и от 1/3 расстояния между отверстием и экраном
OT DATIFYCA OTDERCTING H OT 1/A DACCTORUNG MEW IN OTDERCTHEM H AVIDATION

193 Что такое дифракция Френеля?

- дифракция сферических волн дифракция, наблюдающаяся без помощи какой-нибудь оптической системы дифракция когерентных волн
- дифракция монохроматических волн
- дифракция плоских волн

194 Что из нижеследующих ярко себя проявляет при дифракции света от двух щелей?

- интерференция света
- отражение света
- поляризация света
- преломление света на границе разделе двух сред
- прямолинейное распространение света

195 На сколько отличается по фазе колебания волн идущих от соседних зон Френеля?

- на 3/4 π
- на π
- на π/2
- на π
- на 3/2 π

196.

Каким выражением определяется расстояние bm до точки наблюдения Мнаружного края т – ой зоны? (b – расстояние от вершины поверхности волны до точки М).

$$b_m = b + 2m \frac{\lambda}{2}$$

Чему равна разность пугей от соответствующих крайних точек соседних зон Френеля до точки наблюдения М? (здесь λ - длина волны света).

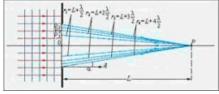
- a
- 3

- $\begin{array}{ccc}
 \lambda & \pi & \\
 \hline
 \lambda & 2 & \\
 2\pi & \\
 \end{array}$

Какую часть действия от центральной зоны Френеля составляет результирующее действие в точке наблюдения M волнового фронта света от произвольного источника S_0 ?

$\bigcap_{\frac{1}{3}A_3}$
$\frac{1}{2}A_1$
$\bigcap_{\frac{1}{4}A_2}$
$\bigcap_{\frac{1}{2}A_5}$
$ \bigcap_{\substack{\frac{1}{5}A_4}}$

199 За открытие этого волнового свойства, присущего рентгеновским лучам немецкий ученый Макс фон Лауэ в 1915 г. был удостоен Нобелевской премии. Как называется волновое свойство света, заключающееся в огибании волнами препятствий?Выберите ваш ответ:


	Дифракция
\bigcirc	Интерференция
\bigcirc	Дисперсия
\bigcirc	Поляризация
$\overline{}$	Отрожоти

200 На фотографии огни ночного города видны как звездочки с расходящимися лучами, имеющими радужную окраску. Какое оптическое явление наблюдается в данном случае? Выберите ваш ответ:

Дифракция света
 Преломление света
 Поляризация света
 Интерференция света
 Дисперсия света

201 На данном рисунке изображено падение плоской световой волны на преграду. Рассмотрите рисунок, назовите явление и условие, при котором будет наблюдаться данное явление. Выберите ваш ответ:

✓ Явление дифракции света наблюдается при условии: размеры преграды больше длины световой волны
 ✓ Явление дифракции света наблюдается при условии: размеры преграды сравнимы с длиной световой волны.
 ✓ Явление интерференции света наблюдается при условии: размеры преграды сравнимы с длиной световой волны.
 ✓ Явление дисперсии света наблюдается при условии: размеры преграды сравнимы с длиной световой волны.
 ✓ верный ответ не приведен

202 На фотографии изображена картина дифракции, что является преградой для света в данном случае? Выберите ваш ответ:

\bigcirc	Тонкая	прозрачная	ниті
しノ	топкая	прозрачная	пин

Узкая щель

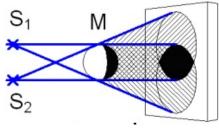
О Круглое отверстие

Непрозрачный шар

Тонкая непрозрачная нить

203 Солнечный свет падает на диск, наблюдатель видит чередование цветных полос. На каком явлении основано образование цветных полос? Выберите ваш ответ:

Дифракция отраженных лучей света


Интерференция света

О Поглощение световых волн определенной длины волны

Прямолинейное распространение света

Дисперсия света

204 При каком условии свет, падающий на преграду, будет давать четкую тень? Выберите ваш ответ:

Размеры предмета больше размеров источника

Правильного ответа нет

Размеры предмета меньше размеров источника

Расстояние между источником света и предметом равны диаметру преграды

О Размеры преграды и источника света равны

205 Любимым занятием этого лауреата Нобелевской премии по физике в 1914 году «за открытие дифракции рентгеновских лучей на кристаллах» было вождение автомобиля. Даже при поездках на чужой машине он просил разрешения хоть ненадолго сесть за руль. Выберите ваш ответ:

Макс Планк

Макс фон Лауэ

Нильс Бор

Эрнест Резеофорд

Роберт Бойль

206 Обладает ли рентгеновское излучение способностью к дифракции?

Нет, так как обладает высокой ионизирующей способностью

Да, как и любые электромагнитные волны

Нет, так как большая частота излучения

О Нет, так как высокая проникающая способность

Среди данных ответов нет правильного

207 Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой. Это соответствует принципу:
неопределенности
○ Гюйгенса
Гюйгенса – Френеляпричинности
С Гейзенберга
208 Огибание световыми волнами встречных препятствий называется:
явлением интерференции
явлением поглощения
явлением дифракцииявлением поляризации
явлением дисперсии
209 Огибание волнами препятствий, соизмеримых с длиной волны, доказывает
то природа света до конца не изучена
любой из предложенных вариантов неверен
волновую природу света
 что свет представляет собой поток квантов двойственность природы света
210 Из предложенных свойств выберите те, что доказывают волновую природу света:
дисторсия, интерференция, поляризация, дифракция
 дисторсия, интерференция, фотоэффект, дифракция дисперсия, интерференция, поляризация, фотоэффект
дисперсия, фотоэффект, поляризация, дифракция
правильного ответа нет
211 Условие максимума при дифракции на узкой щели определяется выражением:
$ \begin{array}{ll} & \dots \\ b \cdot \sin \varphi = m\lambda \end{array} $
правильной формулы нет
$b \cdot \sin \varphi = (2m+1)\lambda/2$
$b \cdot \sin \varphi = 2m\lambda/3$
$ \bigcirc $ $b \cdot \sin \varphi = m\lambda/2$
212 Условие максимума при дифракции на дифракционной решетке определяется выражением:
правильной формулы нет
$b \cdot \sin \phi = m\lambda/2$
$b \cdot \sin \phi = m\lambda$
O
$b \cdot \sin \varphi = 2m\lambda/3$
$b \cdot \sin \varphi = (2m+1)\lambda/2$
213 При наблюдении дифракции от щели в точке М экрана будет минимум интенсивности, если в щели укладывается:
четное число зон Френеля
первая и последняя зоны Френеля
часть последней зоны Френелячасть первой зоны Френеля
нечетное число зон Френеля
214 Как согласно принципу Гюйгенса-Френеля определяется интенсивность в каждой точке пространства, охваченного волновым процессом?
сложением интенсивностей фиктивных волн, излучаемых каждым элементом волновой поверхности
🔘 как результат интерференции вторичных когерентных волн, излучаемых элементами волновой поверхности
Суммой амплитуд первой и последней зон Френеля

\subseteq	суммой амплитуд колебаний от всех зон Френеля усреднением интенсивностей по всем точкам пространства
215.0-	
215 Oni	ыты по дифракции микрочастиц свидетельствуют
Ç	о классической механике
<u> </u>	о наличии у микрочастиц волновых свойств
\sim	о кристаллической структуре твердых тел
\simeq	о малых размерах микрочастиц размеры атомов кристаллического вещества превышают размеры микрочастиц
))	
216 Дис	рракцию света удобнее всего наблюдать
	на препятствиях, размер которых сравним с длиной волны света.
Ç	одинаково удобно на препятствиях любых размеров.
\subseteq	правильного ответа нет.
\sim	на препятствиях, размер которых намного меньше длины волны света. на препятствиях, размер которых намного превышает длину волны света.
017 R T	
двери к	емное помещение коридора свет проникает только через замочную скважину двери. Когда в комнате мимо го-нибудь проходит, на стене коридора против замочной скважины движется тень. В каком направлении цается тень по отношению к направлению движения человека?
	в направлении, движении человека
$\widetilde{\bullet}$	в направлении, противоположном движению человека
Č	в направлении перпендикулярном движению человека, на верх
Č	однозначного ответа дать нельзя
\subset	тень неподвижна
218 Ука	жите на верный вариант. Соблюдается ли закон сохранения энергии в явлениях интерференции и дифракции?
С	не соблюдается
•	нет точных сведений, вопрос остается открытым
Ç	соблюдается только в дифракции
\subseteq	соблюдается
	соблюдается только в интерференции
	ое из перечисленных явлений связано с отклонениями от законов геометрической оптики и наблюдается при транении света в среде с резкими неоднородностями?
•	дифракция
Č	фотоэффект
\subset	дисперсия
Ç	интерференция
C	поляризация
220 Как	называется единица постоянной дифракционной решетки в СИ?
C	метр на 100 штрихов
	метр
Ç	1 штрих на 1 метр
\subseteq	100 штрихов на 1 метр
C	метр на 1 штрих
221 Для	каких лучей используется в качестве дифракционной решетки пространственная решетка кристалла?
\subset	видимых
Ç	никаких
Ç	рассеянных
	поляризованных
	рентгеновских
222 Как	ова причина получения сплошного рентгеновского спектра?
Ĉ	вырывание электронов с высокой скоростью от антикатода
<u> </u>	торможение электронов с высокой скоростью антикатодом
\simeq	равноускоренное движение высокоскоростных электронов
\sim	движение высокоскоростных электронов с постоянной скоростью

223 237. Какое из этих выражений относится к формуле Вульфа-Брэгга?
$ \sum_{\sin \theta = \lambda} \dots $
$ \bigcirc \dots \\ 3d \sin \theta = \lambda $
$ \sum_{2\sin\theta = \kappa} (\lambda + 1) $
$d \sin \theta = \kappa (\lambda - 1)$
224 238. Какое условие является условием максимума дифракции полученной дифракционной решеткой? (b — ширина одной щели, d — период дифракционной решетки).
$d \sin \varphi = \pm \frac{K\lambda}{N}$
d sin $\varphi = \pm K \lambda$
$b \sin \varphi = \pm K \lambda$
$d \sin \varphi = \pm (2 \text{ K} + 1) \frac{\lambda}{2}$
$d \sin \varphi = \pm (2+1) \frac{\lambda}{2}$
225 Какой из нижеперечисленных вариантов правильно выражает систему с многочис¬ленными N щелями параллельных друг другу и с одинаковой шириной, разделенных равными по ширине непрозрачными промежутками, располагающихся на одной плоскости?
 одномерная дифракционная решетка пространственная дифракционная решетка
С сферическая дифракционная решетка
многомерная дифракционная решеткадвумерная дифракционная решетка
226 Какой из нижеследующих вариантов правильно выражает фазу колебаний, происхо¬дящих во всех точках щели, при нормальном падении плоской монохроматической волны на дифракционную решетку?
© с одинаковой фазой С различной фазой
С с одинаковой разностью фаз
с различной разностью фазс постоянной разностью фаз
227 Какой из нижеуказанных вариантов правильно выражает формулу результирую¬щих амплитуд колебаний, найденной путем геометрического сложение амплитуд исходных колебаний?
$A^{2} = A^{2}_{1} + A^{2}_{2} + 2A_{1}A_{2} \cdot \cos(\varphi_{2} - \varphi_{1})$ $A^{2} = 2A^{2}_{1} + 2A^{2}_{2} + A_{1}A_{2} \cdot \cos(\varphi_{2} - \varphi_{1})$
$A^{2} = 2A^{2}_{1} + 2A^{2}_{2} + A_{1}A_{2} \cdot \cos(\varphi_{2} - \varphi_{1})$
$A^{2} = 2A^{2}_{1} + A^{2}_{2} + A_{1} A_{2} \cdot \sin (\varphi_{2} - \varphi_{1})$
$A^{2} = A^{2}_{1} + A^{2}_{2} + 3A_{1} A_{2} \cdot \cos(\varphi_{2} - \varphi_{1})$
$A^{2} = A^{2}_{1} - A^{2}_{2} - A_{1} A_{2} \cdot \cos (\varphi_{2} - \varphi_{1})$
228 На каком приборе используется дифракционная решетка?
в микроскопев интерферометре

в телескопе в осциллографе в спектрометре

229 Какой из нижеуказанных вариантов правильно выражает различные формы дифракционной решетки?	
\circ	непрозрачная и изотропная
	прозрачная и рассеивающая
Q	прозрачная и нерассеивающая
\circ	прозрачная и абсолютно черная
\circ	прозрачная и поглощающая
230 Ско	лько штрихов имеются на 1 мм лучшей дифракционной решетки?
©	1200
Õ	2500
\circ	1800
\sim	2000 1500
\circ	
231 Какой из нижеуказанных вариантов правильно выражает взаиморасположение штрихов в зависимости от расположения одной дифракционной решетки за другой, для получения двумерной дифракционной ре¬шетки?	
\circ	штрихи должны быть параллельны
<u> </u>	штрихи должны быть перпендикулярны
Õ	нет правильного ответа
\circ	штрихи должны быть горизонтальными
0	штрихи должны быть на одной прямой
232 Кем лучей?	впервые дана идея исследования внутреннего строения кристаллов с помо¬щью дифракции рентгеновских
	Лауэ
Ŏ	Вульф
\circ	Гюйгенс
Õ	Френель
\circ	Ландау
233 Что	является причиной получения характеристического рентгеновского излучения?
	выбивание электрона из внутренних слоев атома ускоренными электронами
\circ	выход ускоренных электронов из антикатода
Q	торможение ускоренных электронов антикатодом
\sim	движение высокоскоростных электронов с постоянной скоростью равноускоренное движение высокоскоростных электронов
\circ	равноускоренное движение высокоскоростных электронов
234. Какое выражения является формулой Вульфа – Брэгга? (d - расстояние между атомными плоскостями, θ- угол падения рентгеновского излучения, К – порядок спектра, λ – длина волны рентгеновского излучения).	
	$\sin \theta = K \lambda$
0	
2d	$\sin\theta = (2 K + 1) \frac{\lambda}{2}$
0	
2d ($\cos \theta = K \lambda$
d co	 ωs θ = K λ
235 Какой из нижеуказанных вариантов правильно выражает условие основного максимума? ($n = 0,1,2$ порядковые номера основного максимума)	
\circ	
d si	$n \varphi = \pm 2 n + \lambda$
d si	$n \phi = \pm n \lambda$
\circ	
d si	$\mathbf{n} \ \varphi = \pm \left(\mathbf{n} + 1\right) \ \frac{\lambda}{2}$
○ 2 d	$\sin \varphi = \pm n \lambda$

	$\bigcap_{d \sin \varphi = \pm (n-1)} \frac{\lambda}{2}$
	Какой из нижеуказанных вариантов правильно выражает условие основного мини \neg мума? (m = 0, 1, 2,, - идковые номера основного минимума)
юри	дковые помера основного минимума)
	$b\sin \varphi = \pm 3m + \lambda$ $b\sin \varphi = \pm 2m + \lambda$
	$b\sin\varphi = \pm 2m + \lambda$
	$b\sin \varphi = \pm m\lambda$
	O
	$b\sin\varphi = \pm (m+1)\frac{\lambda}{m}$
	$b \sin \varphi = \pm (m+1)\frac{\lambda}{2}$ \cdots $b \sin \varphi = \pm (m-1)\frac{\lambda}{2}$
	
	$b\sin\varphi = \pm (m-1) - \frac{1}{2}$
237	. Для наблюдения интерференции и дифракции света волны должны быть
	О любыми
	когерентнымимонохроматическими
	монохроматическимисинфазными
	линейно поляризованными
128	Какой из нижеуказанных вариантов правильно выражает неоднородность оптической неоднородной среды,
	какои из нижеуказанных вариантов правильно выражает неоднородность оптической неоднородной среды, подически повторяющейся при изменении всех трех координат пространства?
•	
	 пространственная дифракционная решетка простая дифракционная решетка
	многомерная дифракционная решетка
	двумерная дифракционная решетка
	О одномерная дифракционная решетка
239	Какому из нижеуказанных условий должны удовлетворять рентгеновские лучи, при образовании дифрак¬ционных
макс	симумов в кристаллах (d – период решетки, λ – длина волны)?
	\bigcirc d> λ
	$\int_{0}^{\infty} d = \lambda$
	$\bigcirc d < \lambda$
	$ \bigcirc d \ll \lambda \bigcirc d = \lambda/2 $
240	Какое физическое явление подтверждает, что световая волна является поперечной?
	поляризация
	преломление
	О дисперсия
	дифракцияинтерференция
241	Какой из нижеуказанных вариантов правильно выражает пра¬вильное значение дифракционного угла φ (где θ— нение угла между падающим и отра¬женным лучами)?
эпач	ение угла между падающим и отра женным лучами):
	$2\varphi = \theta$
	$ \bigcirc \varphi = 2d \theta \\ \bigcirc 2\varphi = 3 \theta $
	$ \bigcirc 2\phi - 3\theta \\ \bigcirc \phi = 1/2\theta $
	$\phi = 2 \theta$
242	Какой из нижеуказанных вариантов правильно характеризует дифракцию рентгеновских лучей в кристаллах?
- 7∠	такон из инжеуказанных вариантов правильно характеризует дифракцию рентгеновских лучей в кристаллах?
	как результат отражения от параллельных атомных плоскостей
	С как результат отражения от перпендикулярных атомных плоскостей

О н 243 Какая	COL POSULIT DE OTROMOMINA OT OTHOÙ OTOMIOÙ HIOOKOOTH
243 Какая	как результат отражения от одной атомной плоскости
	нет правильного ответа
светом?	полоса всегда наблюдается в центральной части спектра при освещении ди¬фракционной решетки белым
CBCTOM:	
От	гемная
Ă	келтая
Ă	СИНЯЯ
ă	красная
	белая
	ontal.
244 Какой	угол называется углом дифракции?
О у	угол между противоположно направленными лучами
O y	угол между решеткой и лучом совершаемой дифракцию
O y	угол между падающим и отраженным лучами
O y	угол между падающим лучом и дифракционной решетки
	угол между нормалью и лучом совершаемой дифракцию
	из нижеуказанных формул связывает постоянную дифракционной решетки с количеством штрихов хся на 1 мм? (n - число штрихов расположенных на 1 мм)
,	r r r r r r r r r r r r r r r r r r r
_	i = 1/2n - 1
d	$\mathbf{i} = 1/\mathbf{n}$
○ d	$i = \frac{1}{2} n$
O d	$1 = 1/\mathbf{n} + 1$
\bigcirc d	d = 1/n-1
	й из нижеследующих вариантов правильно выражает разность оптиче¬ских путей двух лучей, отраженных от атомных плоскостей? (d – межплоскостное расстояние, θ – угол между падающим, отраженным лучами и ю)
	$S = 2 d \cos \theta$
•	
_	
247 Какое	е из нижеследующих условий правильно выражает условие оптической однородности среды? (d – расстояние умя атомными плоскостями, λ – длина волны рентгеновского луча).
\bigcirc 2	2 λ≥3dmax
_	>2.2dmax
-	≥1/2dmax
-	≥dmax
	2 λ≥1/2dmax
248 Межд	у какими физическими величинами, согласно формуле Вульфа – Брэгга, при определенных соотношениях наблюдение дифракционных максимумов?
	Εиλ
	ι το του του του του του του του του του
	tu o
_	Aup Bup
\cup Θ	<i>,</i>
	акционная решетка с постоянной решетки d освещается нормально падаю¬щим световым пучком длиной Какой из нижеследующих выражений определяет угол ф при наблюдении второго основного максимума?
волны, λ. 1	$\sin \alpha = 2\lambda/d$
волны, λ. l	$\sin \varphi = 2\lambda/d$ $\cos \varphi = 2\lambda/d$
волны, λ. l	$\cos \phi = 2\lambda / d$
волны, λ. I	
246 Какой соседних а плоскость	d = 1/n $d = 1/n + 1$ $d = 1/n + 1$ $d = 1/n - 1$ $d =$

250 Как измениться дифракционная картина, если часть дифракционной решетки будет закрытой?

\circ	однозначного ответа нет
Ŏ	увеличивается светимость
Ŏ	светимость останется по -прежнему
	уменьшается светимость
\circ	светимость увеличится со скоростью
	каких лучей в качестве дифракционной решетки можно использовать пространственную решетку кристалла? еновские; 2- инфракрасные; 3- видимые; 4-ультрафиолетовые
\bigcirc	1 и 2
$ \widetilde{\bigcirc} $	1 и 4
Ŏ	1и 3
Ŏ	2 и 3
\circ	3 и 4
252 От ч	вего зависит количество главных максимумов в дифракционной картине от плоской решетки?
	от отношения постоянной решетки к длине световой волны
Ŏ	от отношения длины световой волны к периоду решетки
Ŏ	от общего числа щелей решетки
\circ	от расстояния между щелями решетки
\circ	от ширины щели решетки
252 Ing	ouvo matanarium apara manayamir
233 ABJIC	ение дифракции света происходит
	на краях любых отверстий в экране
Ŏ	только на малых круглых отверстиях
\circ	только на больших отверстиях
\circ	только на узких щелях
\circ	правильного ответа нет
254 .	
	ционную решетку нормально падает плоская монохроматическая световая
	кране за решеткой третий дифракционный максимум наблюдается под углом
? к направи	пению падения волны. ① ② ③ ④
sinφ	sino sino sino
/	
0	$\lambda = 0$ $\lambda = 0$ $\lambda = 0$
На каком из волны λ пал	з при веденных графиков правильно показана зависимость sin? от длины дающего света?
Q	нет правильного варианта
•	1
Õ	3
\circ	
\circ	4
255 Как	называется устройство, преобразующее естественный свет в линейно поляризованный?
Q	нет правильного варианта
<u> </u>	поляризатор
\sim	анализатор
\sim	компенсатор
\cup	поляриметр
	ические оси двух поляроидов направлены так, что система пропускает максимум света. Под каким углом надо ть один из них, чтобы интенсивность прошедших лучей уменьшилась бы на половину?
•	
Ŏ	35 градус
Ŏ	60 градус
\bigcirc	0 градус
	45 rpagyc
\bigcirc	30 градус

© свет, где колебания вектора Е (H) во всевоз¬можных направлениях обладают равной вероятностью свет, где колебания вектора Е(H) происходит только в одном направлении, пер¬пендикулярном лучу. свет, где имеется преимущественное направление колебания вектора Е (H) свет с различными ориентациями вектора Е(H) во всевозможных направлениях
258.
Интенсивность света падающего на поляризатор под углом 60° равна I_{\circ} , какова будет интенсивность света вышедшего из поляризатора?
$ \begin{array}{c} $
259 Анализатор уменьшает интенсивность светового луча идущего от поляризатора в 2 раза. Определить угол меж главными плоскостями анализатора и поляризатора:
 0 градусов 45 градусов 30 градусов 60 градусов 90 градусов
260 272. Что такой плоскополяризованный свет?
 ○ свет, где имеется преимущественное направление колебания вектора Е (Н) ○ свет, где колебания вектора Е (Н) происходит только в одном направлении, перпендикулярном лучу. ○ свет, где колебания светового вектора неупорядочены ○ свет, где колебания вектора Е (Н) происходит в разных направлениях ○ свет, где колебания вектора Е (Н) происходит в одном направлении
261 Каким способом естественный свет можно преобразить в поляризованный?
 поляризатором любой жидкостью сахариметром любым кристаллом анализатором
262 С помощью чего можно получить поляризованный свет?
призмой и поляроидом спектрометром электрическим прибором полупроводниковым прибором микроскопом
263 Как распространяется обычный свет?
распространяется с одинаковой скоростью внутри кристалла распространяется с разными скоростями во всех направлениях внутри кристалла распространяется с разными скоростями в определенном направлении внутри кри¬сталла распространяется с постоянной скоростью только в направлении главной оптической оси. правильный вариант отсутствует
264 Совокупность явлений волновой оптики, в которых проявляется поперечность световых волн, называется
🦳 явлением дифракции

 явлением поляризации явлением люминесценции явлением дисперсии явлением интерференции 	
265 Что такое поляриметрия?	
зависимость угла поворота от скорости света метод определения концентрации растворов оптически активных веществ метод определения главной оптической оси в твердых телах метод определения вязкости (внутреннего трения) в жидкостях метод определения плоскости поляризации	
266 Какой из нижеследующих выражений является математическим выражением закона Малюса?	
$ \frac{\sin \alpha}{\sin \gamma} = n_{21} $ $ $	
267 Чему равен угол между главными плоскостями поляризатора и анализа¬тора, чтобы интенсивность св проходящий через анализатор, уменьшилась в 4 раза?	ета
 45 градусов 60 градусов 30 градусов 90 градусов 40 градусов 	
268 Как выражается закон Брюстера?	
$ \begin{array}{l} $	
269 Что такое двойное лучепреломление?	
раздваивание светового пучка падающего на любые кристаллы раздваивание светового пучка падающего на прозрачные кристаллы преломление света в изотропной среде распространение света в анизотропной среде нет верного ответа	
270 Что называется оптической осью кристалла?	
 направление, вдоль которого наблюдается двойное лучепреломление прямая, по которой распространяется световой луч нет верного ответа направление, по которому луч света распространяется не испытывая двойного луче¬преломления прямая, проходящая через любую точку кристалла 	
271 Чем отличается двуосные кристаллы от одноосных?	
 имеют две оптические оси имеют одну или две оптические оси имеют несколько оптических осей имеют три оптические оси имеют одну оптическую ось 	

272 Что является мерой оптической анизотропии?

000	разность коэффициентов преломления лучей в направлении параллельной оптической оси разность напряжений
	разность фаз угол преломления разность коэффициентов преломления обыкновенного и необыкновенного лучей в на¬правлении, перпендикулярной к оптической
272 D xx	оси.
2/3 B Ka	ких разновидностях существует все активные вещества?
	симметричным и асимметричным размещением атомов и молекул право и левовращающий
Ō	левовращающие
Õ	правовращающие
O	поверхностно-вращающиеся и объемно-вращающиеся
	ой из нижеследующих выражений является математическим выражением закона Брюстера?
\circ	
E =	$\frac{J}{r^2 3} \sin \alpha$
\circ	
Δλ	$=\lambda_{\phi}/(1-\cos\phi)$
ein	 «
sin	$\frac{\alpha}{\gamma} = n_{12}$
\circ	
J = 1	2J ₀ /cos ² α
tg a	$\mathbf{r} = \mathbf{n}_{21}$
275 Как	называется явление вращения плоскости поляризации под действием магнит¬ного поля?
	эффект Фарадея
Ŏ	эффект Коттон – Митона
Ō	эффект Зеебека
Õ	эффект Томсона
\circ	эффект Керра
276 Каки	ие вещества являются оптически активными?
	кварц, сахар, скипидар
Õ	вода
\circ	мыльный раствор
\sim	Macno
$\overline{}$	серебро, золото
277 Caxa	ариметр (поляриметр) позволяет определить концентрацию
\circ	прозрачных растворов
O	растворов оптически активных веществ
\circ	не смачивающих растворов
\sim	смачивающих растворов
O	окрашенных растворов
278 Чему	у способны оптически активные вещества?
Õ	способности расположения частиц в кристаллической решетке
	способности вращения плоскости поляризации
\simeq	нет верного ответа способности вращения главной оптической оси
\widetilde{O}	способности вращения главнои оптической оси способности взаимодействия частиц в жидкостях
279 Что	такое вращение плоскости поляризации?
\bigcirc	при прохождении поляризованного света через некоторые вещества возникает связь с электромагнитными процессами
$\widetilde{\mathcal{C}}$	при прохождении поляризованного света через некоторые вещества, его плоскость по¬ляризации не поворачивается
Ŏ	при прохождении поляризованного света через некоторые вещества, его плоскость по¬ляризации поворачивается на определенный угол
\circ	при прохождении поляризованного света через некоторые вещества главная оптическая ось исчезает
1 1	при прохождении поларизованного света через некоторые вешества их агрегатное состояние мендется

280 Ka	кой формулой выражается угол поворота плоскости поляризации для оптически активных тел?
	$\phi = 2\pi/\lambda \ 0 \ (n0 - n \ e) \ d$
	$\phi = [\lambda] \operatorname{cd}$
	$\phi = 2\pi \text{Be E } 2$
9	$\varphi = \alpha d$
	$\phi = 2 \pi / \lambda$
281 Чт	то такое эффект Фарадея?
	создается связь между магнитными процессами
	вращения плоскости поляризации света в оптически неактивных веществах под действием магнитного поля
	вращения плоскости поляризации света в оптически активных веществах под действием магнитного поля
	создается связь между электрическими и магнитными процессами
282 Ka	кими свойствами обладают необыкновенные лучи?
(распространяется по разным направлениям кристалла с различными скоростями
	распространяется внутри кристаллов в одинаковых направлениях с одинаковой скоростью
	распространяется внутри кристаллов в одинаковых направлениях с различными скоростями
	распространяется в определенных направлениях кристалла с одинаковой скоростью
	распространяется в определенных направлениях кристалла с различными скоростями
283 Ka	жие вещества используются в качестве поляризатора?
(турмалин
	пластмасса
	простое стекло
>	алмаз кремний
284 Ун	кажите формулу Брюстера:
9	$p = a \cdot c \cdot d$
1	$e_{\mathbf{F}} \boldsymbol{\varphi}_{\mathbf{F}} = \boldsymbol{n}_{21}$
	$I = I_0 \cdot 1^{\operatorname{ac}}$
() •
1	$I = \frac{I}{2}$
	\sim 2
) p = α-đ
	ои падении света из воздуха на диэлектрик отраженный луч полностью поляризован при угле падения 60 ов. При этом преломленный луч составляет с нормалью угол
	60 градусов
	30 градусов
	55 градусов
	45 градусов
(35 градусов
286 .	
Чему рав равна n_0	вно міновенное значение поляризации, если концентрация атомов в дизлектрике ·
Passia 710	
	O
7	$oldsymbol{z} = \sqrt{oldsymbol{arepsilon}}$.
(
1	$P = n_0 p$
	$n^2 = 3n_0 ex/(\varepsilon_0 E)$
1	$a^{-} = 3n_0 ext/(\varepsilon_0 L)$
	$E = E_0 \cos \omega t$
(

$x = A\cos \omega t$

287 Какой спектр дает раскаленный кусок железа?
волнистый спектр
— никакой
© сплошной спектр
линейчатый спектрполосатый спектр
288 Какой спектр дает светящаяся трубка, в которой происходит газовый разряд?
волнистый спектр никакой
пикакой пинейчатый спектр
Сплошной спектр
полосатый спектр
289 Какой спектр даст вещество в газообразном состоянии, если газ состоит не из атомов, а из молекул?
О волнистый спектр
Сплошной спектр
линейчатый спектр
никакойполосатый спектр
290 Материал при дневном освещении имеет красный цвет. Как будет выглядеть этот материал, если его осветить премноте голубыми лучами?
Зеленым
Синим
пурпурно-красным
<u>желтым</u>
• черным
291 В чем причина аномальной дисперсии?
О в отражении света
в поглощении света в среде
В рассеивании света в среде
 в преломлении света в среде в полном внутреннем отражении света в среде
292 Что означает дисперсия света?
 зависимость показателя преломления вещества от длины волны
наложение когерентных волн
прохождение луча через оптическую ось
преодоление волнами препятствийпреломление лучей
293 Чему равен абсолютный показатель преломления среды?
$n = \sqrt{\varepsilon \mu}$
$P = n_0 ex$
$P = n_0 P$
$ \bigcirc \dots \\ n^2 = 1 + P/(\varepsilon_0 E) \\ \bigcirc \dots \\ \varepsilon = 1 + P/(\varepsilon_0 E) $
O
$\varepsilon = 1 + P/(\varepsilon_0 E)$

294 На сколько цветов разлагается свет в результате дисперсии?

O 6

\bigcirc	8
\bigcirc	10
\bigcirc	9
	7

295 Какие приборы используются для исследования спектров?

\bigcirc	манометр
	спектрограф призматический
\bigcirc	интерферометр
\bigcirc	микроскоп
	ареометр

296 На белом листе бумаги написано красным фломастером или карандашом отлично и зелёным фломастером – хорошо. Через какое стекло надо смотреть, чтобы увидеть оценку отлично? Выберите ваш ответ:

через белое стеклочерез два стекла вместечерез красное стеклочерез зеленое стекло

при любом стекле надпись будет видна черным цветом

297 Капли росы, освещенные солнцем, сверкают всеми цветами радуги, а не освещенные солнцем имеют серебристый цвет. Почему капли росы сверкают на солнечном свете всеми цветами радуги? Выберите ваш ответ:

О происходит окрашивание цвета

происходит разложение белого света на составные цвета

О нет верного ответа

происходит интерференция света

хапля как линза собирает световые лучи

298 Радуга повисла разноцветным коромыслом, Опустив один конец в соленый океан... На каком явлении основано появление радуги? Выберите ваш ответ:

□ поляризация света
 □ дисперсия света
 □ дифракция света
 □ интерференция света
 □ отражение света

	телем, вследствие взаимного движения наблюдателя и источника волн. При сближении обнаруживается ие частоты, при удалении – понижение.
$\overline{}$	Джоуля-Томсона
\sim	Комптона
$\widetilde{\bigcirc}$	Холла
$\widetilde{\bullet}$	Доплера
Ŏ	Мессбауэра
	вма разлагает лучи света в спектр по коэффициенту преломления. С увеличением длины волны коэффициент ения для прозрачных тел:
	монотонно уменьшается
\sim	не меняется
$\widetilde{\bigcirc}$	монотонно растет
$\widetilde{\bigcirc}$	экспоненциально растет
Ŏ	квадратично уменьшается
301 .	
	вает дисперсия вещества $(D = \frac{dn}{d\lambda})$?
$\overline{}$	
C VE	еличением λ отношение $dn/d\lambda$ увеличивается по модулю
Ö	зависимость показателя преломления от температуры
Ŏ	с уменьшением длины волны показатель преломления не меняется
Ŏ	
с ум	еньшением λ отношение $dn/d\lambda$ уменьшается по модулю
	зависимость показателя преломления от длины волны
302 На к	акие цвета разлагается свет, проходящий через призму?
\circ	красный, оранжевый, фиолетовый, голубой, синий
$\tilde{\cap}$	желтый, голубой, красный, фиолетовый
$\widecheck{\odot}$	красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый
$\tilde{\cap}$	красный, зеленый, синий, желтый, оранжевый, голубой
Ŏ	красный, желтый, голубой, фиолетовый, зеленый, синий
303 Пока	азатель преломления зависит
\cap	от скорости
\sim	от частоты внешнего поля
\sim	от температуры
\simeq	от концентрации зарядов
$\tilde{\circ}$	от времени
204 11	
304 4TO	такое спектр?
\circ	совокупность показателей преломления
_	совокупность периодов
\circ	совокупность фаз
<u> </u>	совокупность длин волн, составляющих излучающий свет
O	совокупность световых пучков
305 Угол	наклона луча проходящего через призму определяется по формуле
•	· (- 1)
	=A(n-1)
a_2	$= nA - a_1$
$\overline{}$	
_	$= \alpha_1 + \alpha_2 - A$
Ψ	- vq 1 v2 = 11
\circ	
<i>a</i> ,	$+a_2=nA$
\bigcirc	$=oldsymbol{eta}_2oldsymbol{n}$
a_2	$= p_2 n$

306 В какой области спектра происходит поглощение света в многоатомных газах?		
\circ	в видимой области спектра;	
Q	в ультрафиолетовой области спектра;	
\sim	абсолютно не происходит	
	в области рентгеновского излучения; в инфракрасной области спектра;	
выполне	ние дисперсии – это разложение белого света на составные цвета, впервые опыт по разложению света был н И. Ньютоном при усовершенствовании оптических приборов. Над усовершенствованием, какого	
оптическ	ого прибора работал И.Ньютон? Выберите ваш ответ:	
Солнечный	Призма	
0	правильный ответ не приведен	
left	телескоп	
\circ	микроскоп	
	очки стеклянные призмы	
200 P		
308 Разл	ожение белого света в спектр при прохождении через призму обусловлено	
Ō	интерференцией света	
<u> </u>	дисперсией света	
\sim	рефракцией света дифракцией света	
$\tilde{\circ}$	отражением света	
309 Как і	называются цветные линии, изображенные на экране в результате дисперсии?	
\circ	интерференционной картиной	
O	спектром	
\circ	лауэграммой	
\sim	рентгенограммой дифракционной картиной	
210.16		
310 Како	е явление в линейной оптике называется дисперсией света?	
Q	отражение света от зеркальной поверхности	
<u> </u>	зависимость показателя преломления среды от длины волны падающего света	
\sim	зависимость показателя преломления среды от интенсивности падающего света зависимость показателя преломления среды от поляризации света	
$\tilde{\circ}$	преломление монохроматического света при прохождении через линзу	
311 Как ј	разлагает дифракционная решетка падающий на нее свет?	
\bigcirc	относительно интенсивности света	
\circ	не разлагает	
\sim	относительно показателя преломления среды	
$\widetilde{\bigcirc}$	по форме решетки относительно длине волны	
312 Линейчатые спектры поглощения и испускания характерны для		
	нагретых атомарных газов.	
Ŏ	охлажденных твердых тел	
Ŏ	твердых нагретых тел.	
\sim	любых тел любых нагретых тел	
\cup	MOOBIA HELPETBIA 16/1	

313 Свет	какого цвета больше других отклоняется призмой спектроскопа?
00000	фиолетового красного желтый зеленого синего
314 Зави	симость абсолютного показателя преломления вещества от частоты падающего света называется
0000	явлением дифракции явлением дисперсии явлением поглощения явлением интерференции явлением поляризации
315 Дист	персия называется нормальной, если:
00000	по мере уменьшения длины волны показатель преломления среды возрастает любая точка пространства, до которой дошел фронт волны, становится источником вторичных волн колебания светового вектора происходят в одной плоскости при уменьшении длины волны показатель преломления среды также уменьшается размеры препятствий соизмеримы с длиной волны падающего света
316 Как	называется излучение, которое возникает за счет теплового излучения атомов и молекул вещества?
0000	Вавилово-Черенковское излучение тепловое излучение $\beta\text{-излучениe}$ $\alpha\text{-излучениe}$ люминесценция
317 Непр	рерывный (сплошной) спектр излучения характерен для
00000	нагретых жидкостей атомарных паров все вещества в нагретом состоянии дают сплошной спектр атомарных горячих газов нагретых молекулярных газов
318 Пото	ок локализованных в пространстве дискретных световых квантов, движущихся со скоростью света - это поток
0000	элементарных частиц фотонов электронов протонов нейтронов
319 Гипо	отеза Планка состоит в том что
0.000	скорость света постоянна во всех инерциальных системах отсчета электромагнитные волны излучаются в виде отдельных порций (квантов), энергия которых зависит от частоты электромагнитные волны поперечны нельзя одновременно точно определить значение координаты и импульса электромагнитные волны излучаются зарядами, движущимися с ускорением
320 Энер	огия фотона определяется по формуле
© E = 0 p = 0	$= mc^{2}$ $= \frac{W}{c}$ b
_	U

321 Тело, способное поглощать полностью при любой температуре падающие на него волны любой частоты
1 21
тело белого цвета
все варианты не верны
абсолютно черное тело
тело синего цвета
серое тело
322 Свечение тел, обусловленное нагреванием, которое происходит за счет теплового движения молекул и атомов вещества за счет его внутренней энергии - это
гамма-излучение
тепловое излучение
рентгеновское излучение
люменисценция
фотоэффект
323.
Какой формулой выражается закон смещения Вина, определяющий характер за висимости излучательной способности абсолютно черного тела от частоты (ν) и температуры (Γ)?
(p)
$\varepsilon(v,T) = v^3 F\left(\frac{1}{T}\right)$
$\mathcal{E}(\mathcal{O},T)=\lambda T$
$\varepsilon(v_{z}T) = v^{3}F\left(\frac{v}{T}\right)$ $\varepsilon(v_{z}T) = \lambda T$ $\varepsilon(v_{z}T) = CT^{2}$
$\varepsilon(v,T) = hv^{-1}$
$\varepsilon(v,T) = hv'$ $c(v,T) = CT^2$
324 От чего зависит отношение спектральной поглощательной способности тела от спектральной излучательной способности при определенных условиях?
способности при определенных условиях?
способности при определенных условиях? от природы тела и частоты
способности при определенных условиях? от природы тела и частоты нет правильного ответа
способности при определенных условиях? от природы тела и частоты нет правильного ответа от природы тела и температуры
способности при определенных условиях? от природы тела и частоты нет правильного ответа от природы тела и температуры от природы тела
способности при определенных условиях? от природы тела и частоты нет правильного ответа от природы тела и температуры
способности при определенных условиях? от природы тела и частоты нет правильного ответа от природы тела и температуры от природы тела
способности при определенных условиях? от природы тела и частоты нет правильного ответа от природы тела и температуры от природы тела только от частоты и температуры только от частоты и температуры 325 . Какое численное значение имеет постоянное σ в законе Стефана-Больцмана для интегральной энергетической светимости абсолютно черного тела, которая выражается формулой $R_s = \sigma T^4$?
способности при определенных условиях?
способности при определенных условиях? от природы тела и частоты нет правильного ответа от природы тела и температуры от природы тела и температуры от природы тела только от частоты и температуры 325 . Какое численное значение имеет постоянное σ в законе Стефана-Больцмана для интегральной энергетической светимости абсолютно черного тела, которая выражается формулой $R_{\epsilon} = \sigma T^{4}$?
способности при определенных условиях?
способности при определенных условиях? от природы тела и частоты нет правильного ответа от природы тела и температуры от природы тела и температуры от природы тела только от частоты и температуры 325 . Какое численное значение имеет постоянное σ в законе Стефана-Больцмана для интегральной энергетической светимости абсолютно черного тела, которая выражается формулой $R_{\epsilon} = \sigma T^{4}$?
способности при определенных условиях? от природы тела и частоты нет правильного ответа от природы тела и температуры от природы тела \bullet только от частоты и температуры 325 . Какое численное значение имеет постоянное σ в законе Стефана-Больцмана для интегральной энергетической светимости абсолютно черного тела, которая выражается формулой $R_{\epsilon} = \sigma T^4$? \bullet
способности при определенных условиях?
способности при определенных условиях?
способности при определенных условиях? От природы тела и частоты нет правильного ответа от природы тела и температуры от природы тела и температуры от природы тела только от частоты и температуры 325 . Какое численное значение имеет постоянное σ в законе Стефана-Больцмана для интегральной энергетической светимости абсолютно черного тела, которая выражается формулой R₂ = σT*? ○

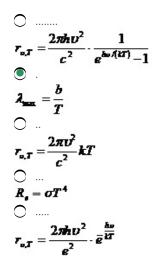
увеличится в 4 раз увеличится в 16 раз
327 Какое из нижеследующих выражений справедливо для поглощательной способности абсолютно черного те
○ A>1 ○ A=1
○ A-1 ○ A<1 ○ A≤1
O A≥1 328 .
Какой закон выражает отношение $\frac{r_{\lambda}}{a_{\lambda}} = f(\lambda, T)$?
Рэлея-Джинса
Стефана-Больцмана
Кирхгофа
Вина
Планка
329 От чего зависит излучательная способность абсолютно черного тела? Кто был основоположником аналитического выражения функции $r_{\lambda} = f(\lambda, T)$?
от длительности излучения
Планк
от длины волны
от частоты и температурыот частоты излучения
от разновидности тела
330 . Распределение энергии по спектрам было исследовано Вином и выражается формулой $T \cdot \lambda_{\max} = b$. Чему равна постоянная Вина (b) ?
$\bigcirc \dots \\ b = 21 \cdot 10^{-3} \mathbf{m} \cdot \mathbf{\pi}$
$\bigcirc \dots \\ b = 3.6 \cdot 10^{-3} \text{m} \cdot \text{m}$
\bigcirc $b = 3.2 \cdot 10^{-3} \mathbf{m} \cdot \mathbf{\pi}$
O
$b=4\cdot 10^{-3}$ m \cdot κ
331 Чему равна постоянная Планка?
$igodots$. $h = 6.624 \cdot 10^{-34} \text{Доксоул} \cdot cex$
$\bigcirc \dots \\ h = 6.67 \cdot 10^{-34} \text{ Hoscoyn} \cdot cex$
○ h = 6.21/Ежсоул-сех

 \bigcirc .. $h = 6,62 \cdot 10^{-23}$ Дэксоул - сех

○ ... h = 92 · 10⁻³⁴ Дэксоул · сех

332 Как черного	выражается отношение между энергетической светимостью и энергетической яркостью для аосолютно тела?
- Priore	
\circ	
B.	$=\frac{\sigma}{\pi}T^4$
	π
B_{\bullet}	$=\frac{1}{\pi}R_{s}$
1010	π
\circ	
Ъ.	$=\frac{1}{\pi}r_1$
-1	π^{-1}
\circ	
R_{\bullet}	 = oT ⁴
\circ	
K,	$= \int_{1}^{\infty} r_{\lambda} d\lambda$
	U
333 Как	ой из существующих видов излучения называется только равновесным излуче¬нием?
\circ	излучение холодных тел, атомы которых возбуждены иными воздействиями
Ŏ	свечение возникшее в результате самостоятельного газового разряда
Ō	фотолюминесценция (тело поглощающее свет, затем сам его излучает)
<u> </u>	излучение нагретого тела (температурное излучение)
\circ	тело, например, фосфор в результате химической реакции (хемилюминесценции) при медленном окислении кислородом воздуха светится. Эта энергия излучения возникает за счет свободной энергии, в результате возникшего химического процесса
	светится. Эта энергия излучения возникает за счет своооднои энергии, в результате возникшего химического процесса
334 В ка	ком случае выполняется закон Вина для абсолютно черного тела?
	при больших частотах и низких температурах
Ŏ	при малых частотах и низких температурах
\circ	при всех частотах и низких температурах
Ō	при всех частотах и высоких температурах
\circ	при малых частотах и высоких температурах
	на волны, на которую приходится максимум излучательной способности в спектре абсолютно черного тела, ышении температуры
$\overline{}$	
\sim	имеет сложную зависимость от температуры
\simeq	не измениться линейно возрастает с T
\sim	изменяется как 1/Т
$\tilde{\circ}$	не зависит от температуры
Ŭ	
336 От ч	него зависит интегральная энергетическая светимость абсолютно черного тела?
<u> </u>	от температуры тела
Q	от частоты излучения
Ŏ	от природы тела
\sim	от длительности излучения
\circ	от площади поверхности тела
	изменится интегральная энергетическая светимость абсолютно черного тела при уменьшении абсолютной гуры его в 2 раза?
$\overline{}$	уменьшится в 18 раз
\simeq	увеличится в 81раза
\sim	увеличится в 6 раза
\widetilde{C}	уменьшится в 4 раз
\widecheck{igo}	уменьшится в 16 раз
338 Что	называется нормальной дисперсией?
_	
\bigcirc	постоянное значение показателя преломления независимо от частоты
	с уменьшением длины волны увеличение показателя преломления увеличение показателя преломления с уменьшением частоты света
\simeq	увеличение показателя преломления с уменьшением частоты света увеличение показателя преломления при постоянной частоте света
\sim	,

постоянное значение показателя преломления независимо от длины волны
339 Что называется аномальной дисперсией?
 □ постоянное значение показателя преломления не зависимо от частоты □ увеличение показателя преломления при постоянной длине волны □ уменьшение показателя преломления при постоянной частоте света □ уменьшение показателя преломления с увеличением частоты света □ постоянное значение показателя преломления не зависимо от длины волны
340 Какой из нижеследующих формул является выражением для дисперсии света?
$ \begin{array}{c} \bigcirc \dots \\ \mathbf{v} = \frac{d\mathbf{n}}{d\lambda} = -\frac{2B}{\lambda^3} \end{array} $
$n = f(\lambda)$ \dots $n = A + \frac{B}{A}$
$ \begin{array}{c} $
$n = f(\lambda)$ $m = A + \frac{B}{\lambda^2}$ $m = \frac{d}{d\lambda} f(\lambda)$ $m = \frac{\Delta n}{\Delta \lambda}$
341 Какое из нижеследующих высказываний правильно?
 нормальная дисперсия света происходит далеко от области поглощения, аномальная дисперсия же в области поглощен нормальная и аномальная дисперсии света происходят в любой области нормальная и аномальная дисперсии света происходят в области поглощения нормальная и аномальная дисперсии света происходят далеко от области поглощения аномальная дисперсия света происходит далеко от области поглощения, а нормальная дисперсия в области поглощени
342 . Свет с интенсивностью J_0 падает перпендикулярно на однородную прозрачную поверхность среды с толщиной I . Какая формула показывает уменьшение интенсивности света вышедшего из среды в результате поглощения (α - коэффициент поглощения, выполняется условия $\alpha > 0$)?
$J = \frac{\alpha \lambda}{J_0}$ $J = J_0$ $J = \frac{\alpha}{J_0}$ $J = \frac{\alpha}{J_0}$ $J = J_0 \alpha \lambda$ $J = J_0 e^{-\alpha \lambda}$
343 . Как вычисляется интенсивность вышедшего света , если на прозрачную среду толщиной d падает плоский свет с интенсивностью $J_{\scriptscriptstyle 0}$?
$ \bigcirc J = -J_0 e^{bt} $ $ \bigcirc J = J_0 e^{-bt} $ $ \bigcirc J = 2J_0 e^{-bt} $ $ \bigcirc $

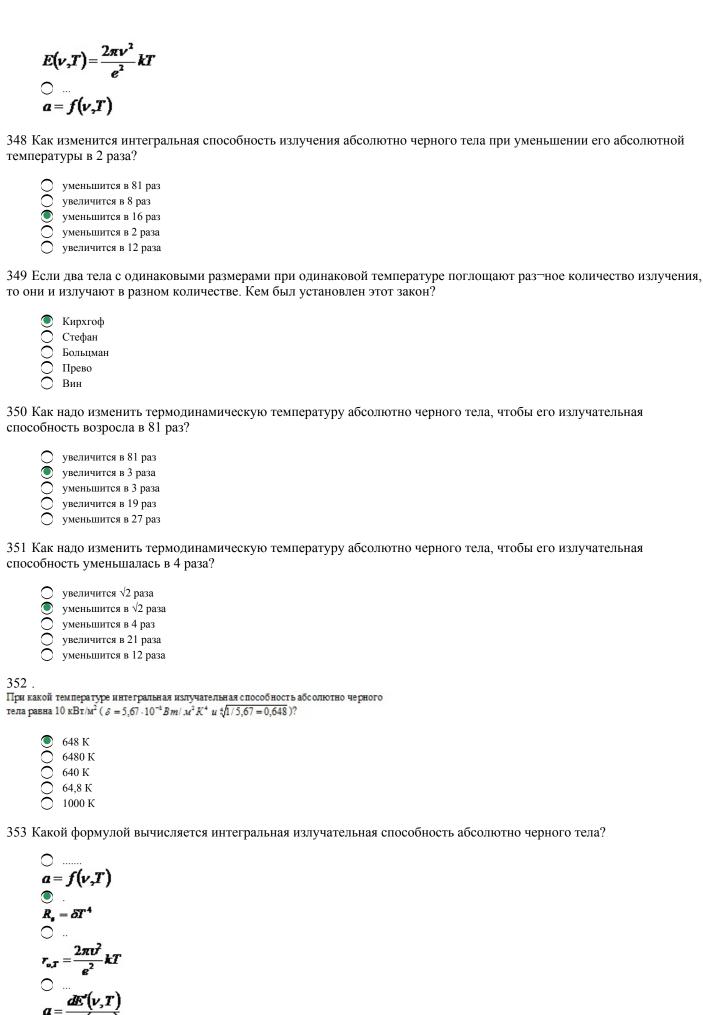

$$J = J_0 e^{id}$$

$$O ...$$

$$J_0 = -J e^{-i}$$

344 Какая формула выражает закон Рэлея-Джинса?

345 Какой формулой вычисляется длина волны соответствующая максимальному значению энергетической светимости абсолютно черного тела?

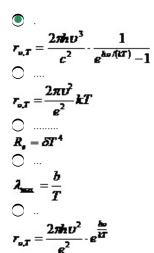

346 В каком году Планк установил зависимость функции

$$r_{\nu,T} = f(\lambda,T) = 2\pi hc^2 \frac{\lambda - 5}{e^{ch/kT_\lambda}}$$

- 1890
- O 1895
- 1893

347 Какое выражение является основной функцией теплового излучения?

$$\begin{array}{l}
\bigcirc ... \\
\lambda_{mx} = \frac{b}{T} \\
\bullet ... \\
\frac{r(v,T)}{a(v,T)} = E(v,T) = f(v,T) \\
\bigcirc ... \\
a = \frac{dE'(v,T)}{dE(v,T)}
\end{array}$$



$$r_{o,T} = \frac{2\pi\hbar v^2}{e^2} \cdot e^{\frac{\hbar v}{kT}}$$

354 Какая формула выражает правило смещения Вина?

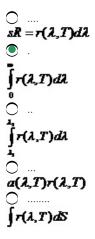
$$\begin{array}{c}
\bigcirc ... \\
R_o = \delta T^4 \\
\hline
\bullet ... \\
\lambda_{\max} = \frac{b}{T} \\
\bigcirc ... \\
r_{o,T} = \frac{2\pi\hbar v^2}{e^2} \cdot e^{\frac{bv}{kT}} \\
\bigcirc ... \\
E(v,T) = \frac{2\pi v^2}{e^2} kT \\
\bigcirc ... \\
r_{o,T} = \frac{2\pi v^2}{e^2} kT
\end{array}$$

355 Какое из выражений отражает формулу Планка для излучательной способности абсо¬лютно черного тела?

356 Какое из математических выражений является законом Стефана-Больцмана для излуче¬ния абсолютно черного тела?

357 Для произвольной частоты и температуры отношение лучеиспускательной способности любого непрозрачного тела к его поглощательной способности одинаково. Это формулировка:

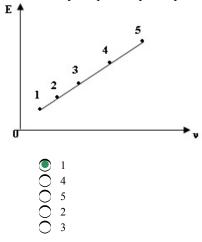
	закона Кирхгофа
\bigcirc	второго закона отражения
\bigcirc	первого закона отражения
\bigcirc	второго постулата Бора
\bigcirc	первого закона Эйнштейн


358 Какие из перечисленных свойств относятся к тепловому излучению? 1-электромагнитная природа излучения, 2-излучение может находиться в равновесии с излучающим телом, 3-сплошной спектр частот, 4-дискретный спектр

частот.

\bigcirc	только 1 и 2
	только 1, 2 и 3
\bigcirc	все - 1,2,3 и 4
\bigcirc	только 2
\bigcirc	только 1

359.


Если $r(\lambda,T)$ есть спектральная плотность излучения, т.е. мощность, излучаемая телом с единицы повержности в единичном интервале длин воли, то какая из формул выражает энергетическую светимость тела?

360 Какое из нижеперечисленных явлений объясняет квантовую природу света?

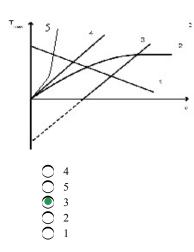
	Эффект Комптона
\leq	эффект Комптона
\circ	дисперсия
\bigcirc	поляризация
\bigcirc	дифракция
\bigcirc	интерференция

361 На рисунке представлен график зависимости энергии света в видимой области от час-тоты. Какая точка соответствует красному свету?

362 От чего зависит красная граница фотоэффекта для заданного метала?

\bigcirc	от энергии падающего света
	постоянная величина
\bigcirc	от длины волны падающего света
\bigcirc	от максимальной скорости вырванных электроно
\bigcirc	от интенсивности падающего света

363 Красная граница фотоэффекта — это ...


\bigcirc	правильный ответ отсутствует
	минимальная частота излучения, при которой еще наблюдается фотоэффект
\bigcirc	максимальная частота излучения, при которой еще наблюдается фотоэффект
\bigcirc	минимальная длина волны, при которой наблюдается фотоэффект
\bigcirc	минимальная интенсивность света, вызывающая фотоэффект

	887 году (кем?) и в 1888–1890 годах экспериментально исследован тоэффекта было выполнено () в 1900 г. Вставьте в пропущенные
 А. Столетов; Г. Герц; А. Эйнштейн Г. Герц; А. Столетов; Ф. Ленард Г. Герц; А. Столетов; М. Планк А. Эйнштейн; Г. Герц; А. Столетов А. Эйнштейн; А. Столетов; Ф. Ленард 	
365 От чего зависит красная граница фотоэффен	та?
от максимальной скорости фотоэлектронов от материала катода от напряжения данного катоду и аноду от интенсивности падающего света от частоты падающего света	
366 Какие частицы вылетают из катода во время	фотоэффекта?
 позитроны электроны положительно заряженные ионы отрицательно заряженные ионы протоны 	
367 Какое из нижеуказанных предположений ве	рно, если энергия фотона меньше работы выхода электрона?
работа выхода всегда должна быть больше энер явление фотоэффекта не происходит явление фотоэффекта происходит и электрон уд энергия фотона не может быть равной работе в явление внешнего фотоэффекта происходит, но	аляется от металла ыхода
368 Красная граница для определенного металл	а . Под действием каких длин волн происходит явления фотоэффекта?
 650 hm 540 hm 550 hm 576 hm 600 hm 	
369 Какое из нижеследующих мнений правильн	о, если энергия фотона больше, чем работа выхода электрона?
работа выхода электрона всегда должна быть бо происходит явление фотоэффекта и электрон уд не происходит явление фотоэффекта энергия фотона не может быть равным работе в не происходит явление фотоэффекта, но электр	цаляется от поверхности металла ыхода
370 . Во сколько раз изменится длина рассеивающейся под углом $\mathfrak{F}=$ чить частоту первоначально падающего луча во время Комптон рентгеновских лучей от свободных электронов в 2 раза?	90° волны, если увели- рыского рассеяния
 увеличится в 4 раза не изменится уменьшится в 21 раза уменьшится в 4 раза увеличится в 12 раза 	
371 Каким фундаментальным законом выражае	гся формула Эйнштейна для фотоэффекта?
 сохранение массы сохранение энергии сохранение момента импульса сохранение импульса сохранение электрического заряда 	

372 Как і	выражается формула Эйнштейна для внешнего фотоэффекта?
	 =hυ
O	- H U
	$=A+\frac{mv^2}{2}$
	2
	 =mc ²
O hu	= A
E =	$=\frac{mv^2}{2}$
373 Мако зависит:	симальная кинетическая энергия оторвавшихся от металла фотоэлектронов во время внешнего фотоэффекта,
\circ	только от частоты света
O	от частоты света и работы выхода
\sim	от частоты и интенсивности света от интенсивности света и работы выхода
\circ	только от интенсивности света
374 Во вј	ремя фотоэффекта, в каких случаях максимальное значение кинетической энергии может быть наибольшим?
\circ	только при большой работе выхода
O	при наибольшей энергии фотона и наименьшей работе выхода
\sim	при наименьшей энергии фотона и наибольшей работе выхода
\tilde{O}	только при наибольшей энергии фотона только при наименьшей работе выхода
375 Кто с	создал теорию фотоэффекта?
\circ	Бернулли
O	Эйнштейн
\circ	Эрстед
\sim	Планк Розерфорд
376 Как і	изменится скорость вылетающих из вещества электронов, если частота облучающего света увеличится?
	сначала уменьшится, а затем резко возрастает
$\widetilde{\odot}$	увеличится
Ŏ	уменьшится
Õ	не изменится
0	нет верных вариантов ответа
377 Как 1	можно объяснить явление фотоэффекта?
\circ	правильный ответ не приведен
_	только квантовой теорией света
\circ	только волновой теорией света
	волновой и квантовой теориями света только с помощью теории электромагнитного поля Максвелла
378 Как з	вависит запирающее напряжение фототока от длины волны облучающего света?
\cap	нет верных вариантов ответа
$\widecheck{\odot}$	обратно пропорционально длине волны
Ō	прямо пропорционально длине волны
\circ	равно длине волны
	та выхода электронов с поверхности цезия равна $1,9$ эВ. Возникнет ли фотоэффект под действием излучения $0,45$ мкм?
\circ	все варианты ошибочны

(возникнет
Č	не возникнет
Č	недостаточно исходных данных для ответа
Č	нельзя точно ответить
380 Пос	стоянная Планка h имеет размерность
С) Дж/с
Ŏ	Дж•с.
Č	Дж•м;
Č	Дж•c/м;
Č	Дж•м/с;
381 Нез	варяженная изолированная от других тел металлическая пластина освещается ультрафиолетовым светом. Заряд, внака будет иметь эта пластина в результате фотоэффекта?
C	знак заряда зависит от мощности освещения
•	положительный
\subset	отрицательный
\subset	пластина останется нейтральной
\subset	знак заряда зависит от времени освещения
382. Чему равн ответит	ка энергия, масса и импульс фотона для рентгеновских лучей (=10 ¹³ Гц)? Го
6,6)
	52710 ⁻¹⁵ Дж; 7,3710 ⁻³⁹ кг, 2,2710 ⁻²⁹ кг ?м/с
_	 52710 ⁻¹⁹ Дж; 7,3710 ⁻³⁶ кг; 2,2710 ⁻²⁷ кг ?м/с
6,6) 52710 ⁻¹⁵ Дж; 7,3710 ⁻³⁴ кг, 2,2710 ⁻²⁵ кг ?м/с
383 Как	з изменится фототок насыщения при фотоэффекте, если увеличить интенсивность падающего света в 2 раза?
	уменьшится в 3 раза
\sim	увеличится в 3 раза
\simeq	увеличится в 5 раз
\succeq	уменьшится в 5 раза
ĕ	у увеличится в 2 раза
384 Фо	гокатод освещается монохроматическим источником света. От чего зависит величина фототока насыщения?
С	от материала катода
	от интенсивности света (светового потока)
Č	от температуры катода
Č	от приложенного между катодом и анодом напряжения
Č	от частоты света
	и изменении частоты света, падающего на фотоэлемент, задерживающая разность потенциалов увеличилась в . Как изменилась максимальная кинетическая энергия фотоэлектронов?
C	уменьшилась в 5 раза
Č) не изменилась
Č	увеличилась в 5 раза
č	увеличилась в 2,25 раза
Ŏ) увеличилась в 1,5 раза

386 Какой из графиков правильно отображает зависимость максимальной кинетической энергии Етах фотоэлектронов от частоты у падающего света? Работа выхода электронов из металла равна А.

387 В таблице приведена зависимость максимальной кинетической энергии вылетающих из металла электронов от энергии падающих на металл фотонов.

Ефотона, эВ

Определите работ у выхода для этого металла.

1,8 эВ

4,8 эВ 3,8 эВ

2,6 эВ

3,0 эВ

388 Два металла с разными работами выхода электронов освещаются светом с одинаковой длиной световой волны, большей красной границы фотоэффекта. Из какого металла фотоэлектроны вылетают с большей скоростью?

из обоих металлов фотоэлектроны вылетают с одинаковой скоростью

из металла с меньшей работой выхода

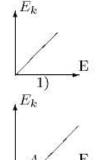
из металла с большей работой выхода

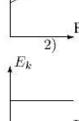
скорость электронов не зависит от работы выхода

однозначного ответа дать нельзя

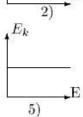
389 В результате квантового перехода, связанного с излучением фотона, кинетическая энергия электрона...

до сих пор вопрос остается открытым

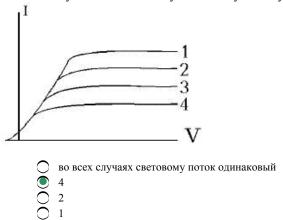

у одних атомов увеличивается, у других – уменьшается


увеличивается

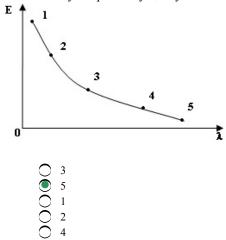
уменьшается

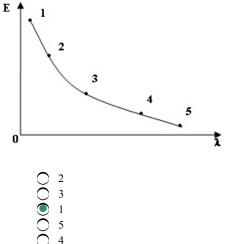

не изменяется

390 На каком из приведенных графиков правильно отражена зависимость максимальной кинетической энергии (Ек) электрона, вылетающего с поверхности металла, от энергии фотона (Е), падающего на поверхность металла? А работа выхода электрона из металла.



 E_k


соответствует минимальному световому потоку, падающему на фотокатод.


392 Какое из нижеприведенных явлений объясняется волновой и квантовой теорией света?

- рентгеновское излучение $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ фотоэффект давление света эффект Комптона
- вынужденное излучение

393 На рисунке дан график зависимости энергии от длины волны для видимой области спектра. Какая точка соответствует красному цвету?

394 На рисунке дан график зависимости энергии от длины волны для видимой области спектра. Какая точка соответствует ультрафиолетовому цвету?

395 Между какими физическими явлениями создается связь при фотоэффекте?

между магнитными и оптическими между электрическими и оптическими между электрическими и магнитными

между электрическими и ядернымифотоэффект не создает никакой связи между явлениями
396 От чего зависит кинетическая энергия электрона при выходе из металла во время фото¬эффекта?
от количества вылетавших электронов
от интенсивности падающего света
от частоты падающего света
от концентрации эдектронов
от значения тока насыщения
397 Какие явления подтверждают квантовые свойства света?
О дифракция, интерференция, поляризация
• фотоэффект, рентгеновское излучение, эффект Комптона
фотоэффект, дифракция, интерференция
рентгеновское излучение, эффект Комптона, поляризация
С давление света, поляризация, эффект Комптона
398. Какой формулой выражается изменение длины волны при Комптоновском рассеяние фотона от частицы массой m ? (h — постоянное Планка, с — скорость распространения света в вакууме, θ - уголь рассеяния фотона)
· ·····
$\Delta \lambda = \frac{mc}{2k} (1 - \cos \theta)$
2k , θ
$\Delta \lambda = \frac{1}{2} \cos^2 \frac{1}{2}$
$\Delta \lambda = \frac{k}{m} \sin \theta$
$\Delta \lambda = \frac{2k}{\cos \theta}$
≈ . • • • • • • • • • • • • • • • • • •
$\Delta \lambda = \frac{k}{mc} (1 - \cos \theta)$
399 Какие фундаментальные законы выполняются при Комптоновском рассеянии?
С сохранение энергии и массы
о сохранение импульса и массы
С сохранение импульса и момента импульса
сохранение электрического заряда
охранение импульса и энергии
400 Эффект увеличения длины волны рассеянного излучения называется
фотоэффектом
эффектом Вавилова-Черенкова
эффектом Дебая
🔿 эффектом Доплера
🔘 эффектом Комптона
401 Свечение тел, вызванное бомбардировкой вещества электронами или другими заряженными частицами называется
фотолюминесценцией
триболюминесценцией
катодолюминесценцией
электролюминесценцией
хемилюминесценцией
402 Для каких длин волн заметен эффект Комптона?
••

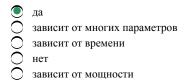
• рентгеновские волны

0000	инфракрасные волны волны видимого спектра ультрафиолетовые лучи α-лучи
	аких частицах возможно наблюдение эффекта Комптона? 1 - Свободные электроны 2 - Протоны 3 - Тяжелые - Нейтроны 5 - Положительные ионы металлов
000	1, 2, 3 1, 2, 3, 4 1, 2, 3, 4,5 1, 2
	ком случае наблюдается обратный эффект Комптона, связанный с уменьшением длины волны в результате ния света на веществе?
00000	при взаимодействии фотона с релятивистскими электронами при взаимодействии фотона с положительными частицами: протонами и позитронами когда длина волны падающего света превышает предельное значение при угле рассеяния фотона α из промежутка [90градус;180градус], соѕ α<0. когда импульс фотона превышает импульс взаимодействующей частицы
	еянные на частицах вещества световые лучи прошли через собирающую линзу и дали интерференционную О чем это говорит?
00000	энергия связи электронов в атомах вещества меньше энергии фотона опыт иллюстрирует эффект Комптона об ионизации вещества. Часть фотонов рассеялось на свободных электронах, часть – на положительно заряженных ионах опыт иллюстрирует обратный эффект Комптона энергия связи электронов в атомах вещества больше энергии фотона
406 Какс	ому углу рассеяния θ соответствует максимальное комптоновское смещение?
0000	$\theta = \pi/2$ $\theta = \pi$ $\theta = 0$ $\theta = \pi/4$ $\theta = 3\pi/4$
	ории эффекта Комптона объяснение изменения длины волны рентгеновского излучения при рассеянии его ыми веществами основано на
0000	квантовом характере взаимодействия фотона рентгеновского излучения с электроном вещества поглощении фотонов рентгеновского излучения атомами вещества поглощении энергии электромагнитной волны при прохождении через вещество возбуждении вынужденных колебаний электронов вещества полем электромагнитной волны
408. Изменение определяет	длины волны рентгеновского излучения при комптоновском рассеянии ся формулой $\Delta \lambda = \lambda' - \lambda = \lambda_k (1 - \cos \theta)$. От чего зависит постоянная λ_k ?
λ_{k}	от свойств рассеивающего вещества лины волны λ под ающего излучения от угла рассеяния θ универсальная константа, не зависящая от свойств вещества и характеристик учения
409 Ha o	снове какого явления работает вакуумный фотоэлемент?
00000	фотохимической реакции явления внешнего фотоэффекта явления фотолюминесценции явления внутреннего фотоэффекта

410 Какому условию должна удовлетворять длина волны света λ , падающего на поверхность металла, чтобы началось явление фотоэффекта? А – работа выхода; h – постоянная Планка; v – частота; Ek - энергия электрона.

$\bigcap \lambda > Ek$
$\delta \lambda \leq hc/A$
$\lambda \geq A/h$
$\lambda > Ek/h$
411 Что называется внешним фотоэффектом?
О возникновение э.д.с. на контакте двух полупроводников, или полупроводника и ме¬талла под действием света
о изменение проводимости вещества под действием света
выход электронов в вакуум под действием света
о ионизация газов под действием света
почернение фотопластинки под действием света
412 . Импульс ультрафиолетового фотона равен $3\cdot 10^{-27}H\cdot c$. Определите длинуволны этого фотона. h= 6 $\cdot10^{-34}$ Дж · c
○ 600 нм
€ 200 нм
○ 500 нм
○ 180 нм
○ 300 нм
413 Какое из нижеперечисленных значений частоты используется для возникновения фотоэффекта?
O
$v_{-} = \frac{A}{h}$
○ .v≥v
∪ ν<ν _₩
O hv≤A
○ 7
$hv = A + \frac{mv^2}{m}$
2
414 Какое явление объясняется квантовой теорией света?
интерференция
фотоэффект
О дисперсия
О поляризация
O дифракция
415 Какой из нижеследующих равенств определяет закон сохранения энергии для эффекта Комптона?
$Q = 4 U + A$ $h\nu + m_0c^2 = h\nu' + mc^2$
$h\nu + m_0c^2 = h\nu' + mc^2$
Q
O
$E = N \cdot h \nu$
$ \bigcap_{\mathbf{h}^{\nu}} = \mathbf{A}_{\varsigma} + \mathbf{m}\mathbf{v}^{2}/2 $
416 Что называется внутренним фотоэффектом?
нагревание вещества под действием света
изменение электропроводности вещества под действием света;
ионизация газов под действием света;
вырывание электронов вещества под действием света;
почернение фотопластинки под действием света;

417 Какое из нижеследующих выражений справедливо для импульса фотона?

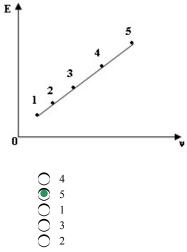

$$\begin{array}{c}
\bigcirc \dots \\
p = m \lambda \\
\bigcirc \dots \\
p = h \lambda
\end{array}$$

$$\begin{array}{c}
p = \frac{\lambda}{h} \\
\bigcirc \dots \\
p = \frac{c}{\lambda} \\
\end{array}$$

$$\begin{array}{c}
p = \frac{\lambda}{h} \\
\end{array}$$

$$\begin{array}{c}
p = \frac{h}{\lambda} \\
\end{array}$$

418 Доказано, что свет обладает давлением. Можно ли тоже самое сказать про инфракрасное излучение?


419 Фотон – это элементарная частица, ...

	лишенная массы покоя и электрического заряда, но обладающая энергией и импульсом
\bigcirc	лишенная массы покоя
\bigcirc	не обладающая энергией
\bigcirc	обладающая зарядом
\bigcirc	нет верного ответа

420 Какое из приведённых ниже утверждений относительно скорости фотона является правильным?

	скорость фотона равна с или меньше с (в веществе)
\bigcirc	скорость фотона может принимать любые значения, кроме нуля
\bigcirc	скорость фотона зависит от его частоты
скор	оость фотона всегда равна $c = 3 \cdot 10^3 M/c$
\bigcirc	скорость фотона равна нулю

421 На рисунке задан график зависимости энергии фотона для видимой области света от частоты. Какая точка соответствует фиолетовому свету?

422 Какое математическое выражение закона сохранения энергии для фотоэффекта?

$$\bigcirc \dots$$

$$\hbar \nu = \frac{m v^2}{2} + \frac{m c^2}{2}$$

$$\bigcirc \dots$$

$$\hbar \nu = \frac{m v^2}{2} + \mu$$

k ν=	$\frac{mv^2}{2} + A$ $\frac{mv^2}{2} + \mu$
O	
ħν=	$\frac{mv^{\lambda}}{2} + \mu$
423 Какое 1	из нижеследующих утверждений верно, если энергия фотона равна работе выхода электрона?
о пр пр	обота выхода всегда должна быть больше энергии фотона роисходит фотоэффект и электрон удаляется от поверхности металла с максимальной скоростью роисходит фотоэффект, но электрон не покидает поверхность металла в происходит фотоэффект пергия фотоэффект
424 От чего	о зависит значение задержающего потенциала?
то О то О то О	материала катода с частоты падающего света с значения тока насыщения с интенсивности падающего света с числа фотоэлектронов
	ца фотоэффекта для калия $\lambda_0=620$ нм . При какой длине волны света ффекта не произойдет?
485060	00 нм 80 нм 00 нм 00 нм 00 нм
Комптоновско	длина волны $(\Delta\lambda)$ рассеивающих лучей под углом $\mathcal{S}=90^\circ$, если при м рассеивании рентгеновских лучей от свободных электронов частота ча уменьшается вдвое?
○ ув ○ ув ○ ум ○ ум	е меняется величивается в 2 раза величивается в 4 раза меньшается в 4 раза меньшается в 2 раза у интенсивности падающего света
427 Какие	факторы определяют красную границу фотоэффекта?
О пр О ча О ча	ещество анода равильный ответ не приведен астота света, падающего на поверхность анода астота света, падающего на поверхность катода ещество катода
428 Длина	волны облучающего света уменьшилась в 2 раза. Как изменилась работа выхода электронов?
● не ○ не ○ сн	меньшится с изменится ет верных вариантов ответа начала уменьшится, а затем резко возрастает величится
	вещении пластины зеленым светом фотоэффекта нет. Будет ли он наблюдаться при облучении той же грасным светом?
	ет ри определенных условиях возможно ет верных вариантов ответа

	нельзя точно ответить
) да
	к изменится со временем разряд отрицательно заряженной цинковой пластины, если ее облучить фиолетовыми лучами?
	сначала увеличится, а потом уменьшится
	не изменится
	нет верных вариантов ответа
	уменьшится
) увеличится
431 Фо	тоэффект – это
	фотографирование объектов
9	выбивание электронов с поверхности металла при его освещении светом
\leq	нагрев вещества при пропускании по нему тока
	фотосинтез в растениях
	химическое свойство тока
432 Вы	берите правильную формулировку закона фотоэффекта.
	число фотоэлектронов, вырываемых светом из катода имеет экспоненциальную зависимость от интенсивности света
	нет правильного ответа
\geq	число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально энергии падающего излучения
	учисло фотоэлектронов, вырываемых светом из катода за 1 с, обратно пропорционально интенсивности света число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света
	число фотоэлектронов, вырываемых светом из катода за т с, прямо пропорционально интенсивности света
433 Ка фотоно	кое из приведенных ниже высказываний правильно описывает способность атома к излучению и поглощеник в?
•	атом может поглощать и излучать фотоны только с некоторыми определенными значениями частоты
	правильный ответ не дан
	атом может поглощать фотоны лишь с некоторыми определенными значениями частоты, излучать фотоны с любой частотой
	атом может поглощать фотоны с любой частотой, излучать фотоны лишь с некоторыми определенными значениями частоты
	атом может поглощать и излучать фотоны с любой частотой
434 Св	ет обладает давлением. Это доказывает
	квантовые свойства света
Č	ничего
Č	волновые свойства света
	квантовые и электромагнитные свойства
	электромагнитные свойства света
	ксимальное число фотоэлектронов, вырываемых из катода за единицу времени (фототок насыщения), прямо
пропор	ционально
	напряжению между катодом и анодом
	интенсивности падающего излучения
	правильный ответ отсутствует
	частоте падающего излучения
	длине волны падающего излучения
436 Ma	ксимальная кинетическая энергия фотоэлектронов зависит от
	частоты падающего света
Č	фототока насыщения
Č	энергетической освещенности катода
	интенсивности падающего излучения
	напряжения между катодом и анодом
437 Ma	ксимальная кинетическая энергия фотоэлектронов линейно возрастает с
	увеличением интенсивности падающего света
Č	увеличением частоты падающего света
	уменьшением частоты падающего света
	уменьшением задерживающего напряжения
	уменьшением интенсивности падающего света

438 Mı	инимальная порция энергии, излучаемой или поглощаемой телом, называется
	кварком
9	квантом
	э атомом
	корпускулой
	эфиром
439 Вн	ешний фотоэффект
9	заключается в вырывании электронов с поверхности твердых и жидких тел под действием света
) наблюдается при взаимодействии света с кристаллическими полупроводниками и диэлектриками, электропроводность которых увеличивается под действием света за счет возрастания в них свободных носителей тока (электронов проводимости и дырок).
	 состоит в возникновении фото-ЭДС вследствие внутреннего фотоэффекта вблизи поверхности контакта металл – проводник или полупроводник с p-n переходом
	упругое рассеяние коротковолнового электромагнитного излучения на свободных электронах вещества, сопровождаемое увеличением длины волны
	оптическая анизотропия веществ под действием электрического поля
440 BH	утренний фотоэффект
	наблюдается при взаимодействии света с кристаллическими полупроводниками и диэлектриками, электропроводность которых
	увеличивается под действием света за счет возрастания в них свободных носителей тока(электронов проводимости и дырок). оптическая анизотропия веществ под действием электрического поля
	упругое рассеяние коротковолнового электромагнитного излучения на свободных электронах вещества, сопровождаемое увеличением длины волны
	осстоит в возникновении фото-ЭДС вследствие внутреннего фотоэффекта вблизи поверхности контакта металл – проводник или полупроводник с p-n переходом
	заключается в вырывании электронов с поверхности твердых и жидких веществ под действием света.
441 Be	нтильный фотоэффект
	заключается в вырывании электронов с поверхности твердых и жидких веществ под действием света
	 состоит в возникновении фото-ЭДС вследствие внутреннего фотоэффекта вблизи поверхности контакта металл – проводник или полупроводник с p-n переходом.
	оптическая анизотропия веществ под действием электрического поля
	упругое рассеяние коротковолнового электромагнитного излучения на свободных электронах вещества, сопровождаемое
	увеличением длины волны наблюдается при взаимодействии света с кристаллическими полупроводниками и диэлектриками, электропроводность которых увеличивается под действием света за счет возрастания в них свободных носителей тока(электронов проводимости и дырок).
4.40	у дент надачен нод деновано в се от возрастания в ним свогодиви ностиси помицентронов проводиности и дврому.
442 . Энергию	падающего фотона можно рассчитать по формуле $? = a + cV^2$. Выберите
верные ф	ормулы для расчета коэффициентов с и а эянная Планка.
	а электрона
	а электрона для данного вещества
a	$= h/A_{sam}; e = m/2h$
	$= \underline{h}/A_{\text{max}}; c = m^2/2h$
	$\begin{array}{l} \dots \\ = h/A_{max}; \ e = h \ m/2 \end{array}$
	нет верного ответа
	$= h^2/A_{max}$; $c = 2h/m$
•	- II /Aspx, C - Zibiii
443 .	_
Частоту і формулы	падающего фотона можно рассчитать по формуле $? = a + cV^2$. Выберите верные для расчета коэффициентов с и a
	оянная Планка,
т - масс	а электрона бота вых ода электрона для данного вещества
a	$= A_{mix}/h; c = m/2h$
	$\begin{array}{c} \dots \\ = h/A_{\text{max}}; \ e = m/2h \end{array}$
(нет верного ответа
2	$= h/A_{\text{max}}; c = m^2/2h$
4	

444 На какие виды условно делится люминесценция относительно времени продолжительности? 1. Электролюминесценция; 2. Флюоресценция; 3. Фосфоресценция; 4. Фотолюминесценция; 5. Хемилюминесценция
1,2 2,3 3,4 2,5 4,5
445 От чего зависит кинетическая энергия фотоэлектронов в момент вырывания?
 от частоты падающего света от материала катода от значения тока насыщения от количества вырываемых фотоэлектронов от интенсивности падающего света
446 На рисунке приведена условная схема энергетических уровней некоторого атома и несколько квантовых переходов между ними. Какой стрелкой обозначен переход с испусканием фотона с наибольшей длиной волны?
 3 1 6 4 5
447 На рисунке приведена условная схема энергетических уровней некоторого атома и несколько квантовых переходов между ними. Какой стрелкой обозначен переход с поглощением фотона с наименьшей длиной волны?
1 6 4 3 2
448 . Какой спектральной серии соответствует переход $E_t \rightarrow E_t$ электрона в атомном водороде?
 Пашен Пфунда Брэкет Лайман Бальмер;
449 Из предложенных формулировок первого постулата Бора выберите правильную:
 атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия. В стационарных состояниях атом не излучает молекулярная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия. атомная система может находиться в произвольных квантовых состояниях, каждому из которых соответствует определенная энергия. В стационарных состояниях атом не излучает атомная система может находиться только в двух квантовых состояниях, каждому из которых соответствует определенная энергия. верной формулировки нет
450 Согласно первому постулату Бора, атомная система может находиться только в особых стационарных состояниях в которых
атом излучает не непрерывно энергиюатом не излучает энергию

	Ō	атом излучает энергию
	\circ	атом излучает равномерно энергию
	\circ	атом поглощает энергию
451 (Согл	пасно второму постулату Бора, атом
	\bigcirc	атом покоится
	излу	учает или поглощает энергию квантами $h_V = E_m - E_n$
	\sim	не излучает энергию излучает энергию непрерывно
	\tilde{c}	поглощает энергию непрерывно
452 H	Как	распределены положительные и отрицательные заряды в атоме по модели Томсона?
		отрицательные заряды в центре шара, положительные заряды же вокруг него. все положительные заряды атома распределены внутри шара с одинаковой плотностью, электроны же совершают колебательные
	$\overline{}$	движения вокруг своих положений равновесия;
	\sim	положительные заряды в центре шара, отрицательные заряды же вокруг него; отрицательные и положительные заряды в центре шара в очень маленьком объеме;
	Ŏ	положительные заряды атома находятся в центре ромба (где пересекаются диагонали), отрицательные заряды же распределены в узловых точках.
453 I	Каки	ие из этих вариантов являются соотношениями неопределенности Гейзенберга? (здесь h- постоянная Планка)
	\bigcirc	
	_	$p_x \ge h$; $\Delta y \Delta p_y \ge h$; $\Delta z \Delta p_z \le h$
	O A TO A	$p_x \ge h$; $\Delta y \Delta p_y \ge h$; $\Delta z \Delta p_z \ge h$
		$\Delta \mathbf{p}_z = \mathbf{h}; \Delta \mathbf{E} \Delta \mathbf{p}_z = \mathbf{h}; \Delta \mathbf{E} \Delta \mathbf{p}_z = \mathbf{h}$
	\circ	
		$p_x \le h$; $\Delta y \Delta p_y = h$; $\Delta z \Delta p_z = h$
	ΔχΔ	$p_x \le h$; $\Delta y \Delta p_y \le h$; $\Delta z \Delta p_x \le h$
454 I	Каки	им уравнением определяется длина волны поглощаемого фотона?
	O _c /E _s	 E _k
	he/E	\exists_{n} - E_k
	0	
		5 _k /h;
	E _n -E	$\mathcal{Z}_k/c;$
	O h/E,	 ₋ - E _k ;
455 I	Как	меняется энергия атома при излучении?
	\bigcirc	равен нулю;
	$\widecheck{\odot}$	уменьшается
	Ō	сперва уменьшается, затем увеличивается
	\circ	увеличивается
	\circ	не известно
456 (Стро	рение, какого атома объясняет теория Бора?
	\bigcirc	Li
	•	Н
	\circ	Be P.
	\mathcal{L}	В
	\bigcirc	He

Какие из нижеследующих утверждений являются поступатами Бора? І. Атомная система может быть в специальных стационарных или же квантовых состояниях с определенными энергиями E₁, E₂,, E₂; ІІ. Атом состоит из положительно заряженного ядра и движущихся вокруг него отрицательных электронов; ІІІ. Атом переходит из одного стационарного состояния в другое, поглощая или излучая энергию; ІV. В атоме электрический заряд электронов по модулю равен заряду ядра. □ II, III □ I, III □ I, IV □ III, IV
 458. Какие из нижеследующих утверждений соответствуют атомной модели Резерфорда? I. Атомная система может быть в специальных стационарных или же квантовых состояниях с определенными энергиями Е₁, Е₂,, Е_n; II. Атом состоит из положительно заряженного ядра и движущихся вокруг него отрицательных электронов; III. Атом переходит из одного стационарного состояния в другое поглощая или излучая энергию; IV.В атоме электрический заряд электронов по модулю равен заряду ядра.
☐ I, II
459 Какой из этих опытов является абсолютным доказательством основных идей теории строения атома Бора? І. Опыт Дэвиссона-Джермера; ІІ. Опыт Франка-Герца; ІІІ.Опыт Резерфорда; ІV.Опыт Лауэ; V. Опыт Френеля. □ І □ II □ IV □ V
460 Какой вид спектров характерен веществам в атомарном виде в газовом состоянии? І. Линейчатый спектр; ІІ. Сплошной спектр; ІІІ. Полосатый спектр
● I ○ III; ○ II ○ II, III
461 Какой формулой определяется обобщенная формула Бальмера для спектров атома водорода? $\vec{v} = \left(\frac{1}{m^2} - \frac{1}{n^2}\right) (m = 1, 2,; n = m + 1, m + 2,);$ $\vec{v} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right) (m = 1, 2,; n = m + 1, m + 2,);$ $\vec{v} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right) (n = 3, 4,\infty)$ $\vec{v} = Z^2 R\left(\frac{1}{m^2} - \frac{1}{n^2}\right) (m = 1, 2,; n = m + 1, m + 2,);$ $\vec{v} = R\left(\frac{1}{m^2} + \frac{1}{n^2}\right) (m = n + 1, n + 2,; n = 1, 2,)$

462 По каким орбитам электроны могут двигаться в атоме?

только по эллиптическимтолько по круговымпо любым

опо параболическим близким к ядру
463 Что выражает в принципе независимости?
 ○ значение координаты частицы ○ неопределенность в значении координат частицы; ○ длину пройденного пути; ○ расстояние между орбитами в атоме; ○ среднюю длину пробега;
464 Что утверждается на основе опыта Франка и Герца?
 В атоме орбиты электронов имеют эллиптическую форму; дискретность энергий атомов. атомы обладают сплошным спектром; испускание электронов атомами; наличие свободных электронов в металлах;
465 Какое из нижеследующих уравнений является уравнением Шредингера для стационарных состояний?
$\Delta \psi + \frac{\eta^{2}}{2m} (E - U) \psi = 0$ 0 $\Delta \psi + \frac{2m}{\eta^{2}} (E - U) \psi = 0;$ 0 \vdots $\dot{\eta} \frac{\partial^{2} \psi}{\partial t^{2}} = -\frac{\eta^{2}}{2m} \frac{\partial^{2} \psi}{\partial x^{2}}$ 0 \vdots $\dot{\eta} \frac{\partial \psi}{\partial t} = -\frac{\eta^{2}}{2m} \Delta \psi + U \psi$ 0 \vdots $\Delta \psi - \frac{8\pi^{2} m}{h^{2}} (E - U) \psi = 0$
466 Электрон находится на четвертом стационарном состоянии атома водорода. Сколько квантов с различными длинами волн может излучать атом?
 6 5 3 4 2
467 Какой переход соответствует инфракрасному излучению в атоме водорода?
468. Радиус первой боровской орбиты электрона в атоме водорода равен 0,5•10 ⁻¹⁰ м, второй, третьей и четвёртой соответственно в 4, 9 и 16 раз больше. На какой орбите скорость электрона наибольшая?
 З 4 На всех орбитах скорость электрона одинаковая 1 2

469 Что определяется из опытов Резерфорда?
Скорость α-частиц;
размер атомного ядра;масса электрона;масса ядра;
масса атома
470 В результате квантового перехода, связанного с поглощением фотона, скорость электрона в атоме водорода
предсказать невозможно уменьшается не изменяется
увеличивается, а затем не изменяется увеличивается
471 . Какое из нижеследующих высказываний соответствует модели атома Томсона? I – Атом состоит из положительно заряженного ядра и отрицательных электронов движущихся вокруг него; II – В атоме электрический заряд электронов по модулю равен заряду ядра; III – Атом состоит из положительно заряженного вещества и «плавающихся» внутри него электронов; IV – Атом является однородным шаром диаметром 10 ° см.
O I, II
□ III, IV □ I, IV □ II, IV □ II, III
472 Атом водорода находится в основном положении с энергией – 13.6 эВ. Если этот атом поглотит фотон энергией 10.2 эВ, сколько будет его энергия в конечном состоянии?
 ○ -11,9 эВ ○ -3,4 эВ; ○ 3,4 эВ; ○ -23,8 эВ; ○ 23,8 эВ;
473 Сколько фотонов с разными энергиями может излучать атом водорода находящийся на третьем энергетическом уровни?
 6 3 2 4 5
474. В каком из нижеследующих энергетических переходов частота излучаемого фотона атома водорода самая большая?
I. $E_3 \rightarrow E_2$ II. $E_4 \rightarrow E_2$ III. $E_5 \rightarrow E_2$ IV. $E_6 \rightarrow E_2$
 □ частота одинаковая во всех переходах. □ IV □ III; □ I □ I
475 Какие из нижеследующих являются спектральными приборами? 1. Массовый спектрограф; 2. Спектроскоп; 3. Спектрограф; 4. Интерферометр
 1,2,3 2,3; 1,3; 2,3,4 3,4

476 Как называется целое число определяющая энергию атома по теории Бора?

	постоянная Планка
	главное квантовое число;
ă	орбитальное квантовое число;
Ä	магнитное квантовое число;
	спиновое квантовое число;
4// Nakui	й переход соответствует видимому свету в атоме водорода?
O. E ₆ →	
•	
$E_4 \rightarrow$	$E_{0};$
$E_3 \rightarrow$	
0	
$E_{\delta} \rightarrow$	E ₁
$E_s \rightarrow$	
478 Что о	пределяет правило квантования Бора
470 1100	пределяет правило квантования вора
_	взаимодействие между зарядами в атоме;
	излучение атомов.
_	количество электрических зарядов в атоме;
_	радиусы электронных орбит в атоме объем ядра в атоме;
<u> </u>	оовем ядра в атоме,
479 Как и	зменится энергия атома водорода при переходе его из первого стационарного со¬стояния в третье?
0:	3 раза увеличивается;
	9 раз увеличивается;
	9 раз уменьшается.
_	не меняется;
Ŏ :	3 раза уменьшается;
480 Каки	е параметры, характеризующие физическое состояние атома имеют квантовонное значение?
	количество положительных зарядов в атоме
_	энергия атома;
	количество электронов в атоме; объем атома
	заряд атома;
_	
	ько фотонов с различной энергией может испускать атом водорода, который на¬ходится на четвертом веском состоянии?
\bigcirc	14
$\widecheck{\odot}$	6
$\tilde{\bigcirc}$	2
\tilde{c}	- 11
	7
482 Праві	ило квантования электронных орбит атома водорода записывается выражением:
\frown	$m_V = nr\hbar$
=	mv = nh
=	mvr = n/h
_	mv = nhr
	mvr = 3n/h
483 На че	ртеже изображены энергетические уровни атома. Какой из указанных переходов электронов между уровнями вует испусканию кванта излучения наибольшей частоты?
L	Byot honyokummo kbuma nanyatina manoombinen auctorbi:
1	_
	I

1 23 4 5

0000	5 2 3 4
484 Какс	ое из приведенных утверждений является верным в теории Бора?
0000	энергия электрона на орбите и ее радиус могут быть произвольными. разрешенными орбитами для электронов являются такие, для которых момент импульса электронов кратен целому числу величин h. радиус орбиты электрона с течением времени уменьшается. при движении электронов по орбите происходит непрерывной излучение энергии радиус орбиты электрона с течением времени увеличивается.
485 Под	квантованием в физике понимается
00000	не удовлетворение принципу Паули дискретность допустимых для частицы значений энергии, момента импульса, проекций магнитного и собственного момента удовлетворение принципу Паули описание механического состояния частицы с помощью волновой функции движение частицы, не подчиняющейся законам классической физики
	ов спектр энергетических состояний атомного ядра и какие частицы испускает ядро при переходе из енного состояния в нормальное?
0000	спектр линейчатый, испускает бета-частицы спектр линейчатый, испускает гамма-кванты спектр сплошной, испускает гамма-кванты спектр сплошной, испускает бета-частицы спектр линейчатый, испускает альфа-частицы
	основании исследования явления рассеяния альфа-частиц при прохождении через тонкие слои вещества рд сделал вывод, что
0000	атом неделимая частица внутри атомов имеются положительно заряженные ядра очень малых размеров, вокруг ядер обращаются электроны при альфа-распаде атомных ядер выделяется ядерная энергия, значительно больше, чем в любых химических реакциях альфа-распад является процессом самопроизвольного превращения ядра одного химического элемента в ядро другого элемента альфа-частицы являются ядрами атомов гелия
488 Пок	оящийся атом массой m, излучая квант света с длиной волны λ, приобретает импульс, равный по модулю
0000	m h/λ $h\lambda$ mc m/c
489 B co	ответствии с моделью атома Резерфорда
0000	в ядре атома колеблются электроны ядро атома имеет малые по сравнению с атомом размеры ядро атома имеет отрицательный заряд ядро атома имеет размеры, сравнимые с размерами атома ядро атома притягивает альфа-частицы
490 Пос.	ле поглощения атомом фотона
00000	правильного варианта нет могут происходить все описанные выше явления. атом может излучить один или несколько фотонов. из атома может вылететь электрон, в результате чего атом превратится в ион один из электронов в атоме может перейти на более высокий энергетический уровень.
491 Дли импульс	на волны красного света 660 нм, а фиолетового - 400 нм. У лучей какого цвета фотоны имеют больший?
\bigcirc	импульсы красного и фиолетового света равны фиолетового

красного
 импульс фотона не зависит от его длины волны может быть больший импульс как у фотона красного света, так и у фотона фиолетового света
492 На рисунке представлена диаграмма энергетических состояний атома. Стрелкой с какой цифрой обозначен
переход, сопровождающийся излучением фотона наименьшей частоты?
$ \begin{array}{c c} E_3 \\ E_2 \\ E_1 \\ E_0 \\ \hline 1 2 3 \end{array} $
5 1 3 2 4
493 . По какой формуле определяется длина волны в нерелятивистическом состоянии по гипотеме Де Бройля? (m ₀ – масса покоя частицы, υ - eго скорость, h – постоянная Планка)
$\lambda = \frac{D}{k_{\text{min}}}$
$\lambda = \frac{k}{m_{\text{tot}}}$
$\lambda = \frac{h \upsilon^3}{2}$
$a = \frac{m_0 v}{v}$
$\frac{\lambda - 3h}{3h}$
○ _ m ₀ D
$\lambda = \frac{m_0 v}{2hv}$
494 .
Каким условиям должна удовлетворять волновая функция ψ , определяющая состояние
частицы? 1 — должна иметь ограниченное значение; 2 — должна быть однозначной; 3 - должна быть
сплошной.
 никакие требование к волновой функции не предъявляются 1, 2, 3;
Только 1;
○ только 2○ только 3;
495 Корпускулярно-волновой дуализм Де Бройля
относится только к нейтральным частицам.
относится к микрочастицам;
О относится только к электронам;О относится только к □-квантам;
относится только к атомам;
496 Правильное выражение принципа неопределенности Гейзенберга для координат и импульса
$\Delta \mathbf{x} \cdot \Delta \mathbf{P}_{\mathbf{x}} \leq \frac{\mathbf{\eta}}{2}$
2

Δx	$-\Delta P_{x} \ge \frac{\eta}{2}$
Δ x	$-\Delta P_{y} \ge \frac{\eta}{2}$
О Л и	 - ΔP _y ≥ <mark>η</mark>
\circ	
	$-\Delta P_{\mathbf{x}} \leq \frac{\eta}{2}$
497 Ho K	акой формуле вычисляется длина волны де Бройля для частицы массой m и энергией Е?
	 = h√2mE
_	$=\frac{h}{\sqrt{2mE}}$
\circ	
1 =	$=\frac{\sqrt{2mE}}{h}$
λ=	$=\frac{1}{h\sqrt{2mE}}$
\bigcirc	
λ=	$=\frac{1}{\sqrt{2m\mathbb{I}h}}$
498 Каки	не свойства присущи свету при корпускулярно-волновом дуализме? Выберите ваш ответ:
	только волновые
Š	и волновые, и квантовые ни волновые, ни квантовые
Ŏ	только корпускулярные
Ō	только квантовые
499 Обла	адают ли радиоволны квантовыми свойствами?
	Нет верного варианта
_	Да. Но проявление этих свойств очень мало
\simeq	Да, проявляются очень сильно Нет, не обладают
$\tilde{\circ}$	Не известно, так как до конца не изучены
500 Какс	ой опыт подтверждает правильность гипотезы Де Бройля?
Õ	опыт Штерна и Герлаха
=	опыт Боте
	опыт Резерфорда
Ö	опыт Дэвиссона и Джермера опыт Франка и Герца
501	
501 . Что каракте	ψ ризует квадрат модуля волновой функции ψ ?
_	Направление распространения волны Де Бройля.
	Плотность вероятности нахождения частицы в определенном объеме dV
	Вероятность распространения волны Де Бройля характеризующее микрочастицу; Первоначальное состояние частицы
\mathcal{O}	Координаты микрочастицы в определенном времени;
502 Как	выражается принцип Паули?
\circ	электроны составляющие атом распределены близко к ядру;
	в каком-пибо запанном состоянии атома электроны могут быть в пюбом количестве

_	в каком-либо энергетическом состоянии атома не может быть двух электронов одинаковым главным квантовым числом;
	в системе не может быть двух электронов в одинаковом квантовом состоянии;
\circ	в каком-либо заданном состоянии атома не может быть двух электронов, обладающих тремя одинаковыми квантовыми числами - п,
503 Если	импульс частицы увеличивается в 2 раза, то его длина волны Де Бройла:
\circ	2 раза увеличивается;
	4 раза увеличивается;
_	4 раза уменьшается;
Ξ	не меняется;
	2 раза уменьшается.
504 Выра вид:	жение уравнения Шредингера для стационарных состояний в случае движения частицы по оси «х» имеет
\circ	.
Δψ	$-\frac{8\pi^2m}{\hbar^2}(E-U)\psi = 0$ $\frac{\partial \psi}{\partial t} = -\frac{\eta^2}{2m}\Delta\psi + U\psi$
\sim	K · · · · · · ·
a	···· ber π² · · · · · · · · · · · · · · · · · ·
η	$\frac{r}{2\pi} = -\frac{1}{2\pi}\Delta\psi + U\psi$
	$\frac{v}{\tau} + \frac{2m}{\eta^2} (E - U) \psi = 0$
∂²ų	$\frac{y}{1} + \frac{2m}{m} (E - II)_{m} = 0$
∂x²	$\frac{y}{\tau} + \frac{2m}{\eta^2} (E - U) \psi = 0$
್ದ	
ήη	$\frac{\partial}{\partial x^2} = -\frac{\eta}{2\pi} \frac{\partial}{\partial x^2} \frac{\partial}{\partial x^2}$
\cap	
•	$\eta^2 (x, z) = 0$
Δ¥	$\frac{\partial^2 \psi}{\partial x^2} = -\frac{\eta^2}{2m} \frac{\partial^2 \psi}{\partial x^2}$ $+\frac{\eta^2}{2m} (E - U)\psi = 0$
505 Каки	• м условиям должна удовлетворять Ψ-функция? 1. Должна быть конечной, однозначной, непрерывной 2. дение Ψ-функции по координатам и по времени должно быть непрерывным. 3. Ψ должен интегрироваться.
	2, 3; 1, 2, 3;
	1, 3;
	2
\circ	1
506 .	
	яет квадрат модуля волновой функции v ² ?
_	
Ξ.	вероятность нахождения частицы в любой точке пространства;
	вероятность нахождения частицы в единичном объеме вероятность нахождения частицы во всем объеме;
_	траекторию движения частицы во всем объеме,
_	координаты частиц в заданное время;
	в физический смысл волновой функции?
	Волновая функция определяет импульс частицы.
	Сама волновая функция не имеет физического смысла, но квадрат его модуля показывает вероятность нахождения частицы в единичном объеме;
_	Волновая функция определяет координаты частицы;
	Волновая функция определяет траекторию движения частицы;
\circ	Волновая функция определяет потенциальную энергию частицы;
508 На ме	огиле какого ученого сделана надпись: «Он лежит где-то здесь»? Выберите ваш ответ:
\circ	Де-Бройль
_	Беккерель
	Гейзенберг
\circ	Больцман
\circ	Гюйгенс

энергия поглощаемого при этом кванта света?	
 3,5 ⇒B 55,7 ⇒B -12,9⇒B -3,5⇒B 38,54 ⇒B 	
510 Дебройлевская длина волны может быть найдена по формуле:	
$\lambda = h/(mv)$ $\lambda = h/(mc)$ $\lambda = hv/m$ $\lambda = hv/c2$ $\lambda = c/v$	
511 Какая единица дебройлевской длины волны является основной в СИ?	
 рад см 1 м 1 Гц 1 с 	
512 Энергия частицы, движущейся со скоростью, близкой к скорости света, может быть измерена в:	
1 Kr*m²/c 1 Kr*m²/c² 1 Kr*m/c 1 Kr*m/c 1 Kr*m/c²	
513 Между полной энергией тела (частицы), энергией покоя и импульсом существует связь:	
$E^{2} = E_{e}^{2} + p^{2}/c^{2}$ \vdots $E_{e}^{2} = E^{2} + p^{2}c^{2}$ \vdots $E^{2} = E_{e}^{2} + p^{2}v^{2}$ \vdots $E^{2} = E_{e}^{2}/p^{2}/c^{2}$ \vdots $E^{2} = E_{e}^{2} + p^{2}c^{2}$	
514 Выберите правильную формулировку закона взаимосвязи массы и энергии:	
 □ полная энергия тела пропорциональна кубу скорости тела □ полная энергия тела обратно пропорциональна релятивистскому импульсу □ полная энергия тела пропорциональна релятивистской массе □ полная энергия тела пропорциональна массе тела □ полная энергия тела пропорциональна релятивистскому импульсу 	
515 Как называется единица энергии в СИ?	
ВаттВольтНьютонКилограммДжоуль	
516 В каких единицах измеряется импульс фотона в СИ?	
○ 1 H ● 1 κr•м/c ○ 1 Дж ○ 1 B	

	\bigcirc	1 кг
517 (Соот	ношение неопределенностей вытекает из
	$\overline{}$	
	\sim	дисперсии волн де Бройля корпускулярных свойств микрочастиц
	$\widetilde{\bullet}$	волновых свойств микрочастиц
	Ŏ	представления частицы в виде волнового пакета
	Ŏ	нет правильного ответа
волно	вая	е условия накладываются на волновую функцию частицы? а) волновая функция должна быть конечной б) функция должна быть непрерывной в) волновая функция должна быть однозначной г) волновая функция ыть интегрируемой
	\circ	6 , Γ
	_	a, B, Γ
		a,б,в
	Õ	а, г
	\circ	a , δ , Γ
519 . Каков і (масса	импул прот	льс протона с Де Бройлевской длиной волны 2.86×10^{-12} м она $m_p = 1.6 \times 10^{-27}$ кг)?
	○ 2,9×	
	_	
	○ 3,7×	
	0 1,4×	
	2,3×	10-22
	○ 1.2×	
	1.2×	10**
520 К импу		я из предложенных формул является формулой для нахождения Де-Бройлевской длины волны частицы с юм p?
	$\overline{}$	λ=ħ/m2p
		$\lambda = 2\pi\hbar/p$
	_	$\lambda = 2\hbar/p3$
	_	$\lambda = 2\pi/p$
	\bigcirc	$\lambda = \pi \hbar / p$
Брой.	пя. (одная частица в квантовой механике описывается соответствующей плоской монохроматической волной Де Остается ли постоянной вероятность обнаружить такую свободную частицу в произвольной точке ства?
	\bigcirc	не всегда
	Ō	да, при условии выбора однородной области пространства
		да
	\sim	нет среди вышеперечисленных ответов нет наиболее полного
	\cup	ереди вышенеречиеленных ответов нет наиоолее полного
522 . Полож монито электро	ив не ра ра она ка	определенность координаты электрона в электронно-лучевой трубке вной 10 ⁴ м, а его скорость — порядка 10 ⁶ м/с, определить, какие свойства вк частицы стоит использовать для его описания?
	\bigcirc	среди перечисленных ответов нет правильного
		только корпускулярные свойства
	Õ	только волновые свойства
	\circ	корпускулярные и волновые свойства в одинаковой мере
	\circ	никакие
523 К Гейзе		е из приведённых ниже утверждений не соответствует физическому смыслу принципа неопределённости рга?
		в природе существует принципиальный предел точности одновременного определения координаты и импульса любого материального объекта.
	_	таковых нет

8	для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h.
\circ	при повышении точности определения координаты уменьшается точность определения импульса и обратно.
524 Вол	новые свойства частицы необходимо учитывать, если ее длина волны де Бройля
00000	значительно меньше линейных размеров области движения частицы сравнима с линейными размерами области движения частицы значительно меньше комптоновской длины волны частицы сравнима с комптоновской длиной волны частицы значительно больше комптоновской длины волны частицы
525 Вол	новые свойства частицы можно не учитывать, если линейные размеры области ее движения
0000	отсутствует правильный ответмного больше длины волны де Бройля для нее сравнимы с ее волной де Бройля во много раз меньше ее длины волны де Бройля сравнима с комптоновской длиной волны частицы
526 Выб	берите верное утверждение:
© О О 527 Пол	корпускулярно-волновой дуализм присущ только некоторым формам макротел корпускулярно-волновой дуализм присущ всем микрообъектам корпускулярно-волновой дуализм присущ только фотонам корпускулярно-волновой дуализм присущ только электроном корпускулярно-волновой дуализм присущ только фотонам и электроном ьзуясь этой схемой, определите, какие частицы обозначены на ней буквами X и Y.
232 ₋ 90	Подазана схема цепочки радиоактивных превращений, в результате которой из 228 Ra
00000	X — электрон, Y — α -частица X — α -частица, Y — электрон X — электрон, Y — α -частица X — α -частица, Y - протон X — протон, Y — электрон
528 Coo	тношение неопределенностей для координаты и импульса означает, что
○ I Kow	всегда можно измерить импульс и координаты частицы волны де Бройля, т.к. p=h/λ ₅ . урдинаты частицы измерить нельзя из-за проявления волновых свойств можно одновременно измерить координаты и импульс частицы только с определенной точностью, причем произведение неопределенностей координаты и импульса должна быть не меньше h/2 произведение неопределенностей координаты и соответствующей ей проекции импульса может быть меньше величины порядка h нельзя измерить импульс и координаты частицы можно одновременно измерить координаты и импульс частицы, но неопределенности (Δх и Δрх) координаты и импульса должны быть равным h/2

3 2 1	
530 Что пр	редставляют собой волны де Бройля?
вомсна	олны одинаковой частоты олны вероятности юнохроматические волны абор волн с близкими частотами олны, испускаемые нагретым телом
531 . 3 [°] Li + 2 ⁴ He ? 5 Укажите второ	з ¹⁰ В+ ? ой продукт ядерной реакции
ене О пр Эл	озитрон ейтрон ротон лектрон льфа-частица
532 Уравне	ение Шредингера имеет вид
— 12 — 22 — 22 — Д = —	$\frac{\partial \psi}{\partial x} + v(x, y, z, t)\psi = i\eta \frac{\partial \psi}{\partial t}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$ $= \frac{\partial^2 \psi}{\partial x^2} + \partial$
ОШ	Гурчатов Предингер Іоффе
534 Реакци	ия распада электрона по схеме: $-=\gamma+\gamma+\sim\nu$ е невозможна вследствие невыполнения закона сохранения
ле © эл мо	нергии лектрического заряда помента импульса мпульса пассового числа
535 Соотно	ошение неопределенностей Гейзенберга имеет следующий вид:
	$\Delta P_x \le 0$ $\Delta P_x \ge h$

	$1/2\Delta m \cdot \Delta P_x \leq h$
	O
	$\Delta x / \Delta P_x = c \le h$
	$\Delta x \cdot \Delta P_x \ge 0 \le h$
526	
536 .	естным продуктом X ядерной реакции $^{27}_{13}$ A1+ $^{1}_{0}$ n? $^{24}_{11}$ Na+X является
пеизве	естным продуктом A ядернои реакции 13-AI+ on? 11Na+A является
	нейтрино
	Ф частица.
	у-квант.
	протон.
	Электрон.
	Какая из перечисленных величин определяет плотность вероятности нахождения микрообъекта в данном место пранства?
	•
	импульс
	квадрат модуля волновой функции
	волновая функция
	С координата
	С квадрат импульса
538 1	Нто называется цепной реакцией?
	• n
	Реакция ионизации атомов.
	Последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на
	предыдущем шаге последовательности
	Реакция синтеза ядер
	Реакция объединения атомов в молекулы.
	Термоядерныя реакция, в которой получаются изотопы ядер данного вещества
530 I	Критическая масса вещества — это
337 1	хритическая масса вещества — это
	 нет такого физического понятия
	нат такого физического понятия наименьшая масса делящегося вещества, при которой уже может протекать цепная ядерная реакция деления
	масса делящегося вещества, равная молярной массе этого вещества
	масса делящегося вещества, полностью заполняющая активную зону реактора
	масса делящегося вещества, равная 235 кг
540 Y	Уравнение Шредингера для стационарных состояний записывается в виде:
340 .	у равнение шредингера для стационарных состоянии записывается в виде.
	2 2
	$-\frac{2m}{h^2}\frac{\partial^2 \psi}{\partial x^2} = i\eta^3 \frac{\partial \psi}{\partial t}$
	$h^2 \partial x^2 \partial t$
	$\Delta \psi + \frac{2m}{h^2} (E - U) \psi = 0$
	$\Delta \psi + \frac{1}{L^2} (E - U) \psi = 0$
	^ "
	$\frac{\partial}{\partial x}$
	$-\frac{2m}{\hbar^2}\Delta\psi(x,y,z,t) + W^*(x,y,z,t)\psi = i\eta \frac{4\pi}{\delta t}$
	((F)-at)
	$\psi(x,t)=Ae^{-\frac{t}{q}(Wt-\mu t)}$
	$\bigcirc \dots \\ \psi = \psi^2(x, y, z, t)$
	$\psi = \psi^{-}(x, y, z, t)$
541 3	Замедлителями нейтронов в ядерном реакторе могут быть
	мел
	тяжелая вода или графит
	О бор или кадмий
	железо или никель
	О бетон или песок

	\circ	1 и 3
	\odot	только 2
	\sim	2 и 3 только 1
	$\widetilde{\odot}$	1 и 2
543 (Сост	гояние частицы в квантовой механике считается заданным, если заданы
	\circ	координата и импулье частицы
	O	
		новая функция (ψ - функция) координаты частицы
	Ŏ	масса и энергия
	\circ	энергия
		лу наличия у микрочастиц волновых свойств к ним неприменимо понятие: 1-импульса, 2-энергии, 3-ии, 4-массы.
	\bigcirc	1 и 4
	<u></u>	3
	\sim	2 1 и 3
	_	2 u 4
545 J	Įля	какой цели в ядерных реакторах применяются замедлители?
	\bigcirc	нет верного ответа
		замедление нейтронов увеличивает вероятность деления ядер нейтронами
	\sim	замедление нейтронов уменьшает вероятность деления ядер урана
	$\tilde{\mathcal{C}}$	для замедления осколков атомных ядер для замедления скорости протекания цепной ядерной реакции
546 ^U	Іто	выражают соотношения неопределённостей в квантовой механике?
	$\overline{}$	квантовые свойства излучения
	$\widetilde{\odot}$	соотношения между погрешностями в определении координаты и импульса частицы
	Ŏ	координаты и импульс микрочастицы
	\odot	квантовые ограничения применимости классических понятий "координата и импульс" к микрообъектам отсутствуют
	\cup	корпускулярные свойства вещества
547 В резул тома у	пьтат углер	те столкновения α-частицы с ядром атома бериллия ⁹ 4Ве образовалось ядро 20да ¹² 6С и освободилась какая-то элементарная частица. Эта частица
	0	позитрон
	Ō	протон
	\odot	электрон
	$\widetilde{\bigcirc}$	нейтрино нейтрон
548 F	Саки	не частицы обладают волновыми свойствами?
	\circ	только заряженные частицы
	Ŏ	частицы, движущиеся с ускорением
		частицы, движущиеся с большими скоростями
		любые частицы электрически нейтральные частицы
549 C	Coor	гношение неопределенности
		является квантовым ограничением к применимости классической механики к микрообъектам
	Ŏ	- состояние с фиксируемым значением энергии
	Õ	все ответы правильны
	$\widetilde{0}$	- переход электронов внутри полупроводников или диэлектриков из связанных состояний в свободные
	\bigcup	- вырывание электронов из вещества под действием света

делении ядра двух-трех нейтронов. 2. Наличие достаточно большого количества урана. 3. Высокая температура урана.

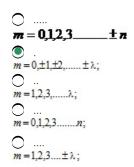
550 Суть гипотезы де Бройля можно выразить формулой

$1)E = mc^2$	$2)E = \eta \omega$	3) $p = mb$	$4) p = \frac{2\pi \eta}{\lambda}$			
\bigcirc	4					
$\widetilde{\bullet}$	2 и 4					
$\tilde{\circ}$	1 и 2					
$\tilde{\cap}$	2 и 3					
Ŏ	3 и 4					
551 Кор	пускулярно -	волновой ,	дуализм матер	ии заключается в т	ом, что	
0	правильный о	гвет отсутств	ует			
				бладают волновыми св	ойствами	
\circ	свет - это и по	ток фотонов,	и электромагнитн	ые волны		
\circ	вещество и по	ле – 2 разнові	идности материи			
\circ	при определен	ных условия:	х частицы вещест	ва порождают поле, а по	оле порождает частицы	I
552 Как	ие из частиц	обладают в	волновыми сво	йствами?		
0	не заряженные	е частицы				
	любые микроч	астицы				
\circ	только макрот	ела				
\circ	электрически	нейтральные	частицы			
\circ	только частиц	ы, обладающі	ие массой покоя			
553 Вол	новая функці	ия или фун	кция состояни	я дает возможности	·	
0	описать закон	ы термодинам	ики			
				х величин будут наблю,	даться на опыте и с как	ой вероятностью
Ŏ	описать закон	движения час	стицы			
\circ	получить инф	ормацию о зн	ачении энергии и	интервале времени, в т	ечение которого частиг	да имеет эту энергию
\circ	получить инф	ормацию о зн	ачении координат	и импульса частицы		
554 Гип	отеза Луи де	Бройля сос	стоит в том, чт	0		
\circ	свет представл	іяет собой соі	вокупность части	ц (квантов, фотонов)		
	материальные	микрочастиц	ы обладают волно	овыми свойствами		
\circ	свет-это элект	ромагнитная	волна			
\circ	не только свет	овые, но и лк	обые другие элект	ромагнитные волны из:	тучаются в виде порциі	й (квантов)
\circ	свет распростр	раняется прям	олинейно			
555 . Που(w) φον	нкция- это					
0 /10						
•	амплитуда вер	оятности поп	адания микрочаст	гиц в данную точку с ко	ординатами (x, y, z, t)	
Q		_	гии от скорости ч			
Õ		-	ты, от импульса ч			
Ŏ	-		стронов в простра	нство		
\circ	величина с ко	ординатами (х	(x, y, z, t)			
556 Чем	определяетс	я граница м	иежду классич	еским и квантовым	описанием поведе	ения микрочастиц?
\circ	скоростью и р	азмерами час	гиц			
$\tilde{\cap}$	скоростью час		,			
Ŏ			ой волны де Бройл	пя и размерами препятс	твий или неоднороднос	стей на пути движения частицы
Ŏ	массой частиц		•		•	-
	соотношением	и неопределен	ностей Гейзенбер	ога		
557 Сог.	ласно гипоте	зе де Бройл	ıя			
\bigcirc	Свет представ	ляет собой сп	ожное явление со	учетающее в себе свойс	тва электромагнитной і	волны и свойства потока частиц
\sim			учают электромаг		onemponuminimon	
\sim				веществе, происходит і	изменение его лпины во	олны
$\widetilde{\bullet}$		-	•	и имеют и волновые св		
$\tilde{\circ}$				кденного состояния в ст		
					. 1	
558 В ог	іытах Дэвисс	она и Джер	омера были об	наружены		
\circ	Вавилово-Чер	енковское изл	іучение;			

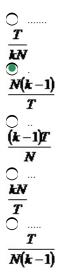
Õ	линейчатые спектры атомов
Ō	поляризация рентгеновских лучей;
	дифракция электронов;
\circ	эффект Холла;
559 Опь	аты по дифракции микрочастиц свидетельствуют
	A HATHHIH V MINTANATHI PATHAPI IV ARAŬATR
\sim	о наличии у микрочастиц волновых свойств
\sim	о малых размерах микрочастиц
Õ	о классической механике
\circ	размеры атомов кристаллического вещества превышают размеры микрочастиц
\circ	о кристаллической структуре твердых тел
560 Coo	тношение неопределенности
\simeq	это вырывание электронов из вещества под действием сильного электрического поля
Õ	подтверждает эффект Комптона
Õ	это переход электронов внутри диэлектриков из связанных состояний в свободные без вылета наружу
	является квантовым ограничением к применимости классической механики к микрообъектам
\circ	это состояние с фиксируемым значением импульса
561 Гип	отеза Луи де Бройля состоит в том, что
001 1111	ortswitzin de Brondin total I rom, 110
\circ	свет-это поперечная волна
\circ	частицы обладают полуцелым спином;
Ŏ	свет на границе двух сред преломляется и частично отражается
$\widetilde{\frown}$	электромагнитные волны излучаются в виде порций (квантов)
\sim	материальные микрочастицы обладают волновыми свойствами
	материальные микрочаетицы ооладают волновыми своиствами
	ому из нижеприведенных соответствует следующая формулировка? Основное (устойчивое) состояние атома ризуется минимальной энергией. Поэтому электроны заполняют орбитали в порядке увеличения их энергии.
	Правило Ленца
\simeq	Правило Гунда
\simeq	
\subseteq	Принцип Паули
<u> </u>	Принцип наименьшей энергии
\circ	Правило Клечковского
563 Как	ие значения может принимать магнитное спиновое квантовое число электрона?
\sim	
·	 =0,1,2
,-	
\circ	
m,=	=+1/2
\circ	
m ₂ =	=1,2,3
m,=	=+1/2,-1/2
m,=	
564 Ман	ссимальное число электронов, находящихся в состояниях, определяемых данным главным квантовым числом
равно	
	Z(n)=2n+1
Z(r	$n)=2n^2$
Z(r	 n)=n ²
76	n)= $n^2/2$
2(1	
	Z(n)=2(2n+1)
565 Как	ие значения могут принимать орбитальное квантовое число L при заданном главном квантовом числе n?
\cap	Целые числа n,n+1 2n
$\check{\triangleright}$	Целые числа 0,1 n-1
	Целые числа 1,2 n-1
\simeq	
\cup	Целые числа 0,1 2n

\subset) Целые числа 1,2 2n
566 Пр	инцип Паули запрещает:
	квантовой частице находиться в центре потенциальной ямы. нахождение двух частиц, обладающих одинаковой совокупностью четырех квантовых чисел n, l, m, s в каком-либо квантовом состоянии нахождение в одной квантовой системе частиц с разными спинами.
Č	частице находится в основном состоянии в бесконечно глубокой одномерной потенциальной яме
567 Kai	кие частицы удовлетворяют принципу Паули?
\subseteq	участицы с целым спином
•	частицы с полуцелым спином;
	участицы неимеющие спина;
	участицы, удовлетворяющие статистику Бозе-Эйнштейна; частицы, неудовлетворяющие статистику Ферми-Дирака;
	пользуя принцип Паули, найдите максимальное число электронов в разрешенных состояниях атома с заданным нем п главного квантового числа.
n	$\frac{n}{2}$,
	2n(n+1):
Č	2n+1
2r	2n(n+1); 2n+1
n²) +n;
569 По	нему при увеличении массового числа тяжелых ядер уменьшается устойчивость ядра?
	С увеличением количества нуклонов в ядре уменьшается энергия связи ядра.
	С увеличением количества протонов в ядре уменьшается кулоновская сила отталкивания;
\sim	С увеличением количества нуклонов в ядре увеличивается сила поверхностного натяжения;
\sim	С увеличением количества протонов в ядре уменьшается кулоновская сила отталкивания;
Č	С увеличением количества нуклонов в ядре уменьшается сила поверхностного натяжения;
570 B a	томе электрон находится в состоянии 3d. Найдите орбитальный импульсный момент L.
\subset	<u> </u>
η	$\sqrt{3}$
•	
η	$\sqrt{6}$ $\sqrt{2}$ $\sqrt{5}$ $\sqrt{5}$ \cdots
\subset	
מ	$_{\gamma}/\overline{2}$
ŋ	√5
_	$\sqrt{8}$
	с изменится полная энергия системы из одного свободного протона и одного свободного нейтрона при их
	ении в атомное ядро?
\subset	сначала увеличится, потом постепенно уменьшается
©	не изменится
\subseteq	уменьшится
\subseteq	увеличится
	ответ не однозначен
	олько электронов имеется в атоме, если электронные слои K и L, уровень 3S полностью заселены, а уровень 3F на половину
) 12
) 15
\sim) 18
Č) 17

573 Первую ядерную реакцию провел:


\circ	Чедвик
	Резерфорд
\bigcirc	Бор
\bigcirc	Штрассман

Жолио-Кюри


574 Как пишется максимальное число электронов Z(n), определяемое только главным квантовым числом n?

```
\begin{array}{ccc}
& \dots & \\
z(n) = (n-1)^2 & \\
& & \vdots & \\
z(n) = 2n^2 & \\
& & \vdots & \\
z(n) = n^2 & \\
& & \dots & \\
z(n) = (2n-1)^2 & \\
& & \dots & \\
z(n) = (2n+1)^2 & \\
\end{array}
```

575 Какие значения получает магнитное квантовое число при заданном значении орбитального квантового числа?

576 Как определяется скорость размножения цепных ядерных реакций? (N-число нейтронов, T – среднее время жизни одного поколения; k – коэффициент размножения нейтронов).

577 .

Какие квантовые числа для $2S^2$ электронного уровня?

$n=2$, $\lambda=2$, $m=0$;
578 Какое из излучений проникает в вещество на наименьшую глубину?
579 По какой формуле вычисляется момент импульса в квантовой механике?
$ \bigcirc \dots \\ L = \eta \sqrt{\lambda(\lambda - 1)} \\ \bigcirc \dots \\ L = \eta \lambda^{2} $
$L = \eta \sqrt{\lambda(\lambda + 1)}$ $L = \sqrt{\lambda(\lambda + 1)};$ $L = \eta \sqrt{(\lambda + 1)}$
580 Сколько будет максимальное число электронов в квантовом состоянии при n=5?
 20 50 10 40 30
581 На каком явлении основан принцип работы массового спектрографа
 магнитном взаимодействии токов. отклонении заряженной частицы в магнитном поле; явлении электромагнитной индукции; взаимодействии между заряженными частицами; действии магнитного поля на проводник с током;
582 С помощью какого опыта определяется собственный механический момент – спин электрона
 Милликена; Штерна и Герлаха; Боте Шоттки Девиссона и Джермера; Франка и Герца
583 .
В атоме сколько электронов могут быть с одинаковой n и l , но разными $m_{_{\! 2}}$ и $m_{_{\! 3}}$? $(l-$
$ \begin{array}{c} \bigcirc 2(21-1); \\ \bigcirc 2(21+1); \\ \bigcirc \\ 2l+1 \\ \hline 2 \\ \bigcirc \\ 2l-1 \\ \hline 2 \end{array} $
○ 21+1 584 Какой формулой определяется энергия связи ядра?
I I I I I I I I I I I I I I I I I I I

$$E_{co} = (Zm_p + Nm_n - M_{abpo})c^2$$

$$C_{co} = C_1A - C_2C_3Z^2A^{-1/3} - C_5A^{-3/4}\delta$$

$$C_{co} = (Zm_p - Nm_n - M_{abpo})c$$

$$C_{co} = (Zm_p + Am_n - M_{abpo})c^2$$
585 Какое из выражений верно для количества расшепленных ядер при процессе радиоактивного распада?
$$C_{co} = (M_p + M_p - M_{abpo})c^2$$

$$MN = N_0 \left(1 - e^{-\frac{t}{\lambda}}\right)$$

$$C_{co} = M_p - \frac{t}{\lambda}$$

$$C_{co} =$$

586 Поглощенной дозой называется...

\bigcirc	нет точной формулировки
	отношение поглощенной энергии к массе облучаемого вещества
\bigcirc	отношение поглощенной энергии к объему облучаемого вещества
\bigcirc	отношение излученной энергии к площади поглощаемого участка
\bigcirc	отношение поглощенной энергии к площади облучаемого участк

587 Гамма-излучение — это свойство...

\bigcirc	все приведенные ответы в некоторой степени справедливы
	ядра атома
\bigcirc	перестройки молекулы
\bigcirc	электронных оболочек атома
\bigcirc	магнитных особенностей атомов

588 При электронном распаде радиоактивного ядра испускается частица:

\bigcirc	позитрон
	антинейтринс
\bigcirc	нейтрино
\bigcirc	мезон
\bigcirc	кварк

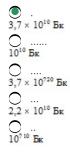
589 Периодом полураспада называется время, в течение которого...

	распадется половина радиоактивных ядер
\bigcirc	распадется 1/100 доля радиоактивных ядер
\bigcirc	распадается десятая часть исходных радиоактивных ядер
\bigcirc	распадется часть радиоактивных ядер
\bigcirc	распадутся все радиоактивные ядра

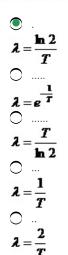
590 Активностью нуклида в радиоактивном источнике называется...

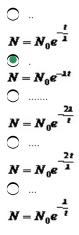
	число распадов, происходящих с ядрами обрапзца в секунду
_	быстрота распадения ядер
\bigcirc	время опасности радиоактивных ядер
\bigcirc	быстрота изменения концентрации радиоактивных ядер

itel inpubilibility of beta
591 Активность радиоактивного вещества определяется выражением:
$A = TN$ $A = N/T$ $A = \lambda N$ $A = N/\ln 2$ $A = N \ln 2$
592 Выберите единицу активности радиоактивного изотопа в СИ:
 Рентген ☐ Гц ☐ Кюри ☐ Беккерель ☐ микро-Рентген
593 α-излучение это излучение
 γ-квантов не известной природы электромагнитное потока электронов частиц заряд которых равен заряду двух протонов
594 Может ли ядро атома одного химического элемента самопроизвольно превратиться в ядро атома другого химического элемента?
 не может никакое ядро может любое ядро могут только ядра атомов, стоящие за ураном в таблице Д. И. Менделеева могут только ядра атомов радиоактивных изотопов могут только легкие ядра
595 Какой вид ионизирующих излучений из перечисленных ниже наиболее опасен при внешнем облучении человека?
 □ гамма- излучение □ бета-излучение □ альфа-излучение □ все одинаково безопасны □ все одинаково опасны
596 Испускание какой частицы не сопровождается изменением зарядового и массового числа атомного ядра?
 □ гамма-кванта □ альфа-частицы □ нейтрона □ протона □ бета-частицы
597 При делении ядра плутония образуется два осколка, удельная энергия связи протонов и нейтронов в каждом из осколков ядра оказывается больше, чем удельная энергия связи нуклонов в ядре плутония. Выделяется или поглощается энергии при делении ядра плутония?
 выделяется поглощается сначала поглощается, а потом выделяется в одном осколке выделяется, в другом поглощается не изменяется
598 Радиоактивный источник испускает альфа-, бета- и гамма лучи. Куда будут отклоняться альфа- и бета лучи в магнитном поле постоянного магнита?
S N


\circ	Альфа-лучи влево, бета-лучи
Õ	Альфа-лучи от нас, бета-лучи к нам
	Альфа-лучи к нам, бета-лучи от нас Альфа-лучи влево, бета-лучи к нам
Ŏ	Альфа-лучи влево, оета-лучи в нам Альфа-лучи вправо, бета-лучи влево
599 Акт	ивностью радиоактивного препарата называется
\circ	суммарная энергия частиц, излучаемых препаратом за единицу времени
	среднее время жизни радиоактивного ядра
	время, за которое распадается половина первоначального количества ядер
	число распадов, происходящих в препарате за единицу времени число распадов, приводящих к уменьшению первоначального количества ядер на 1 %
600 .	
Орбитальна его орбитал	ый момент импульса электрона в атоме водорода $1.8\cdot 10^{-32}$ Дж-сек. Найдите льный магнитный момент. ($m_{\rm ac}=9\cdot 10^{-31}$ к ε , $e=1,6\cdot 10^{-19}$ $K\tau$)
16	$10^{-19} A \cdot M^2$;
1,6	$10^{-21} A \cdot M^2$;
\circ	$10^{-21} A \cdot M^2$;
0,8	$3 \cdot 10^{-20} A \cdot m^2$
\circ	$10^{-20} A \cdot M^2$;
1,2	$10^{-20} A \cdot M^2$;
\circ	
1,2	$10^{-19} A \cdot M^2$
	пасно принципу Паули, сколько максимально электронов с различными спинами может быть в атом 1
left	1 2 14 5
Q	14
\circ	5
602 Как	ой формулой определяется энергия нулевых колебаний атомов?
\circ	
	$=\eta a(\mathbf{n}-\mathbf{l})$
E	$_{1}=\frac{\eta_{D}}{2}$
	2
	$_{0}=\eta\omega(\mathbf{n}+2)$
_	 =ηω(n+1)
E	$ \mathbf{p} = \mathbf{\eta} \mathbf{\omega} (\mathbf{n} + \frac{1}{2}) $
603. Если λ=1::	n=2, то какое максимальное число электронов в нижнем слое?
\sim	2
ŏ	6
Ŏ	8 2 6 10 18
\circ	18
604 Как	ой формулой определяется закон радиоактивного распада?
\bigcirc	
	 2 N _e e * ^{/T}
\circ	

$$\begin{split} N &= N_{e} 2^{9 \text{ T/3 t}} \\ \bigcirc & \dots \\ N &= N_{e} 2^{9 \text{ T/3 t}} \\ \bigcirc & \dots \\ N &= N_{e} 2^{e \text{T}} \\ \bigcirc & \cdot \\ \end{split}$$


605 Среднее время жизни радиоактивного изотопа определяется формулой:


606 Один Кюри равен.

607 . Выразите λ с периодом полураспада T.

608 Каким уравнением выражается закон радиоактивного распада (N0 – количество ядер в начальный момент, лйамда-постоянное радиоактивного распада)?

609

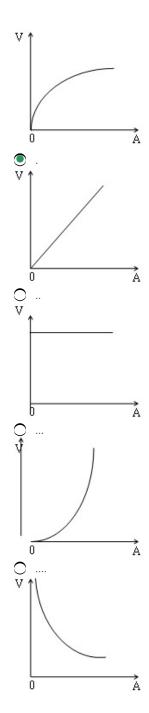
Выразите среднее время жизни радиоактивного ядра τ постоянной радиоактивного распада λ .

$\tau = \frac{e}{r}$	
1	
◎ . 1	
$ au = \frac{1}{\lambda}$	
\circ	
$\tau = \frac{\ln 2}{2}$	
$\tau = \frac{1}{\lambda}$	
$\tau - \frac{\lambda}{\lambda}$	
in 2	
$ au = e^{-\mathbf{i} \mathbf{r}}$	
610 При ядерных реакциях может происходить	
и деление, и образование ядер	
только синтез ядер	
только образование ядертолько деление ядер	
ополько деление ядер с альфа- и бета-частицами	
Только взаимодененне ядер е швърш и оста настицами	
611 .	
Какой распад должен быть в ядре $^{212}_{83}$ В i , чтобы он превратился в ядро $^{212}_{84}$ Р o ?	
β^- распад	
β^{+} распад	
\bigcirc последовательные α и β^+ распады ;	
α-распад;	
у-распад;	
612 .	
На рисунке схематически показан процесс радиоактивного распада ядра тория $^{737}_{90}Th$ с	
образованием ряда промежугочных ядер. Можно утверждать, что	
$(23^{\circ}-1)$ $\xrightarrow{(2)}$ $(28^{\circ}-1)$ $\xrightarrow{(2)}$ $(28^{\circ}-1)$ $\xrightarrow{(2)}$ $(20^{\circ}-1)$ $\xrightarrow{(2)}$ $\xrightarrow{(2)}$ $(20^{\circ}-1)$ $\xrightarrow{(2)}$ $(20^{\circ}-1)$ $\xrightarrow{(2)}$ $(20^{\circ}-1)$	
массовое число ядра в приведённом ряду не может возрастать	
Заряд каждого следующего ядра ряда строго меньше, чем у предыдущего	
заряд каждого следующего ядра ряда не может быть больше, чем у предыдущего	
все варианты не верны	
С каждое следующее ядро ряда имеет массовое число меньше предыдущего	
613 Исследуемый образец, содержащий N радиоактивных ядер, сначала охлаждают до -40 °C, а затем помещают в	
магнитное поле. Изменится ли при этом количество радиоактивных ядер, распавшихся за время, равное двум перио	дам
полураспада?	
на нуманител	
не изменитсяизменится незначительно	
изменится только при охлаждении образца	
изменится только при внесении в магнитное поле	
о изменится, если образец сначала охладить, а затем внести в магнитное поле	
614 Период полураспада Т радиоактивных ядер — это	
отт период полураенада т радиоактивных ядер — это	
время, в течение которого число радиоактивных ядер в образце уменьшается в 2 раза	
ремя, по истечении которого в радиоактивном образце останется √2 радиоактивных ядер	
время, в течение которого число радиоактивных ядер в образце уменьшается в 50 раз	
 время, в течение которого число радиоактивных ядер в образце уменьшается в е раз время, в течение которого число радиоактивных ядер в образце уменьшается в 10 раз 	
ла время. в течение которого число радиоактивных ядер в ооразпе уменьшается В 10 раз	

615	Что	представляет собой α-излучение?
	<u></u>	поток ядер атомов гелия
	Õ	электромагнитные волны
	\odot	поток нейтронов
	\sim	
	\cup	поток горячих электронов
616	Что	называется энергией связи ядра?
	<!--</td--><td>энергия для расщепления ядра на отдельные нуклоны;</td>	энергия для расщепления ядра на отдельные нуклоны;
	\circ	сумме кинетической и потенциальной энергий ядра;
	00	энергия нужная для соединения ядер; энергия нужная для расщепления ядра на два осколка
	$\tilde{\circ}$	энергия, приходящая на один нуклон;
617		
		жеследующих отношений справедливо для массы ядра $M_{\star i_{\infty}}$ и сумме масс
нукло	HOB 22	, которые образуют это ядро?
	\circ	
	M	_{zòpo} ≡ M
	M	
	\circ	
	M,	_{zòpo} >>
	\bigcirc	
	. Ma	riggo > m.
	M,	adge > m adge ≅ m
618		я единица измерения энергии связи ядра?
	Q	МэВ/кг К
		M ₂ B;
	\sim	МэВ; МэВ/сек МэВ/нуклон
	\sim	МэВ/моль
619	По к	акой формуле определяется зависимость радиуса ядра от массового числа?
	$\overline{}$	
	R =	R_0A^3
	R	$R_0A^{\frac{1}{p}}$;
	\circ	
	R	$R_0A^{\frac{1}{\epsilon}}$; R_0A
	R =	R ₀ A
	\bigcirc	R_0A^2 ;
	R =	R_0A^2 ;
620 Ecmu		=3, то какое максимальное число электронов в нижнем слое?
	, .	
	\sim	
	\mathcal{L}	0 8
	()	· ·
		18
	Ŏ C	18 10
	00000	18 10 2
(21		18 10 2
621 Какое	•	
	•	18 10 2 имальное число электронов будет в нижнем слое при λ =0; n=1?
	•	

622 Сколько максимум электронов может быть в атоме, согласно принципу Паули отличающихся спиновым и магнитным квантовыми числами?
623 . Полный заряд атомного ядра $2,4\ 10^{-18}\mathrm{K}$ л. Определите порядковый номер атома.
18 15; 10 12 24
624 Как выражается импульсный момент в квантовой механике?
$C = \eta^{3} \sqrt{\lambda(\lambda - 1)}$ $C = \sqrt{\lambda^{3}(\lambda + 1)}$ $L = \sqrt{\lambda(\lambda + 1)}$ $L = \eta \sqrt{\lambda(\lambda + 1)}$
$ \bigcirc \dots L = \eta \lambda^2 \bigcirc \dots L = \eta^2 \sqrt{(\lambda + 1)} $
625 . Если λ=3; n=4, какой будет максимальное количество электронов в нижнем слое?
 ○ 10 ○ 32 ○ 6 ○ 2 ○ 8
626 Какое из нижеследующих выражений справедливо для орбитального квантового числа? 1 – Определяет энергик электрона в атоме; 2 – Определяет момент количества движения электрона в атоме; 3 – Определяет симметрию электронного облака в атоме.
 ○ 1, 2 и 3; ○ 1 и 3 ○ 1 и 2 ○ 2 и 3 ○ только 1
627 Какая из формулировок соответствует принципу Паули?
С состояние микрочастицы в квантовой механике не может одновременно характеризоваться точными значениями координаты и
импульса в квантово - механической системе не может быть двух или более электронов, находящихся в состоянии с одинаковым набором квантовых чисел
энергетический спектр электронов в квантово-механической системе дискретен в квантово-механической системе не может быть двух или более электронов, обладающих одинаковым спином .

O 6


628 Каждое состоя	яние электрона в атоме определяется
магнитным	и и спиновым квантовыми числами
ĕ	квантовыми числами
главным n	и азимутальным квантовыми числами
С главным к	вантовым числом п
🔵 азимуталы	ным квантовым числом
629 . Максимальное значение	магнитного квантового числа $m_i = 4$. Найдите n и l .
n=3, l=5	
n=5, l=4	
n=3, l=2	
n=4, l=4	
n=4, l=3	
630 Состояние эле	ектрона в атоме полностью характеризуется
O	
_	Бантовым числом λ
второстепе	енным квантовым числом п
четырым я кванто	реыми числами n, λ, m, m ,
	азимутальным λ квантовыми числами
CHAROLISM M ₂ is a	Shaytaidhda A Rain odhan an daan
двумя квантовых	ми числами m,m_{\star}
631 .	
	е принимают квантовые числа λ, m ?
_	
$\lambda = 0,1,2,3,4$ m	$t = 0,\pm 1,\pm 2,\pm 3,\pm 4$
$\lambda = 0,1,2,3 \qquad m =$: 0,±1,±2,±3;
O λ=1,2,3,4,5 n	
 λ=1,2,3,4 m=	= ±1,±2,±3,±4;
()	$=0,\pm1,\pm2,\pm3,\pm4$;
632 Сколько будет	т вырожденных состояний в основном квантовом состоянии, если n=3?
O 16	
\bigcirc 2	
0 16 0 2 0 9 0 20 0 4	
<u> </u>	
 4	
633 Выдающийся тождественные ча ответ:	физик теоретик XX в., сформулировавший один из важнейших принципов, согласно которому две стицы не могут находиться в одном энергетическом состоянии. О ком идет речь? Выберите ваш
○	
ФермиПаули	
Лоренц	
ПаулиЛоренцЭрстед	
С Комптон	
634 Какой из ниже	еследующих является электронным строением атома калия (Z=19)?
O 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	
1s* 2s* 2p° 3s* 3p	'3d' 4s'
U	

1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ 3d ² 4s ¹
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹
 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹ 4s¹
 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ 3d ¹ 4s ¹
635 Чему равен момент спина электрона?
 2η/; √3
① . ±1/2
○ 1/2 ○ ŋ√3 /2;
O 2 η /; √3
636 Чему равен спиновый момент импульса электрона?
$0 \cdots \pm \eta^3/5$
$ \begin{array}{c} \bigcirc \dots \\ \pm \eta^3/5 \parallel \\ \hline \bullet \\ \boxed{\frac{\eta}{2}} \end{array} $
2 ○
±η Ο
±η/4
637 Как называются молекулярные спектры?
эмиссионный спектр
полосатый спектр;линейный спектр
сплошной спектр;
характеристический спектр;
638 Какой спектр может возбуждаться при комнатной температуре?
эмиссионный
вращательный;электронный;
о жолебательный;
абсорбционный;
639 С каким состоянием вещества связан вращательный спектр?
пазовое;
С кристаллическое
аморфное;жидкое
твердое;
640 В какой области электромагнитной шкалы находятся полосы соответствующие колебательным спектрам?
ультрафиолетовый;
инфракрасной;
видимой;
микроволновой (10 ⁻² -1 cм);
рентгеновской

641 В ка	кой области электромагнитной шкалы находятся полосы соответствующие электронным спектрам?
<u></u>	ультрафиолетовой;
Ŏ	рентгеновской
\circ	инфракрасной;
\sim	микроволновой;
\circ	видимой;
642 В ка	кой области электромагнитной шкалы находятся полосы соответствующие вращательным спектрам?
O	ультрафиолетовой;
•	микроволновой;
Õ	видимой;
\sim	рентгеновской
\circ	инфракрасной;
643 В ка	ком спектре изменение связи, замена атома, или же атомной группы в молекуле показывает себя ярче?
	в электронном спектре;
Ō	в абсорбции
Õ	в эмиссии;
Õ	во вращательном спектре;
\circ	в колебательном спектре;
	ие типы лазеров существуют? Выберите верные варианты. 1-твердотельные; 2- газовые; 3- водниковые; 4- жидкостные
\bigcirc	только 1,3 и 4
Ŏ	только 1 и 2
	1, 2, 3, 4
\circ	только 2 и 3
\circ	только 3 и 4
	ие обязательно компоненты имеет лазер? Выберите правильный вариант. 1- активную среду; 2- систему ; 3- оптический резонатор;
	1, 2, 3
Q	только 1
Õ	3 и 2
Õ	1 и 3
\circ	только 2
накалива	отличается излучение лазера от излучения лампы накаливания? 1. Излучение лазера когерентно, а лампы ания - нет. 2. Излучение лазера немонохроматично, а лампы монохроматично. 3. Лазер создает направленное ие, а лампа нет.
\circ	все варианты неверны.
	1 и 3
\circ	1 и 2
Õ	2 и 3
\circ	1, 2 и 3
647 На р энергети	оисунке изображена трехуровневая система оптического квантового генератора (лазера). На каком ическом уровне время жизни атома наибольшее? 3 2
	на всех уровнях время жизни одинаково
Õ	на 3-м
<u></u>	на 2-м
Ŏ	на 1-м
\circ	нет верного варианта

648 Атог	мы и молекулы в нормальном состоянии
0	не стабильны
\circ	заряжены
	электрически нейтральны
\circ	ионизованы
\circ	обладают избыточным положительным зарядом
	ой из нижеследующих ученых выдвинул гипотезу о том, что ядро состоит из прото \neg нов и нейтронов? 1 - $1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 $
\bigcirc	1 и 3
\sim	1 и 4
\sim	2 u 3
\sim	1 u 2
\odot	4 u 5
650 .	
	ства различают изотопы ${}^{16}_{8}O$ и ${}^{17}_{8}O$?
\circ	число протонов;
Ŏ	заряд ядра
Ŏ	число электронов;
Ŏ	порядковый номер атома;
$\widecheck{\odot}$	число нейтронов;
каких яд	исунке представлена зависимость удельной энергии связи атомных ядер от массового числа. При разделении ер на нуклоны затрачивается наибольшая энергия на один нуклон?
↑E _{yA}	2 3
0 11	—— — →
00000	3 1 и 3 2 и 3 2
652 .	
Какие выво	ды получаются на основе зависимости R=R _o A ^{1,6} радиуса ядра от его
массового ч	исла?
\bigcirc	ядра с большими радиусами являются радиоактивными;
\sim	плотность вещества ядра не зависит от числа его нуклонов;
\sim	взаимодействие между нуклонами в ядре не зависит от заряда;
\simeq	ядерные силы являются короткодействующими;
$\tilde{\circ}$	увеличением числа нуклонов ядра увеличивается плотность вещества ядра
653 .	
	лотности ядра ртути $^{200}_{30}$ H $_{g}$ с ядром неона $^{20}_{10}N_{\mathcal{S}}$.
_	
_	 _0a
<i>P</i> ₁	$=8\rho_2$
	$= \rho_2$;
$\rho_{\rm l}$	$=4 ho_2$
	····
_	$=10\rho_2$
~1 ^	
$\rho_{\rm t}$	$=12\rho_2$
654 Какс	ой из этих графиков является зависимостью объёма ядра от массового числа?

O

655 Какие из утверждений о ядерных силах правильны?

Ядерные силы обладают бесконечно большим радиусом действия;

Ядерные силы обеспечивают связь между нуклонами и являются самыми сильными силами взаимодействия в природе;

) В зависимости от зарядов нуклонов ядерные силы между p-p; p-n; n-n частицами отличаются

Ядерные силы являются универсальными и обеспечивают взаимодействие между всеми частицами

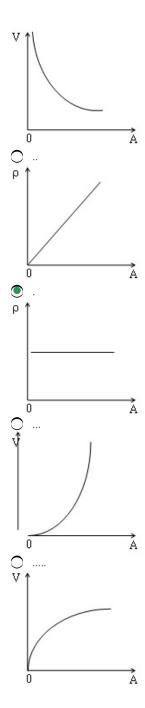
Ядерные силы обладают центральной симметрией;

656.

Вычислите радиус ядра $^{64}_{20}Cu$ (R_o=1,2 Φ ерми)

5,4 Ферми;

4,8 Ферми;


5,2 Ферми;

3,8 Ферми;

2,7 Ферми;

657 Какой из нижеследующих графиков является зависимостью плотности ядра от массового числа?

O ...

658 Каким прибором измеряется масса ядра?

пикнометр
 массовый спектрограф;
 аналитические весы;
 фотоэлемент;
 счетчик Гейгера;

659 Какой угол называется углом преломления?

угол между падающим и отраженным лучами угол между отраженным лучами и перпендикуляром к границе раздела, восставленным в точке падения. угол между падающим и перпендикуляром к границе раздела, восставленным в точке падения угол между преломленным лучом и перпендикуляром к границе раздела, восставленным в точке падения угол между падающим и преломленным лучами

660 При помощи оптического клина получили интерференционные полосы, пользуясь излучением красного цвета. Как изменится интерференционная картина, если воспользоваться излучением фиолетового цвета?

никак не изменится
 интерференционные полосы будут ближе друг к другу
 интерференционные полосы исчезнут
 интерференционные полосы могут стать как ближе друг к другу, так и дальше друг от друга
 интерференционные полосы будут дальше друг от друга

661 Tex	кнология «просветления» объективов оптических систем основана на использовании явления
\subset	преломление
	интерференция
č) дифракция
\sim) дисперсия
\succeq	ополяризация
662 Co	вокупность явлений волновой оптики, в которых проявляется поперечность световых волн, называется
002 C01	зокупность явлении волновой оптики, в которых проявляется поперечность световых волн, называется
<u> </u>	явлением поляризации
\subseteq	явлением дисперсии
\subseteq	явлением люминесценции
Ç	явлением интерференции
C	явлением дифракции
663 Что	такое поляриметрия?
	метод определения плоскости поляризации
ĕ	метод определения концентрации растворов оптически активных веществ
\sim	зависимость угла поворота от скорости света
\succeq	метод определения главной оптической оси в твердых телах
\succeq	
	метод определения вязкости (внутреннего трения) в жидкостях
	кой из нижеследующих вариантов является правильным для вычисления оптической разности путей между оседними ВС и DE щелями простой одномерной дифракционной решетки?
\subset	$\delta = DK = 2 b \cos \varphi$
($\delta = DK = d\sin \varphi$
C	$\delta = DK = 3 \operatorname{dsin} \varphi$
	$\delta = DK = 2 F \sin \varphi$
Č	$\delta = DK = b/2\sin \varphi$
665 Kai	кие частицы называются нуклонами?
\subset	Протоны, нейтроны и электроны, составляющие атом
(Протоны и нейтроны, составляющие ядро
Č	Электроны
č	Молекулы
Č) Атомы
666 A	
ооо ядј	котория в при
\subset	Системой, состоящих из протонов и нейтронов
•	Системой положительных зарядов
	Системой без заряда
Č	Системой, состоящих из электронов и протонов
Č	Системой, состоящих из электронов и нейтронов
667 Из	каких частиц состоит ядро?
	только из протонов
	только из нуклонов
\subseteq	только из протонов и электронов
\subseteq	только из протонов, нейтронов и электронов
C	только из нейтронов
668 Ядр	оо является связанной системой в каких объектах?
) Лептонов
ĕ	Протонов и нейтронов
\sim	Электронов
\succeq	У Злектронов
\succeq	Атомов
669 Что	о показывает число протонов и нейтронов в ядре?
\subset) Энергию ядра;
	Массовое число ядра;

	Порядковый номер соответствующего атома; Заряд ядра; Спин ядра;
670 Ск	олько процентов ядер радиоактивного вещества с периодом полураспада 5 дней расщепляется за 10 дней?
) 100%;) 40%;) 50%;) 75%;) 25%;
671 Kai	кой из этих высказываний для ядерных сил является ошибочным?
	в тысячу раз сильнее электромагнитных сил каждый нуклон в ядре взаимодействует со всеми нуклонами Носит характер притяжения не зависит от электрических зарядов являются короткодействующими
672 3 ap	ояд атомного ядра равен Кл. Определите порядковый номер атома.
) 24) 18) 10) 15) 12
673 Что	о является античастицей электрона?
	антипротон позитрон антинейтрон мезон нейтрино
674 Что	о такое активность радиоактивных ядер?
	Количество нерасщепленных ядер за одну секунду Количество расщепленных ядер за период полураспада Количество расщепленных ядер за одну секунду Количество нерасщепленных ядер за период полураспада Все ответы неверны
675 По	чему так называются термоядерные реакции?
	Это исторически ошибочное название Из-за нагревания синтезированных ядер для происхождения реакции Из-за нагрева синтезированных ядер во время реакции Из-за выделения теплоты во время реакции Из-за снижения температуры синтезированных ядер
676 Что	о называется удельной энергией связи?
	Энергия нужная для расщепления ядра на отдельные нуклоны Энергия связи одного нуклона Энергия расщепления ядра на два осколка Энергия для соединения ядер Сумме кинетической и потенциальной энергий ядра
677 Еді	иница измерения удельной энергии связи.
	МэВ/ сек МэВ/ нуклон МэВ/ моль МэВ/ кт К

678 Атомное ядро состоит из протонов и нейтронов. Между какими парами частиц внутри ядра не действуют ядерные

силы притяжения? 1) Протон – протон. 2) Протон – нейтрон. 3) Нейтрон – нейтрон.
 только 1 действуют во всех трёх парах 1, 2 и 3 2 и 3 1 и 3 1 и 2
679 По отношению к какой частице позитрон является античастицей?
 к фотону к электрону к протону к нейтрону к нейтрино
680 В атомном ядре преобладают силы:
 □ гравитационные □ ядерные □ кулоновского отталкивания □ молекулярные □ кулоновского притяжения
681 Какие из указанных ниже ядер являются наиболее устойчивыми?
682 Какое вещество из перечисленных ниже используется в ядерных реакторах в качестве ядерного горючего?
 графит уран медь тяжелая вода кадмий
683 им зарядовым числом обладает атомное ядро, возникающее в результате альфа-распада ядра атома элемента с зарядовым числом Z?

684 Изменится ли масса системы из одного свободного протона и одного свободного нейтрона после соединения их в атомное ядро?
 не изменится уменьшится сначала уменьшится, затем вернется к первоначальному значению сначала увеличится, затем вернется к первоначальному значению увеличится
685 Какие значения может принимать проекция момента импульса на направление Z внешнего магнитного поля, если электрон находится в p-состоянии? 1) - \hbar ; 2) \hbar ; 3) -2 \hbar ; 4) 2 \hbar 5) 0
 О 1 и 3 О 1, 2 и 5 О 4 и 5

○ 3 и 5
○ 2 и 4
686 . На тонкую пластину, окруженную различными средами с показателями преломления n_1 , n_2 (показатель преломления пластины- n_2 , причем $n_1 < n_2$, $n_2 < n_3 < n_4$) падает луч. На
поверхности пластинки луч делится на два луча: 1- который отражается от наружной и дуч 2- который отражается от внутренней поверхности пластинки. Какой из отраженных от пластины лучей "теряет" полуволну?
 зависит от длины падающей волны никакой 1
© 2 О 1 и 2
687 Выберите размерность частоты света, выраженную в СИ.
O 1 KT*M/c² O 1 c 1 c ⁻¹ O 1 c*м² O 1 pag*м²/c
688 Как изменится способность интегрального излучения при увеличении температуры абсолютно твердого тела в раза?
уменьшится в 32 раза увеличится в 16 раз уменьшится в 4 раза увеличится в 4 раза уменьшится в 16 раз
689.
Сколько нуклонов есть в ядре ${}^{238}_{92}U$?
O 146
○ 146○ 165○ 330
$ \bigcirc 330 $ $ \bigcirc 92 $
© 238
690 . Какая часть радиоактивных ядер расшепляется за время равное половине периода полураспада? ($\sqrt{2}$ =1.4)
© 2/7 ○ 6/7 ○ 5/8 ○ 3/8 ○ 1/9
691.
Дефект массы ядра $^{27}_{13}Al$ составляет 39.84·10 ⁻²⁹ кг. Определите удельную
энергию связи ($c = 3.10^8 \frac{M}{CEK}$, $1M3B = 1.6.10^{-13} \text{ Дж}$).
 9.3 МэВ/нуклон 5.3 МэВ/нуклон 7.3 МэВ/нуклон 6.3 МэВ/нуклон 8.3 МэВ/нуклон

Энергия связи изотопа $^{16}_{8}O$ равна 128 МэВ. Определите его удельную энергию
связи.
60 МэВ/нуклон
6 МэВ/нуклон;
8 МэВ/нуклон;12 МэВ/нуклон;
○ 16 МэВ/нуклон;
693 .
Удельная энергия связи изотопа $^{14}_{7}N$ равно 7.5 $\frac{M \ni B}{\text{нуклон}}$. Чему равна его
энергия связи?
○ 98 M∍B;
○ 60 M ₂ B
● 105 M∍B;○ 75 M∍B;
○ 75 M ₂ B;
○ 52,5 M ₃ B;
694 .
Удельная энергия связи изотопа $^{16}_{8}O$ равно 8 $\frac{M \ni B}{ нуклон}$. Чему равна его энергия
связи?
○ 168 M ₃ B;
● 128 M ₂ B;
○ 68 M∍B;
○ 12 M ₂ B;
○ 60 M∍B
695 Порядок размера ядра
O :-
10 ⁻¹³ M
10 ⁻¹⁷ M
1A
○ 10- ¹⁰ M
10-1 M
10 ⁻¹⁵ M
10 M
696 .
Дефект массы ядра ${}^{7}_{3}Li$ составляет $6.72 \cdot 10^{-29}\mathrm{kr}$. Определите удельную
энергию связи ($c = 3.10^8 \frac{M}{ce\kappa}$, $1M \Rightarrow B = 1.6.10^{-13} \text{Джc}$).
2.4 МэВ/нуклон
3.4 МэВ/нуклон
5.4 МэВ/нуклон4.4 МэВ/нуклон
○ 6.4 МэВ/нуклон
697 .
Энергия связи ядра 4 Не равна 29.4 МэВ. Чему равна его удельная энергия
связи?
10 МэВ/нуклон;
9,8 МэВ/нуклон;
7,35 МэВ/нуклон;
14,7 МэВ/нуклон;
\bigcap 19.6

Удельная энергия связи ядра ${}^{4}_{2}He$ равно 7.1 $\frac{M \ni B}{ _{HYKЛOH}}$. Чему равна энергия связи

этого ядра?

- 18,4 MbB 28,4 MbB 20,2 MbB 82,4 MbB 48,4 MbB

699 .

Взаимосвязь между постоянной радиоактивного распада λ и периодом полураспада Т

$$T = \ln 2 + \lambda$$

$$T = \frac{\ln 2}{\lambda};$$

$$\bigcap_{T = \lambda \ln 2}$$

$$\bigcirc ...$$

$$T = \lambda - \ln 2;$$

$$T = \frac{\lambda}{\ln 2};$$

700 Как изменится способность интегрального излучения при уменьшении температуры абсолютно твердого тела в 3 раза?

- уменьшится в 81 раз
 уменьшится в 3 раза
 увеличится в 9 раза
 уменьшится в 27 раз
 увеличится в 81 раз

- увеличится в 81 раз