$3610 y_rus_qiyabiQ2017_Yekun\ imtahan\ testinin\ sualları$

Fənn: 3610Y Hidravlika

1 Определите единицу измерения коэффициента расхода (k)?
$ \bigcirc_{a}^{2} \bigcirc_{a}^{2}/c $ $ \bigcirc_{a}^{3}/\pi^{2} \bigcirc_{c}^{2} $ $ \bigcirc_{c}^{2}/c $
2 kak определяется коэффициент расхода (м) ?
 ○ только по эмпирической формуле ○ по эмпирической формуле или опытным путем ○ только опытным путем ○ по графику ○ определяется теоретические
3 От каких параметров зависит коэффициент Шези (C)
$\bigcirc = f/(Re, n)$ $\bigcirc = f/(R, n)$ $\bigcirc = f/(R)$ $\bigcirc = f/(n)$ $\bigcirc = f/(R, H)$
4 Определите размерность коэффициента Шези?
 С/с Ф⁵/с безразмерная м м²
5 По какой формуле определяется расход мерного водослива с треугольным отверстием?
$ \begin{array}{c} \bigcirc_{1,86 \coprod^{2} 6} \\ \bigcirc_{2 \coprod^{2} / 3} \\ \bigcirc_{1,44 \coprod^{5/2}} \\ \bigcirc_{1,25 \coprod^{2/8}} \\ \bigcirc_{1,11 \coprod^{1/2}} \end{array} $
6 В зависимости от влияния уровня нижнего бьефа различают водосливы?
 криволинейные, прямолинейные; подтопленные и неподтопленные свободные и подтопленные полигональные, криволинейные свободные и несвободные

Ои заданной площади живого сечения, скорость будет минимальной (Умин)?
🗩 и заданной площади живого сечения, пропускная способность будет наибольшей
(Γ_{\max}) ?
Ои заданной площади живого сечения, пропускная способность будет минимальной
(Γ_{NORIK}) ?
Ои заданной площади живого сечения, пропускная способность будет минимальной
(Γ_{MEGH}) ?
Ои заданной площади живого сечения, пропускная способность будет максимальной $(\Gamma_{\text{мин}})$?
8 какой водослив имеет максимальное значение коэффициента расхода (м)?
полигональный водослив
вакуумный водослив практического профиля
водослив с широкими порогом водослив с широкой стенкой
водослив с широкой стенкой водослив практического профиля
9 По kakoй формуле определяется расход водослива с тонкой стенкой, отверстие тра-пецеидальное?
$\Omega = \omega \sqrt{K}$
\bigcirc - \sim \sim \sim
$ \widehat{R} = \frac{\omega}{\sqrt{R}} $ $ \widehat{R} = \frac{\omega c}{\sqrt{R}} $
$K = \frac{w}{\sqrt{D}}$
$K = \frac{ac}{\sqrt{D}}$
$ \mathcal{K} = \mathcal{O} \setminus J $
10 kak называется пар, где число молекул переходящих за единицу времени через единичную площадь поверхности в жидкость не равно числу молекул покидающих жидкость?
пересыщенный пар.
прогретьет пар.
ненасыщенный пар
насыщенный пар.
растянутый пар.
11 kak называется пар не находящийся в равновесии со своей жидкостью?
о насыщенным;
пресыщенным;
сублимацией;
ненасыщеннымконденсированным;
12 kak называется искривленная свободная поверхность жидкости около твердой поверхности?
Смежной; мениском
краевой;
внешней;
С граничной;

13 как зависит высота поднятия смачивающей жидкости в капилляре от его радиуса?

не зависит

прямо пропорционально

прямо пропорционально квадрату радиуса;

обратно пропорционально

линейно

14 По какой формуле определяется кинетическая энергия реального газаг?

$$\mathbf{E}_{k} = \int_{0}^{T} C_{V} dT$$

$$\mathbf{E}_{k} = \int_{0}^{T} C_{V} dT$$

$$\mathbf{E}_{k} = \int_{0}^{\infty} C_{P} dT$$

$$\mathbf{E}_{k} = \int_{0}^{T} C_{V} dT$$

$$\mathbf{E}_{k} = \int_{0}^{T} C_{V} dT$$

$$C_{k} = \int_{0}^{\infty} C_{P} dT$$

$$\begin{array}{l}
\bigcirc \\
\boldsymbol{E}_{k} = \int_{0}^{\infty} \boldsymbol{C}_{P} d\boldsymbol{T} \\
\bigcirc \\
\boldsymbol{E}_{k} = \int_{0}^{T} \boldsymbol{C}_{P} d\boldsymbol{T}
\end{array}$$

15 Газ можно перевести в жидкое состояние путем сжатия только при температуре

нет верного ответа;

ниже критической

выше критической;

при 0° К;

при абсолютном нуле;

16 Исходя из уравнения состояния реального газа, определить соотношения между параметрами критического состояния и постоянными Ван-дер-Ваальса?

$$V_k = 3/b, P_k = \frac{a}{27b^2}, T_k = \frac{8a}{27b}$$
 $V_k = 3b, P_k = \frac{a}{27b^2}, T_k = \frac{8a}{27Rb}$
 $V_k = \frac{a}{27b^2}, P_k = 3b, T_k = \frac{8a}{27R}$

$$V_k = b, P_k = \frac{a}{9b^2}, T_k = \frac{8a}{27Rb}$$
 $V_k = 3b, P_k = \frac{a}{27b^3}, T_k = \frac{8a}{Rb}$

$$\overset{\circ}{V}_{k} = 3b, P_{k} = \frac{a}{27b^{3}}, T_{k} = \frac{8a}{Rb}$$

\sim
17 kak называется вещество в газообразном состоянии при температуре ниже критической?
 ○ насыщенный пар; ○ растянутым паром; ○ пар ○ перегретая жидкость; ○ жидкость;
18 kak называется процесс медленного прохождения газа под действием перепада давления сквоз проссель?
 □ политропным расширением □ изобарическим сжатием □ адиабатическим расширением □ изотермическим расширением; □ изохорическим сжатием
19 Укажите на неверное утверждение.
при адиабатическом изменении объема реального газа его внутренняя энергия остается неизменной если при адиабатическом дросселировании реальный газ нагревается эффект Джоуля-Томсона называется положительным внутренняя энергия 1 моля идеального газа равен CVT для охлаждения газа Дьюар и Линда воспользовались эффектом Джоуля -Томсона при адиабатическом расширении газа в вакууме его температура изменяется
20 Что называют сжижением газа?
 превращение любого газа в твердое вещество. превращение любого газа в жидкость превращение жидкости в насыщенный пар. превращение жидкости в газ превращение твердого тела в газообразное вещество.
21 kakим выражением определяется энтальпия?

- 22 как называется давление на жидкость, обусловленное кривизной ее поверхности и создаваемое силами поверхностного натяжения?
 - избыточным поверхностной; молекулярным; внешним;

- добавочным
- 30 как называется давление на жидкость, обусловленное кривизной ее поверхности и создаваемое силами поверхностного натяжения?
 - избыточным

 - молекулярным;
- 31 как называется процесс изменения температуры реального газа в результате его адиабатического расширения?
 - эффект Холла
 - эффект Доплера
 - эффект Фарадея
 - эффект Джоуля-Томсона
 - эффект Комптона
- 32 Как называется уравнение вида $(\Pi + \frac{a}{V^2})(V - b) = RT$?
 - уравнение прямолинейного движения
 - уравнение состояния реального газа
 - уравнение неразрывности

 - основное уравнение молекулярно-кинетической теории газов
- 33 В каких единицах измеряется внутреннее трение?
- 34 Уранение Ван-дер-Ваальса для одного моля реального газа имеет вид:

$$(p+\frac{a}{V_0^2})(V_0-b)=RT$$

$$\bigcap_{(p-\frac{a}{V_0})(V_0-b)=RT}$$

$$(p + \frac{a}{V_0^2})(V_0 + b) = RT$$

$$(p-\frac{a}{V_0^2})(V_0-b)=RT$$

$$\bigcap (p-a)(V_0-b)=RT$$

35 как выглядит уравнение Ван-дер-Ваальса для произвольного количества реального газа?

$$(P - \frac{av^{2}}{V^{2}})(V + vb) = vRT$$

$$(P - \frac{av^{2}}{V^{2}})(V + vb) = vRT$$

$$(P + \frac{av^{2}}{V^{2}})(V + vb) = vRT$$

$$(P + \frac{av^{2}}{V^{2}})(V - vb) = vRT$$

$$(P + \frac{av^{2}}{V^{2}})(V - vb) = vRT$$

$$(P + \frac{av^{2}}{V^{2}})(V + vb) = vRT$$

36 Были предложены различные варианты уравнения состояния реального газа. kakoe из уравнений получило наиболее широкое признание?

- уравнение Майера
 Ван-дер-Ваальса
- уравнение Максвелла
- уравнение Клапейрона-Менделеева
- уравнение Пуассона

37 kakaя термодинамическая функция остается неизменной при дросселировании в опыте Джоуля-Томсона?

- внутренняя энергия
- Свободная энергия
- пальпия 🗨
- термодинамический потенциал Гиббса
- энтропи

38 kak называется процесс медленного прохождения газа под действием перепада давления сквозь дроссель?

- О политропным расширением
- изохорическим сжатием
- о изотермическим расширением
- адиабатическим расширением
- о изобарическим сжатием

39 как зависит поверхностное натяжение жидкостей от температуры?

- с ростом температуры возрастает
 - уменьшается с повышением температуры
- пе зависит
- с ростом температуры уменьшается, потом постепенно возрастает
- с ростом температуры увеличивается, затем резко уменьшается

40 Высота уровня смачивающей жидкости в капилляре диаметром d отличается от высоты уровня в широком сосуде на величину h, равную:

затвердевание плавление плазма сублимация кипение

- 48 как называется процесс превращения любого газа в жидкость при температуре ниже критической?
 - эатвердеванием;
 - сжижением
 - с кипением газ;
 - расширением;
- 49 Определить высоту поднятия жидкости в капилляре, движущейся с ускорением а вертикально вверх.

$$\overset{\bigcirc}{h} = \frac{\cos \theta}{\rho g \, r}$$

$$h = \frac{2\alpha\cos\theta}{\rho g r}$$

$$h = \frac{2 \cos \theta}{\rho g r}$$

$$h = \frac{2\alpha\cos\theta}{\rho(a+g)r}$$

$$h = \frac{\alpha \cos \theta}{\rho g}$$

- 50 Что является условием устойчивого равновесия жидкости?
 - минимум внутренней энергии
 - максимум кинетической энергии
 - О нет верного ответа
 - максимум поверхностной энергии
 - минимум свободной поверхностной энергии
- 51 как называется явление изменения высоты уровня жидкости в капиллярах?
 - С сублимацией
 - неразрывностью;
 - ____ течением
 - капиллярностью
 - инверсией
- 52 как называются вещества, ослабляющие поверхностное натяжение жидкости? (
 - поверхностно-активными

внутренне-активными

О объемно-активными

\bigcirc	активными
	оптически-активными

53 как называется искривленная свободная поверхность жидкости около твердой поверхности?

\bigcirc	смежной
\bigcirc	граничной
\bigcirc	краевой
\bigcirc	внешней
	мениском

54 какие существуют типы самостоятельного газового разряда?

	тлеющий, искровой, дуговой, коронный
\bigcirc	коронный, дуговой, эмиссионный, тлеющий
\bigcirc	тлеющий, дуговой, коронный, спонтанный;
\bigcirc	кистевой, искровой, коронный, ударный;
\bigcirc	кистевой, искровой, тлеющий, дуговой;

55 как записывается уравнение неразрывности для реального потока капельной жидкости?

$$\bigcirc_{1}\chi_{1} = U_{1}\chi_{2} = const$$

$$\textcircled{0}u_{1} = \omega_{1}u_{2} = const$$

$$\bigcirc_{1}U_{1} \neq \omega_{2}U_{2}$$

$$\bigcirc_{2}\omega_{1}u_{1} = \rho_{2}\omega_{2}u_{2} = const$$

$$\bigcirc_{1}d\omega_{1} = U_{2}d\omega_{2} = const$$

56 Определение критерий Рейнольдса для открытых русел?

$$Re = \frac{\upsilon \cdot H}{\mu}$$

$$Re = \frac{\upsilon \cdot R}{\nu}$$

$$Re = \frac{\upsilon \cdot d}{\nu}$$

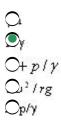
$$Re = \frac{\upsilon \cdot d}{\nu}$$

$$Re = \frac{\upsilon \cdot d \cdot \rho}{\mu}$$

57 как записывается уравнение неразрывности для реального потока сжимаемой жидкости?

58 Укажите на полный гидравлический напор?

$$\bigcap_{H = p/\gamma + \frac{\alpha v^2}{rg}}$$


$$H = z + p / \gamma + \frac{\alpha v^2}{rg}$$

$$\bigcirc = p / \gamma + z + hg$$

$$\bigcirc H = \frac{\alpha v^2}{rg} + hg$$

$$\bigcirc = z + p / \gamma$$

59 Укажите на пьезометрический напор?

- 60 На чем основан метод ЭГДА?
 - математическая аналогия постоянным электрическим током в проводящей и движе-нием грунт
 математическая аналогия постоянным электрическим током в проводящей и движе-нием грунтового потока аналогии между магнитный потоком и грунтовым потоком
 газогидравлическая аналогии;
 аналогии между магнитный потоком и грунтовым потоком;
 математическая аналогия постоянным электрическим током в проводящей и движе-нием грунтового потока аналогии между движением газа и электрическим током;
 Основан на аэродинамической аналогии;
- 61 Определение единицу измерения модуля скорости (скоростной характеристики)?

62 По какой формуле определяется скоростная характеристика (модуль скорости)?

$$\widehat{W} = \frac{c}{\sqrt{R}}$$

$$\widehat{W} = c\sqrt{R}$$

$$\widehat{W} = \frac{1}{n}c$$

$$\widehat{W} = k\sqrt{J}$$

$$\widehat{O} = kJ$$

- 63 От каких параметров зависит щкп глубина?
 - от уклона и шероховатости от средней скорости от критического уклона от нормальной глубины от формы русла и расхода
- 64 какая глубина в русле называется критической?

етьему началу термодинамики соответствует следующая формулировка:
 нет верных вариантов.
 Количество теплоты, сообщенное системе, расходуется на увеличение ее внутренней энергии и на работу совершаемую системой против внешних сил.
 Из всех циклических процессов в термодинамике, идущих при данной минимальной и максимальной температурах, наибольшим коэффициентом полезного действия обладает цикл Карно.
 Изменение внутренней энергии системы равно сумме сообщенного ей количества теплоты и работы, произведенной над системой внешними силами.
 Абсолютный нуль температуры недостижим; к нему можно лишь асимптотически приближаться.

4	125/2	01 7

работу?	
\bigcirc	нагревателем;
\odot	тепловой машиной
Ŏ	вечным двигателем первого рода;
Ŏ	холодильной машиной;
Ŏ	рабочим веществом;
	из нижеперечисленных процессов являются частными случаями политропного процесса? 1-ический; 2- изобарический; 3- изохорический; 4- адиабатический.
\bigcirc	нет таковых;
\circ	2 и 4;
\circ	1,3 и 4;
\circ	1, 2 и 3;
	все
максима	ех циклических процессов в термодинамике, идущих при данной минимальной и льной температурах, наибольшим коэффициентом полезного действия обладает цикл карно. мулировка:
\bigcirc	нет верных вариантов;
$\widetilde{\bigcirc}$	третий закон термодинамики;
	вторая теорема Карно
\sim	первая теорема Карно;
\sim	первый закон термодинамики;
\circ	первын закоп термодинамики,
	изобарически нагреть неон до 120 k, расширяясь он совершает работу в 15 kДж. Вычислите за, если $M(He)=20$.
$\overline{}$	350 г;
	300 г
\sim	240 Γ;
\bigcirc	200 Γ;
\circ	450 Γ;
	в некотором процессе работа газа и изменение его внутренней энергии равны по модулю, то оцесс является
	изобарическим.
\sim	изохорическим
	адиабатическим.
\sim	изотермическим
\simeq	термодинамическим.
\cup	гермодинамическим.
	тепло сообщается таким образом, что в любой момент времени теплота переданная газу равна ию его внутренней энергии. kakoй процесс был произведен над газом?
\circ	нет верных вариантов;
Ŏ	адиабатический;
$\widecheck{\odot}$	изохорический
$\widetilde{\bigcirc}$	изотермический;
\tilde{c}	изобарический;
\cup	· /
	роде невозможен такой циклический процесс, единственным результатом которого было бы

71 как называется устройство, в котором внутренняя энергия топлива превращается в механическую

второго начала термодинамики

формулировка:

\bigcirc	уравнения теплового баланса
\bigcirc	третьего закона термодинамики
\bigcirc	первого закона термодинамики;
\bigcirc	нет верных вариантов

78 Почему вода на дне океана остается холодной, в то время kak по мере продвижения вглубь Земли на каждые 100 м температура возрастает приблизительно на 3 градусов? Выберите верные утверждения.

1. в процессе теплообмена вода, нагреваясь от Земли, становится более легкой и вытесняется вверх тяжелой водой. 2 внизу холодная вода вновь нагревается и снова вытесняется вверх.

\bigcirc	2, 3
\bigcirc	1,3
\bigcirc	1
	1, 2, 3
\bigcirc	3

79 Что является причиной возникновения внутреннего трения в газах?

\bigcirc	различная масса молекул
	различная скорость движения слоев газа
\bigcirc	различная скорость теплового хаотического движения молекул;
\bigcirc	различие размеров молекул
\bigcirc	неодинаковая температура в различных слоях газа;

80 Найдите выражение для коэффициента диффузии идеального газа?

$$\hat{D} = 3\overline{V} \overline{\lambda}$$

$$\hat{D} = \frac{2}{3}\overline{V} \overline{\lambda}$$

$$\hat{D} = \frac{1}{3}\overline{V} \overline{\lambda}$$

$$\hat{D} = \frac{1}{3}\overline{V}^{2}\overline{\lambda}$$

$$\hat{D} = \frac{1}{3}\overline{V} \overline{\lambda}N_{A}$$

81 какой безразмерной величиной характеризуется характер течения реальной жидкости?

_	
\bigcirc	градиентом плотности
\bigcirc	ускорением;
\bigcirc	внутренним трением;
\bigcirc	градиентом скорости;
	числом Рейнольдса

82 каким выражением определяется сила внутреннего трения в жидкостях?

$$F = -\eta \frac{\Delta \vartheta}{\Delta x} \Delta S$$

$$\bigcap$$
 $F = ma$

$$\bigcap$$
 $F = -mg$

$$\bigcap$$
 $F = P$

83 Отношение теплопроводности к вязкости идеального газа дается выражением:

$$\frac{\mathcal{N}}{\eta} = C_{V}$$

$$\frac{\mathcal{N}}{\eta} = \frac{\eta}{M}$$

$$\frac{\mathcal{N}}{\eta} = D$$

$$\frac{\mathcal{N}}{\eta} = \rho$$

$$\frac{\mathcal{N}}{\eta} = \frac{M}{\rho}$$

84 По какой формуле определяется среднее число соударений молекулы, обладающей скоростью и при учете движения других молекул (n-число молекул в единице объема, d -диаметр молекулы):

$$\langle z \rangle = \sqrt{2}\pi d^{2}n \langle v \rangle$$

$$\langle z \rangle = \pi d^{2}n \langle v \rangle$$

$$\langle z \rangle = \sqrt{2}\pi d^{3}n \langle v \rangle$$

$$\langle z \rangle = \sqrt{2}d^{3}n \langle v \rangle$$

$$\langle z \rangle = \sqrt{2}d^{2}n \langle v \rangle$$

$$\langle z \rangle = \frac{\sqrt{2}\pi}{d^{2}n \langle v \rangle}$$

85 Что характеризует коэффициент теплопроводности?

- О плотность потока импульса при градиенте скорости равным единице
- время установления теплового равновесия
 - тепловую энергию при градиенте температуры равным единице
- плотность теплового потока при градиенте температуры равным единице
- плотность потока массы при градиенте плотности равным единице

86 какое выражение является математической записью закона теплопроводности Фурье?

 \bigcirc

$$egin{aligned} oldsymbol{j}_E &= rac{1}{\lambda} \cdot rac{dx}{dT} \ oldsymbol{j}_E &= -rac{1}{\lambda} \cdot rac{dx}{dT} \ oldsymbol{j}_E &= -\lambda rac{dx}{dT} \ oldsymbol{j}_E &= -\lambda rac{dT}{dx} \ oldsymbol{j}_E &= -rac{1}{\lambda} \cdot rac{dT}{dx} \end{aligned}$$

87 kakим выражением определяется перенос энергии в форме теплоты в явлении теплопроводности? $(\Delta S=1; \Delta t=1)$

88 Укажите на условия определяющие значение средней скорости при равномерном движение потоке в канале?

$$\begin{array}{l} \bigcirc_0 > \nu_{\text{paim}} \\ \bigcirc_0 > \nu_{\text{samm}} \\ \bigcirc_{\text{byp.}} > \nu_0 > \nu_{\text{paim}} \\ \bigcirc_0 > \nu_{\text{squin}} \\ \bigcirc_{\text{samm}} < \nu_0 < \nu_{\text{paim}} \end{array}$$

89 По какой формуле определяется смоченный периметр для открытого русла трапецидального сечения?

$$x = bm + \sqrt{l + m^2}$$

$$x = b + 2h\sqrt{l + m^2}$$

$$x = 2h\sqrt{l + m^2}$$

$$x = h\sqrt{l + m^2 - m}$$

90 По какой формуле определяется гидравлически наивыгоднейшее сечение канала (β)?

$$\oint_{Q.N.} = 2m + \sqrt{1 + m^2}$$

$$\oint_{Q.N.} = 2h \left(\sqrt{1 + m^2} - m \right)$$

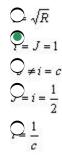
$$\oint_{Q.N.} = 2h \sqrt{m^2 - 1}$$

$$\oint_{Q.N.} = \sqrt{1 + m^2} - m$$

$$\oint_{Q.N.} = bm + \sqrt{1 + m^2}$$

91 Из перечисленных формул, какая формула является формула Агроскина для определение коэффициент Шези?

$$C = \frac{1}{n}R^{\frac{1}{3}}$$


$$C = \frac{1}{n} + 17.72 \lg R$$

$$C = \frac{1}{n}R^{\sqrt{n}}$$

$$C = \frac{1}{n}R^{\frac{1}{2}}$$

$$C = \frac{1}{n}R^{\frac{1}{2}}$$

92 При каких условиях расход (Q) равен расходной характеристике (k)?

93 Что называется критической глубиной?

- □ глубина потока при котором гидравлический уклон минимальный
 □ глубина потока, при которой удельная энергия сечения достигает минимального значения
 □ глубина потока, при которой удельная энергия сечения достигает максимального значения;
 □ глубина потока при котором значения стремится к бесконечности
 □ глубина потока при котором удельная энергия стремится к нулю
- 94 По какой формуле определяется гидравлический радиус трапецеидального канала?

$$R = \frac{(b+0.5mh)h}{b+(l+\sqrt{l+m^2})h}$$

$$R = \frac{b\cdot h}{b+2h}$$

$$R = \frac{0.5mh}{\sqrt{l+m^2}}$$

$$= 0.5mh + b$$

$$R = \frac{(b+mh)h}{b+2h\sqrt{l+m^2}}$$

95 По какой из этих формул определяется площадь живого сечения трапециидального канала?

 $\bigcirc = 0.5mh + b$ $\bigcirc = (b + 0.5mh)h$ $\bigcirc = (b + mh)h$ $\bigcirc = b \cdot h$ $\bigcirc = (mh + b)$

96 По какой формуле определяется коэффициент заложения откоса (m) для трапециа-дального канала?

97 Отличие удельной энергии сечения от удельной энергии потока?

- удельная энергия сечения вниз по течению потока увеличивается удельная энергия сечения определяется относительно произвольной горизонтальной плоскости удельная энергия сечения определяется относительно плоскости сравнения, происхо-дящей через канализацию точку этого сечения удельная энергия сечения меньше Эмин удельная энергия сечения вниз по течению стремится к единице
- 98 Единица измерения удельного расхода (г)?

99 Что называется удельной энергией потока (Е)?

энергия отнесенная к объему жидкости
механическая энергия жидкости отнесенная тепловой энергии
механическая энергия массы жидкости, отнесенная к единице веса жидкости
механическая энергия жидкости отнесенная удельному весу жидкости

- механическая энергия жидкости, отнесенная к плотности жидкости
- 100 Площадь, какого сивого сечения канала определяется по формуле w = (b + mh)h?
 - Круговое

 - трапециадальной
 - Треугольное
 - Параболическое
- 101 При каком значение параметра кинетичности состояние потока бурное?

 - Пк<1
 - Пк=1

 $\Pi_{K} > 1$

- $\Pi \kappa = 0$
- $\Pi_{K} > 1/2$
- 102 При каком значение параметра кинетичности глубина в русле равна критической глубине?

$$\widehat{\boldsymbol{Y}}_{k_1}^{\text{Tik=1}} < \boldsymbol{\Pi}_{\kappa_{np}} < \boldsymbol{\Pi}_{k_2}$$

- Пк<1</p>
 Пк=0
- 103 В каком случае образуются кривая подпора при установившемся неравномерном движение?
 - $\frac{C_n}{d\ell} > 0$
 - $\bigcirc 1/d\ell > 0$
 - $\Omega / d\ell = 0$
 - $\frac{O_l}{d\ell} < 0$
 - $\frac{C_h}{d\ell} = 1$
- 104 Определите основные условия при установившемся неравномерном движение?
 - \bigcirc = const
 - $J_z \neq J_n \neq i_p$
 - $U \neq const$

 - Q = const
 - $J_z = J_n = i_n$
 - U = const

 - Q≠ const
 - $J_{s} \neq J_{s} \neq i_{s}$
 - U = const
 - $\omega = const$

$$Q = const$$

$$J_z \neq J_n = i_n$$

 $U \neq const$

$$Q = const$$

$$J_z \neq J_n \neq i_p$$

$$U = const$$

$$\omega = const$$

105 По каком значение параметра кинематичности состояние потока спокойное?

- Пк=2Пк=1Пк=0Пк>1

106 Укажите на четыре основных параметра, которые необходимо определять при решение задач на установившееся неравномерное движение?

- \bigcirc_{k_p} , a_{k_p} , v_{k_p}
- \bigcirc_{\min} , h_{kp} , U_{kp}
- \bigcirc , h_{kp} , i_{kp} , \ni_{cen}
- \bigcirc , \ni , h, \ni max
- \bigcirc_{\min} , \ni_{\min} , i_0 , h_{ky}

107 Укажите на уравнение критического состояния потока?

- $\frac{Q_Q^2}{g} = \frac{\alpha_{kp}^2}{\alpha_{kp}}$
- $\frac{Q_{\mathcal{O}^2}}{g} = \frac{\omega_{k_{\mathcal{V}}}}{B_{k_{\mathcal{V}}}}$

$$\frac{QQ^2}{g} = \frac{\varpi 2}{B_{kp}}$$

108 При каких условиях возникновение гидравлического прыжка, невозможно?

- $Q_{kp} = h_c' > h_c''$
- $Q_b = h_c'' = h_{kp}$
- $Q_c > h_c'' = h_{kp}$

$$h_{kp} > h_c''$$

109 По какой формуле определяется прыжковая функций?

110 В чем различие установившегося движения от неустановившегося?

\bigcirc	при неустановившемся движении скорость зависит только от координат пространства.
\bigcirc	при неустановившемся движение скорость зависит от времени
\bigcirc	установившееся движение может быть только равномерным
\bigcirc	при установившейся движение в отличие от неустановившегося скорость и расход во времени изменяются;
	при установившейся движение в отличие от неустановившегося расход во времени не изменяется

111 Указать уравнение I закона термодинамики (di,du-элементарное изменение энтальпии и внутренней энергии, p,v-давление и удельный объем газа dp,dv- элементарное изменение давления и объема газа)?

$\overline{}$	1 1: 1
\cup	dq=di-du;
	dq=di-vdp
\bigcirc	dq=di+vdp;
\bigcirc	dq=di-pdv;
\bigcirc	dq=di-du;

112 Чему равна универсальная газовая постоянная?

\bigcirc	Теплоте, выделяемой при остывании 1 м ³ газа на 1 К;
Ŏ	Работе, произведенной при нагреве 1 кг газа на 1 К при изохоре;
\bigcirc	Теплоте, необходимой для нагрева 1 кмоля газа на 1 К при изохоре
	Работе, производимой при нагреве 1 кмоля газа на 1 К при изобаре

113 какому из приведенных ниже уравнений соответствует уравнение состояния 1 кг идеального газа (v,p - удельный объем и давление газа, t,T- температура газа по шкале Цельсия и кельвина , °C, K, R-постоянная газа)?

	PV=RT
	1 V-K1
\bigcirc	нет правильного ответа
\bigcirc	Tv=Rp
\bigcirc	pv=Rt
\bigcirc	pT=Rv

114

Определить уравнение среднего значения теплоемкости в температурном интервале $t_1 \div t_2$ (t_1, t_2 -начальная и конечная температура газа, $c \begin{vmatrix} t_1 \\ 0 \end{vmatrix}$, $c \begin{vmatrix} t_2 \\ 0 \end{vmatrix}$ - средняя теплоемкость газа при температурных интервалах $0 \div t_1$ и $0 \div t_2$)?

1/25/2017

$$\begin{array}{c} \bigcirc\\ c_{m} \Big|_{t_{1}}^{t_{2}} = \frac{t_{2}c \Big|_{0}^{t_{2}} - t_{1}c \Big|_{0}^{t_{1}}}{t_{1} - t_{2}} \\ \bigcirc\\ c_{m} \Big|_{t_{1}}^{t_{2}} = \frac{t_{2}c \Big|_{0}^{t_{2}} + t_{1}c \Big|_{0}^{t_{1}}}{t_{2} - t_{1}} \\ \bigcirc\\ c_{m} \Big|_{t_{1}}^{t_{2}} = \frac{t_{2}c \Big|_{0}^{t_{2}} - t_{1}c \Big|_{0}^{t_{1}}}{t_{2} + t_{1}} \\ \bigcirc\\ c_{m} \Big|_{t_{1}}^{t_{2}} = \frac{t_{2}c \Big|_{0}^{t_{2}} + t_{1}c \Big|_{0}^{t_{1}}}{t_{2} + t_{1}} \\ \bigcirc\\ c_{m} \Big|_{t_{1}}^{t_{2}} = \frac{t_{2}c \Big|_{0}^{t_{2}} - t_{1}c \Big|_{0}^{t_{1}}}{t_{2} + t_{1}} \\ \bigcirc\\ c_{m} \Big|_{t_{1}}^{t_{2}} = \frac{t_{2}c \Big|_{0}^{t_{2}} - t_{1}c \Big|_{0}^{t_{1}}}{t_{2} - t_{1}} \end{aligned}$$

115

Определить уравнение среднего значения газовой постоянной смеси газов (g_i , μ_i , R_i -массовая доля, молекулярная масса и газовая постоянная компонентов газа)?

$$R = \sum_{i=1}^{n} r_i R_i$$

$$R = \frac{8314}{\sum_{i=1}^{n} g_i \cdot \mu_i}$$

$$R = \sum_{i=1}^{n} g_i R_i$$

$$R = \frac{8314}{\sum_{i=1}^{n} g_i R_i}$$

$$R = \sum_{i=1}^{n} g_i \mu_i$$

116 По какой формуле определяется, коэффициент боковое сжатие при истечение через водослив практического профиля, предложенная Замариным?

$$\underbrace{E} = 1 - a \frac{b + H_0}{H_0}$$

$$\underbrace{E} = 1 - a \frac{H_0}{H_0 + b}$$

$$\underbrace{E} = 0.5 + 0.3 \xi \frac{H_0}{b}$$

$$\underbrace{E} = 1 - 0.25 \xi \frac{H_0}{b}$$

$$\underbrace{E} = 1 - 0.1 n \xi \frac{H_0}{b}$$

117 По какой формуле определяется полный напор (Н0) на гребне водослива?

$$\mathcal{H}_{a} = \frac{H}{b} + \frac{v}{g}$$

1/25/2017

$$H_o = H + \frac{\alpha v^2}{2g}$$

$$\Omega_o = \frac{v^2}{g} + \frac{H}{b}$$

$$\Omega_o = \frac{v^2}{2g}$$

$$\Omega_o = h + \frac{v^2}{2g}$$

118 По какой формуле определяется расход через подтопленный водослив?

$$Q = M \varepsilon \sqrt{2} g H_o^{\frac{1}{2}}$$

$$Q = \sigma M \cdot \varepsilon \sqrt{2g} H^{\frac{1}{2}}$$

$$Q = M \varepsilon \varepsilon \sqrt{2g} H$$

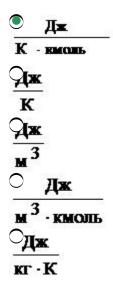
$$Q = M n \varepsilon \sqrt{2g} H$$

$$Q = M n \varepsilon \sqrt{2g} H$$

$$Q = \sigma h \sqrt{2n} (H_o - h)$$

119 По какой формул определяется, пропускная способность водослива?

$$Q = wc \sqrt{RJ}$$


$$Q = m6\sqrt{29}H_{a}^{\frac{1}{2}}$$

$$Q = m66\sqrt{29}H_{a}$$

$$Q = 1,56H_{a}^{\frac{3}{2}}$$

$$Q = 238\left(H^{\frac{1}{2}} + 6\right)$$

120 Указать единицу измерения универсальной газовой постоянной.

121 По какой формуле определяется средняя скорость при равномерном уста-новившемся движении?

$$\bigcirc = \omega \cdot J$$

$$\bigcirc = C \sqrt{RJ}$$

$$\bigcirc = K \cdot \sqrt{J}$$

$$\bigcirc = \omega \cdot R$$

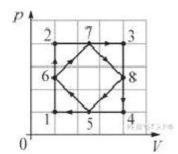
$$\bigcirc = C \sqrt{R}$$


122 Под действием какой силы совершается безнапорное движение жидкости?
 Движение осуществляется за счет силы инерции; движение осуществляется за счет силы тяжести движение осуществляется за счет силы сцепления; движение осуществляется за счет силы упругости; движение осуществляется за счет силы давления;
123 Под действием какой силы совершается напорное движение?
 Движение осуществляется за счет тяжести и силы гидродинамического давления Движение осуществляется за счет силы тяжести и силу инерции Движение осуществляется за счет силы тяжести и сил поверхностного натяжения; Движение осуществляется за счет силы тяжести и силы сопротивления Движение осуществляется за счет силы тяжести и силы упругости
124 По kakoй формуле определяется расход жидкости?
$ \bigcirc = \omega \cdot \upsilon $ $ \bigcirc = \omega / \upsilon $ $ \bigcirc = \upsilon \cdot \chi $ $ \bigcirc = \upsilon / \omega $ $ \bigcirc = \omega \cdot \chi $
125 По kakoй формуле определяется гидравлический радиус?
$ \widehat{R} = \frac{\omega}{\chi} $ $ \widehat{R} = \frac{1}{\omega} $ $ \bigcirc = \chi / \omega $ $ \bigcirc = \omega \cdot \chi $ $ \widehat{R} = \omega \sqrt{\chi} $
126 На сколько групп делятся природных газы согласно характеру углеводородного месторождения?
 ○ 5; ○ 6; ○ 2; ● 3 ○ 4;
127 Что является основным компонентом природного газа, используемого в быту?
 □ гелий; □ окись углерода; ■ метан □ водород; □ азот;
128 В чем заключается роль тепловой изоляции на тепловых сетях?
 Для защиты трубопроводов от жары; Для уменьшения тепловых потерь Для увеличения тепловых потерь; нет правильного ответа; Для защиты трубопроводов от гидравлических ударов;

129 kak называется элемент теплосети предназначенный для восприятия термических деформаций?
компрессор; камера;
конденсатор;компенсаторкалорифер;
130 По kakой формуле определяется объемный расход?
$\bigcirc \!$
$\bigcirc = \varnothing / \upsilon$
131 kakим образом получают природные газы?
 ∪ из биологических отходов; ○ посредством химических реакций; ○ термохимической обработкой твердою топлива; ○ добывают из природных месторождений ○ коксуют каменный уголь;
132 Природный газ, используемый в быту:
 □ плотность газа в два раза больше плотности воздуха; □ плотность газа в два раза меньше плотности воздуха; □ легче воздуха □ плотность газа равна плотности воздуха; □ тяжелее воздуха;
133 По какой формуле определяются удельные тепловые потери теплопроводов при канальной прокладке (τ - температура теплоносителя, t_{κ} - температура воздуха в канале, $t_{p,\sigma}$ - расчетная температура наружного воздуха для отопления, R - полное термическое
сопротивление)?
нет правильного ответа $ Q = \frac{\tau + t_{\kappa}}{R} $ $ Q = \frac{t_{\kappa} - t_{p,o}}{R} $ $ Q = \frac{\tau - t_{p,o}}{R} $ $ Q = \frac{\tau - t_{\kappa}}{R} $
134 В kakoм из ответов полностью указаны виды подвижных опор?
 опоры скольжения, качения и подвесные опоры скольжения, без скольжения и подвесные. опоры без скольжения, качения и подвесные. опоры подвесные, скольжения и прямоугольные. нет правильного ответа .

135 какими бывают опоры?	
закрытые и открытые. подвижные и открытые.	
подвижные и закрытые	
подвижные и неподвижные.	
неподвижные и открытые.	
136 Посредством каких устройств добываются природные газы?	
сама произвольно фонтанируют	
Газовых скважин	
с помощью насосов	
с помощью компрессоров	
с помощью компьютеров	
137 kak меняется расход газа в зависимости от сезона?	
меняется независимо от сезона	
🤵 зимой увеличивается, летом уменьшается	
остается постоянным независимо от сезона	
расход газа зимой уменьшается, летом увеличивается	
Зимой увеличивается в два раза	
138 каким видом транспорта транспортируется газ потребителям?	
🔘 в баллонах	
С средствами транспорта;	
в специальной посуде;	
трубопроводами	
В цистернах	
139 kakие ниже перечисленные параметры соответствуют нормальному физическому условию?	
\bigcirc t=10 °C; P=1 atm	
\bigcirc t =5 °C; P= 1 aTM	
\bigcirc t =15 °C; P = 1 aTM	
\bigcirc t =20 °C; P= 1 aTM	
• t =0 °C; P = 101,3 κPa = 1 aτm= 101,3 κPa = 1 aτm	
140 Чему равно давление 1 мм водяного столба в Ра?	
\bigcirc .81·10 ⁴ Pa	
O,981 Pa	
$\bigcirc .81^{\circ} 10^{4} \text{ Pa}$	
981 Pa	
9,81 Pa	
141 kak меняется расход газа в зависимости от сезона?	
расход газа зимой уменьшается, летом увеличивается;	
зимой увеличивается, летом уменьшается	
остается постоянным независимо от сезона;	
зимой увеличивается в два раза	
меняется независимо от сезона	
142 kakoво химическое название сжиженного газа, используемого в быту ?	
О этан	

25/2017	
	пропан
Ō	330T
	бутан
\bigcirc	метан;
143 Спос	собы обработки газа на промыслах:
\circ	очистка газа от механических примесей и сероводорода
\sim	очистка от соединений пропана, этана
	очистка от углеводородных соединения
Ö	очистка газа от механических примесей, сульфидных соединений, водяных паров, одоризация очистка от механических примесей и снижения газа
144 Газо	вые месторождения Азербайджана?
\circ	Атели, Улдуз;
	Гарадаг, Бахар
Ō	Галмаз, Хазар, Сахил;
Q	Газовая, Небет -Даг;
\circ	Нефтяные камни, Азнефть;
145 каки	м образом транспортируется природный газ на дальние расстояния?
	магистральными газопроводами
Ō	цистернами
Q	в специальных баллонах
Õ	это невозможно
\circ	танкерами
146 Поср	редством kakux устройств добываются природные газы?
\circ	сама произвольно фонтанируют;
	газовых скважин
Q	с помощью насосов;
Õ	с помощью компьютеров.
\circ	с помощью компрессоров;
147 Для	чего предназначены компрессорные станции?
\circ	для сжижения природных газов
Ō	для уменьшения скорости движения газа в магистральных газопроводах
Ō	для уменьшения температуры в магистральных газопроводах
O	для повышения давления в газопроводах
\circ	увеличения расхода газа
148 Что	называется коэффициентом сезонной неравномерности потребления газа?
\circ	отношение среднемесячного значения расхода газа в зимние месяцы к годовому расходу
	отношение расхода газа за определенный месяц к среднемесячному значению расхода газа за год
Q	отношение расхода газа за определенный месяц к годовому расхода газа
\circ	отношение среднемесячного расхода газа в зимние месяцы к среднемесячному значению расхода газа в
	летние месяцы среднеарифметическому расхода газа по месяцам за год
140 UTO	называется коэффициентом сезонной неравномерности потребления газа?
147 110	пазывается коэффициентом сезонной неравномерности потреоления газа!
Ŏ	отношение расхода газа за определенный месяц к годовому расхода газа
$\widetilde{\mathcal{C}}$	отношение среднемесячного значения расхода газа в зимние месяцы к годовому расходу
\bigcirc	среднеарифметическому расхода газа по месяцам за год


25/2017
Паружные и внутренние, внутриквартирные
157 Для чего предназначены компрессорные станции?
 Для уменьшения скорости движения газа в магистральных газопроводах; Для сжижения природных газов увеличения расхода газа для повышения давления в газопроводах для уменьшения температуры в магистральных газопроводах;
158 какой из нижеперечисленных не является газовым законом?
 Менделеев-Клапейрон; Авогадро Гей-Люссак Бойл-Мариотт; Джоул-Томсон
159 kak вычисляется годовой расход газа потребителями?
 □ по нормированному расходу газа каждой категорией потребителей □ по количеству населения □ согласно расхода газа каждым потребителем □ на основании специальной методики расчета для каждой категории потребителей □ по площади населенного пункта
160 Чему равен термический коэффициент полезного действия для кругового процесса?
$ \begin{array}{l} \bigcirc \\ \eta = A - \frac{Q_2}{Q_1} \\ \bigcirc \\ \eta = Q_2 - Q_1 \end{array} $ $ \begin{array}{l} \bigcirc \\ \eta = \frac{Q_1}{A} \end{array} $ $ \begin{array}{l} \bigcirc \\ \eta = 1 - \frac{Q_2}{Q_1} \end{array} $ $ \bigcirc \\ \eta = \frac{Q_2}{Q_1} $
161 У порции идеального газа отняли некоторое количество теплоты. При этом над газом совершили положительную работу. В результате внутренняя энергия порции газа
 ○ сначала увеличилась, а потом осталась неизменной ○ не изменилась ○ уменьшилась ○ увеличилась ○ могла и увеличится, и уменьшиться и остаться неизменной
162 Если многократно сжимать пружину, то она нагревается. Это можно объяснить тем, что
 Давление внутри пружины увеличивается Потенциальная энергия пружины переходит в кинетическую пружина нагревается в процессе ударов молекул воздуха о частицы вещества пружины. часть работы внешних сил переходит во внутреннюю энергию пружины

166 При каком процессе остается неизменной внутренняя энергия 1 моль идеального газа?

верный ответ не приведен
 при адиабатном расширении
 при изохорном охлаждении
 при изобарном сжатии
 при изотермическом расширении

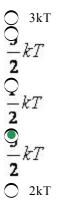
167 На рисунке изображены два циклических процесса $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ и $5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 5$.

Какое из следующих утверждений справедливо?

А. Работа газа в случае циклического процесса 1? 2? 3? 4? 1 больше, чем работа газа в случае циклического процесса 5? 6? 7? 8? 5.

Б. Изменение внутренней энергии газа в результате циклического процесса 1? 2? 3? 4? 1 больше, чем изменение внутренней энергии газа в результате циклического процесса 5? 6? 7? 8? 5.

_	
\bigcirc	иногда А, иногда Б
\bigcirc	только Б
\bigcirc	и А, и Б
	только А
\bigcirc	ни А, ни Б


168 какое условие для изотермического расширения идеального газа верно?

$\overline{}$	A'<0
	$\Delta U=0$
\sim	$\Delta U = 0$ $\Delta U < 0$
\simeq	
\sim	$\Delta U > 0$
()	A=0

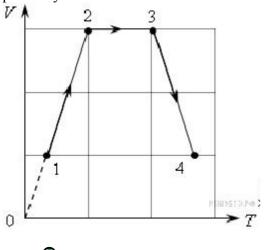
169 как изменяется внутренняя энергия в изотермическом процессе?

\bigcirc	бесконечно
\bigcirc	уменьшается
	не изменяется
\bigcirc	увеличивается;
\bigcirc	равно нулю

170 kak выражается средняя кинетическая энергия жесткой двухатомной молекулы?

171 Из приведенных выражений выберите размерность теплоты, выраженную через основные единицы СИ.

нет верных вариантов окг • м/с ²
○ 1 кг•м/с


172 Идеальный газ совершил работу 300 Дж и при этом внутренняя энергия газа увеличилась на 300 Дж. kakoe количество теплоты отдал или получил газ в этом поцессе?

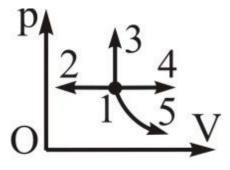
_	
\bigcirc	отдал 250 Дж
	получил 600 Дж
\bigcirc	отдал 300 Дж
\bigcirc	отдал 600 Дж
\bigcirc	получил 300 Дж;

173 Для изохорного процесса в идеальном газе первый закон термодинамики имеет вид:

нет верных вариантов; Q = A $Q = \Delta U$ $Q = \Delta U + A$; $Q = \Delta U + A$;

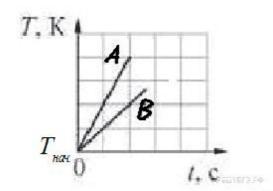
174 Газ последовательно перешел из состояния 1 в состояние 2, а затем в состояния 3 и 4. Работа газа равна нулю:

на участке 2—3
на участке 3—4
на участках 1—2 и 3—4
такой участок отсутствует
на участке 1—2


175 Внутренняя энергия монеты увеличивается, если ее

бросить с большой высоты;
 подбросить вверх;
 заставить двигаться с большей скоростью.
 заставить вращаться;
 подогреть

176 Внутренняя энергия идеального газа в герметично закрытом сосуде уменьшается при


□ повышении его температуры;
 □ уменьшении потенциальной энергии сосуда.
 □ его изотермическом сжатии;
 □ понижении его температуры
 □ уменьшении кинетической энергии сосуда.

177 В каком состоянии не изменяется внутренняя энергия газа?

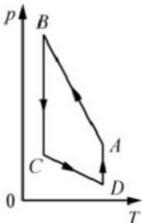
 $\begin{array}{ccc}
\bigcirc & 2 \rightarrow 1 \\
\bigcirc & 1 \rightarrow 4 \\
\bigcirc & 1 \rightarrow 3 \\
\bigcirc & 1 \rightarrow 2
\end{array}$

178

. На рисунке изображены графики зависимостей температуры T от времени t для двух твёрдых тел A и B, нагреваемых в двух одинаковых печах. Какое из следующих утверждений справедливо?

А. Тела A и B могут состоять из одного вещества, но масса тела A в 2 раза меньше массы тела B.

Б. Тела A и B могут иметь одинаковую массу, но удельная теплоёмкость тела A в твёрдом состоянии в 2 раза меньше удельной теплоёмкости тела B в твёрдом состоянии. Теплопотерями пренебречь.


О иногда А, иногда Б

и А, и Бтолько Б

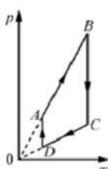
О только А

ни А, ни Б

179

На рисунке представлен график цикла, проведённого с одноатомным идеальным газом. На каком из участков внутренняя энергия газа увеличивалась? Количество вещества газа постоянно.

ни на каком


CD

AB

BC

DA

180

На рисунке представлен график цикла, проведённого с одноатомным идеальным газом. На каком из участков внутренняя энергия газа уменьшалась? Количество вещества газа постоянно.

ни на каком

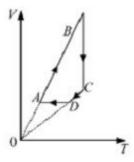
CDAB

DA

BC

181 Какова связь между сри су?

$$\mathcal{C}_{P}=C_{V}/R$$


$$Q_V = c_p + R$$

$$\mathcal{C}_p = c_V$$

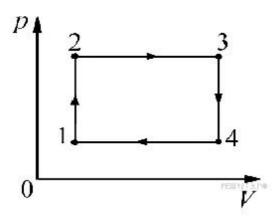
$$C_p < c_V$$

$$\mathbf{c}_{p} = \mathbf{c}_{V}$$
 $\mathbf{c}_{p} < \mathbf{c}_{V}$
 $\mathbf{c}_{p} < \mathbf{c}_{V}$

182

На рисунке приведён цикл, осуществляемый с идеальным

газом. Работа не совершается на участке


С такой участок отсутствует

 \bigcirc CD

O BC

DA

183

Идеальный газ совершает циклический

процесс 1-2-3-4-1, изображенный на рисунке. В результате этого циклического процесса

\bigcirc	внутренняя	энергия	газа	увеличилась
()	впутреппии	эпсриия	1 asa	увсличилась

суммарное количество полученной и отданной газом теплоты равно нулю.

💿 изменение внутренней энергии газа равно нулю.

суммарная работа, совершенная газом, равна нулю.

 \rightarrow вся теплота, полученная газом в процессе $1 \rightarrow 2 \rightarrow 3$, полностью преобразуется в механическую работу

184 Уравнением изотермического процесса для данной массы идеального газа является:

пет верных вариантов

 \bigcirc V/T = const

 \bigcirc pV = const

 \bigcap n/T = const

 \bigcirc p = const

185 Три макропараметра (давление, объем и температура) для 1 моля вещества связаны законом:

нет верных вариантов;

Менделеева-Клапейрона;

Бойля-Мариотта;

Шарля;

Клапейрона

186 Уранение Ван-дер-Ваальса для одного моля реального газа имеет вид:

$$(p+\frac{a}{V_0^2})(V_0-b)=RT$$

$$\bigcap_{(p-\frac{a}{V_0})(V_0-b)=RT}$$

$$(p + \frac{a}{V_0^2})(V_0 + b) = RT$$

$$(p-\frac{a}{V_0^2})(V_0-b)=RT$$

$$\bigcap (p-a)(V_0-b)=RT$$

187 Что характеризует постоянная а в уравнении состояния реального газа?

- скорость молекулэнергию молекулконцентрацию молекул межмолекулярное притяжение

188 При каких условиях поведение реальных газов может быть описано уравнением состояния идеального газа?

- нет правильных вариантовпри низких давлениях и температурахв области высоких давлений и температур
- при достаточно низких давлениях и высоких температурах
- при высоких давлениях и низких температурах

189 В каких единицах измеряется внутреннее трение?

190 Были предложены различные варианты уравнения состояния реального газа. kakoe из уравнений получило наиболее широкое признание?

- уравнение Пуассона;
- уравнение Максвел.
 Ван-дер-Ваальса
 уравнение Майера; уравнение Максвелла;

- уравнение Клапейрона-Менделеева;

191

Как называется уравнение вида $(\Pi + \frac{a}{V^2})(V - b) = RT$?

- уравнение прямолинейного движения
- уравнение состояния реального газа
 - уравнение неразрывности

\bigcirc	20;
\bigcirc	15
\bigcirc	10
	16

199 Единицей измерения теплоемкости газов в международной системе измерений является:

200 химическая формула основного компонента природных газов.

O_2H_6
\bigcirc 0 ₂
OH4
\bigcirc_3 H ₈
\bigcirc_2

201 Определить относительную плотность метана ($k\Gamma/M^3$) по воздуху. $1M^3$ метана при температура 0° С весит 0.75 $k\Gamma$ плотность воздуха 1.3 $k\Gamma/M^3$?

	0,55
\bigcirc	1,3
\bigcirc	0,94
\bigcirc	1,8
\bigcirc	0,72

202 классификация газовых горелок по принципу горения:

\bigcirc	горелки полного смешения воздуха и газа, эжекционные горелки
\bigcirc	прямоточные горелки, горелки непосредственного полного смешения воздуха и газа
\bigcirc	эжекционные горелки, безэжекционные горелки
\bigcirc	горелки низкого давления, среднего давления
	горелки полного смешения воздуха с газом, горелки предварительного смешении воздуха и газом, горелки
	неполного смешивания воздуха с газом, горелки без смешивания воздуха и газа

203 В какой последовательности осуществляется процесс горения?

_	
\bigcirc	температура газа повышается до температуры воспламенения
\bigcirc	происходит за счет расширения газа
\bigcirc	происходит цепная реакция
	образуется смел газа с воздухом, температура смеси повышается до температуры воспламенения, происходит
	реакция химического горения
\bigcirc	газ смешивается с воздухом и мгновенно воспламеняется

204 укажите уравнение внутренней энергии

du = Tds + vdp
$Qu = Tds - \nu dp$;
Qu = dq + pdv;
Единица измерени
МДж/м³

205 Единица измерения низшей теплотворной способности природных газов.

	M Дж $/$ м 3
\bigcirc	Дж/ M^2
\bigcirc	$K\Gamma/M^3$
\bigcirc	МДж/(м $^3 \cdot ^o$ Ъ)
\bigcirc	$\mathrm{BT/M^3}$ • $\mathrm{^o}$ $\mathrm{^o}$

206 Определить плотность смеси состоящей из 10 % метана (плотность $0.72~\rm kr/m^3$) и 90 % воздуха (плотность $1.3~\rm kr/m^3$).

	1,242
\bigcirc	1,17
\bigcirc	0,202
\bigcirc	2,02;
\bigcirc	0,072

207 Активные методы защиты газопроводов от коррозии в зависимости от условий в которых находится труба.

\bigcirc	весьма усиленная изоляция, протекторная;
	катодная, протекторная, электродренаж
\bigcirc	катодная, битумная
\bigcirc	усиленная и весьма усиленная изоляция, электродренаж;
\bigcirc	усиленная изоляция, катодная

208 Пассивные методы защиты газопроводов от коррозии следующие:

\bigcirc	катодная защита
	изоляция газопроводов
\bigcirc	анодная защита
\bigcirc	электродренажная защита;
\bigcirc	протекторная защита

209 В какой части газопровода давление больше?

\bigcirc	в расстоянии 0,25 1.
\bigcirc	в конце газопровода;
\bigcirc	в середине газопровода;
	в начале газопровода
\bigcirc	в расстоянии 0,25 1 (1-длина газопровода)

210 классификация городских систем газоснабжения по максимальному давления в них:

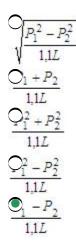
Q	газопроводы І-ой категории и низкого давления
	$0.6 \div 1.2~\mathrm{M\Pi a}$ – газопроводы высокого давления І-ой категории ; $0.3 \div 0.6~\mathrm{M\Pi a}$ – газопроводы высокого
	давления II-ой категории ; $5 \kappa \Pi a \div 0,3 M \Pi A$ – газопроводы среднего давления ; $3 \div 5 \kappa \Pi A$ - газопроводы низкого
	давления
\bigcirc	высокого давления, распределительные, внутриквартальные
\bigcirc	газопроводы низкого давления, среднего давления и промышленные газопроводы
\bigcirc	газопроводы высокого давления и абонентские ответвления

211 Методы борьбы с гидратообразованием:

👤 добавление в газопровод метанола, осушка газа

5/2017	
\bigcirc	снижением давлении и расхода газа
	добавлением диэтиленгликоля или триэтиленгликоля.
\bigcirc	абсорбированием и понижением давления газа.
\bigcirc	снижения добавления, повышение расхода
212 клас	сификация регуляторов давления согласно входному давлению:
	среднего и высокого давления
Ŏ	низкого и среднего
Ŏ	высокого давления и І-ой категории.
Ŏ	низкого и высокого
Ŏ	низкого, среднего, высокого
213 B ka	ком случае движение газа в трубе стационарное?
	расход газа остается постоянным по длине газопровода, давление в начале и конце газопровода различно, но не изменяется по времени
\bigcirc	при постоянном расходе газа
$\tilde{\bigcirc}$	при разности давлений в конце и в начале газопровода
$\tilde{\bigcirc}$	в начале давление изменяется по времени, а в конце постоянно
Ŏ	в начале расход постоянный, а в конце давление изменяется по времени
214 Объ	ем воздухосборника в процентах от общего объема системы водяного отопления составляет?
\bigcirc	0,5;
	1
\circ	4,0;
	1,0;
\bigcirc	2,0;
215 Расч	етная внутренняя температура в жилых помещениях, °С.
	21-23
	23 - 25;
$\widetilde{\bigcirc}$	14 - 16;
$\widetilde{\bigcirc}$	16 - 18;
$\widetilde{\bigcirc}$	20 - 22;
216 В ме	ждународной системе единиц единицей измерения динамической вязкости является:
Qq	2 - CEK
\sim	m ⁻
	· CEK
	n
\bigcirc	<u>H</u>
m^2	<u>Н</u> - сек
	COX

217


 $\frac{\bigcap \cdot \operatorname{cex}}{m^3}$

В газопроводах высокого давления по какой формуле определяется среднее значение давления (P_1 — давление в начале газопровода, P_2 — давление на конце)?

$$\begin{aligned} P_{cp} &= \frac{P_1 + P_2}{2} \\ O_{pp} &= \frac{1}{2} \left(P_1 + \frac{{P_1}^2}{P_1 + P_2} \right) \\ O_{pp} &= \frac{2}{3} \left(P_1 + \frac{{P_2}^2}{P_1 + P_2} \right) \\ O_{pp} &= \frac{2}{3} \left(P_1 + \frac{{P_2}^2}{P_1 + P_2} \right) \end{aligned}$$

218

По какой формуле вычисляется удельное падение давления в газопроводах при выполнении их гидравлического расчета (P_1 , P_2 — давление газа в начале и в конце газопровода, L — длина газопровода)?

219 C какой целью линеаризуются модели движения газа в трубах?

- для замены давления плотности
- для замены скорости звука в газа линейной функциях
- Для замены квадрата скорости движения в газе линейной функцией для замены давления линейной функцией для замены давления расхоля
- для замены давления расхода

220 В силу каких причин в газопроводах образуются кристаллогидраты?

- из-за содержания механических примесей в составе газа.
- из-за содержания метана в составе газа.
- из-за содержания углекислого газа в составе газа.
- из-за наличия воды в составе газа
- из-за содержания сероводорода в составе газа.

221 По какой формуле определяется $\Pi_{\mathbf{r}}$ через $h_{\mathbf{k}_{\mathbf{r}}}$ глубин для прямоугольного русла?

$$\bigcap_{II_{k}} = \sqrt{\frac{h_{kp}}{h}}$$

$$\bigcap_{k} = 0.8h_{kp}$$

$$\bigcap_{k} = \left(\frac{h_{kp}}{h}\right)^{2}$$

$$\bigcap_{k} = 1 - 0.5h_{kp}$$

$$\bigcap_{k} = 1 - 0.5h_{kp}$$

$$\Pi_k = 0.5h_c' - h_{ka}$$

222 По какой формуле определяется h_c^* , при известном значении h^* в прямоугольном русле?

$$\bigcap_{h'_{c}} h''_{c} = h''_{c} \sqrt{1 + \frac{2q^{2}}{gh''_{c}}}$$

$$\bigcap_{h'_{c}} h''_{c} = 0,5 \sqrt{1 + \frac{8\alpha q^{2}}{g(h''_{c})^{3}}}$$

$$\bigcap_{h'} h''_{c} = \sqrt{\frac{8\alpha Q^{2}}{h''_{c}} - 2h'_{c}}$$

$$\bigcap_{h''_{c}} \frac{h'_{c}}{2} \left[\sqrt{1 + \frac{8\alpha q^{2}}{g(h''_{c})^{3}}} - 1 \right]$$

$$\bigcap_{h'_{c}} h''_{c} = 0,5h''_{c} \left(\sqrt{1 + \frac{2h_{lp}}{h''_{c}}} + 2 \right)$$

223 По какой формуле определяется h_c' , при известном значение h_c'' в прямоугольном русле, через $h_{\rm spum}$?

$$\bigcap_{\substack{h''_e = \frac{h}{2}c}} \left(\sqrt{1 - 8\left(\frac{h_{kp}}{h'_e}\right)^3} \right)$$

$$\bigcap_{\substack{h''_e = 0.5h'_e}} \left[\sqrt{1 + 8\left(\frac{h_{kp}}{h'_e}\right)^3} - I \right]$$

$$\bigcap_{\substack{e} = 0.5h'_e} \left[\sqrt{1 + 8P_k} + I \right]$$

$$\bigcap_{\substack{h''_e = 0.3h'_e}} \left[\sqrt{1 + 8\left(\frac{h_{kp}}{h''_e}\right)^3} + I \right]$$

$$\bigcap_{\substack{e} = h'_e} \left(\sqrt{1 + 4P_k} - I \right)$$

224 Укажите на прыжковую функцию?

$$\frac{C}{II}(h) = \frac{\alpha U^{2}}{2g} + \omega \cdot h_{kp}$$

$$\frac{C}{C}(h) = \omega^{3} / B + h_{c}^{"}$$

$$\frac{C}{II}(h) = \frac{\alpha Q^{2}}{g \omega} + \omega h_{\mu T}$$

$$\frac{C}{II}(h) = \frac{\alpha Q^{2}}{g} \frac{B}{\omega^{3}}$$

$$\frac{C}{II}(h) = \frac{\alpha i c^{2}}{g}$$

225 При каких условиях прыжковая функция имеет минимальное значение?

25/2017
$\frac{Q^2 B}{g \omega^3} = P_k = I$ $Q_k < 1$
$\bigcirc O^2 R$
$\frac{\Delta Q}{a^3} = P_k = I$
δα ·
$\mathcal{Q}_{k} < 1$
$Q_k > 1$
$\bigcirc_{k} = 1$
$\mathcal{L}_k = 1$
226 Сколько % может составлять объем расширительного бака от общего объема системы водяного отопления?
 1,% 1,0% 12,6%. 4,5%
○ 20%.
227 Надбавка к теплопотерям помещения, имеющего две и более наружные стены, %.
O 10;
<u> </u>
\bigcirc 20;
O 15;
228 Максимальное расхождение потерь давления между расчетными кольцами в системах с попутным движением теплоносителя, %.
O 20;
10
\circ 5
\bigcirc 3
O 15;
229 Допустимая температура поверхности отопительной панели пола, °C.
O 18
\bigcirc 10
\bigcirc 30
27
\bigcirc 12
230 Допустимая невязка между расчетными кольцами должна быть не более, %.
O 60;
O 80;
O 45;
231 Наружная расчетная температура для проектирования отопительных систем, °C.
среднесуточная
абсолютно минимальная температура
температура наиболее холодной пятидневки
С средняя температура
абсолютно максимальная температура

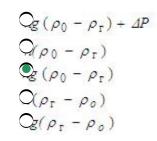
232 Внут	гренняя расчетная температура при проектировании дежурного отопления, °C.
\bigcirc	20;
$\widetilde{\bigcirc}$	10;
_	15;
_	25;
	5
233 He c	уществующий теплоноситель в системах центрального отопления.
\bigcirc	конденсат;
\bigcirc	воздух;
	бензин
\circ	вода
\circ	пар
234 Сист	гемы отопления поддерживают в помещениях и зданиях.
\bigcirc	скорость движения воздуха.
\circ	барометрическое давление.
	нормативную температуру
\circ	относительную влажность.
\circ	теплосодержание воздуха.
235 Сист	гемы отопления поддерживают в помещениях и зданиях.
	нормативную температуру
Ō	барометрическое давление.
Ō	скорость движения воздуха.
Ō	теплосодержание воздуха.
\circ	относительную влажность.
236 Мин	имальное количество циркуляционных насосов.
O	4;
	1
\bigcirc	3;
\bigcirc	5;
	2
	koльko процентов должно быть меньше расчетное давление в koльце в зависимости от го начального давления?
\circ	8
\circ	20;
	15
\circ	12
\circ	10
238 Согл	асно своей инерционности наружные ограждающие конструкции на сколько видов делятся?
\circ	3
00@00	1
Ŏ	4
Ŏ	5;
Ŏ	2
239 Для линии, М	нормальной работы элеватора максимальная разность давления в подающей и обратной ППа.

44/121

\circ	0,05	
	0,15	
\sim	0,1 0,2	
\sim	0,25;	
	·,,	
240 He c	уществующий способ регулирования центральной системы отопления.	
O	центральное;	
<u> </u>	естественное	
\sim	качественное;	
\sim	количественное; местное;	
\cup	McCinoc,	
241 CkoJ	лько МПа должно быть начальное давление пара в паропрводе длиной в 100 м?	
\bigcirc	0,1;	
	0.01	
_	0,2;	
\circ	0,005;	
\circ	0,05;	
242 В па	ровых системах отопления, кроме паропровода какая линия необходима?	
\circ	нефтепровод	
\circ	водопровод	
\bigcirc	воздуховод	
	конденсатопровод	
\circ	газопровод	
243 Допустимое значение начального давления (kПа) в трубопроводе водяного отопления при присоединении его k теплосети?		
$\overline{}$	8-10	
	10u12	
$\tilde{\circ}$	9-10	
$\tilde{\bigcirc}$	12-14	
Ŏ	6-8	
244 Источником тепла системы воздушного отопления является.		
$\overline{}$	насос	
	Калорифер	
$\tilde{\bigcirc}$	элеватор	
Ŏ	бойлер	
\circ	котел	
245 Предел давления в паровых системах отопления, МПа.		
\bigcirc	1,2	
$\widetilde{\cap}$	0,07	
Ŏ	0,8	
Ŏ	0.7	
	0,001	
246 kako	е выражение уравнение Ван-дер-Ваальса	

 $\bigcirc + b)(P - v) = RT$

$$(P - \frac{a}{\rho})(\upsilon - b) = RT;$$

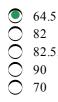

$$(P - \frac{a}{\upsilon^2})(\rho + b) = RT;$$

$$(P - \upsilon)(\upsilon - b) = RT;$$

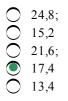
$$(P - \upsilon)(\upsilon - b) = RT;$$

$$(P + \frac{a}{\upsilon^2})(\upsilon - b) = PT;$$

247 Гравитационное давление в отопительных системах, определяется по формуле, Па, (h – разность высот между центрами охлаждения и нагревания, ρ₀, ρ_r - плотность охлажденнойи горячей воды, g – ускорение свободного падения, ΔP – разность давлений).


248 Уклон магистральных труб в водяных системах отопления:

\bigcirc	0,008;
\bigcirc	0,1
\bigcirc	0,01
	0,003
\bigcirc	0.02


249 Согласно скольким факторам делятся дополнительные теплопотери в жилых зданиях?

250 Чему равна средняя температура воды в отопительных приборах?

251 Чему равно количество теплоносителя протекающего через нагревательный прибор поверхностью 1 экм, кг/ час?.

252 Температура воздуха, которая подается в рабочую зону при воздушном отоплении, °С.

\bigcirc	45;
	25

	Ξ	10 15 35;
253		какой формуле вычисляется площадь поверхности нагрева открыто расположенных труб $d_{\rm H}~-$ наружный диаметр трубы, $\ell_{ m r}$ — длина трубы)?
		$\begin{aligned} &= 1,78 \cdot \pi \cdot d_H \cdot \ell_T \\ &= 3,28 \cdot \pi \cdot d_H \cdot \ell_T \\ &= 1,14 \cdot \pi \cdot d_H \cdot \ell_T \\ &= 1,18 \cdot \pi \cdot d_H \cdot \ell_T \\ &= 2,78 \cdot \pi \cdot d_H \cdot \ell_T \end{aligned}$
254	kakи	е процессы входят в обработку вентиляционного воздуха?
	0000	очистка воздуха от пыли ликвидация запаха и бактерии в вентиляционном воздухе ликвидация запаха и бактерии в вентиляционном воздухе очистка воздуха от пыли, нагревание воздуха, увлажнение воздуха, осушка и охлаждение воздуха, ликвидация запаха и бактерии в вентиляционном воздухе нагревание и увлажнение воздуха
255	kakи	е преимущества имеет механическая система вентиляции?
	000 000	дает возможность притока и вытяжки воздуха на дальние расстояния не зависит от изменения температуры и давления наружного воздуха, скорости ветра, дает возможность притока и вытяжки воздуха на дальние расстояния не зависит от изменения скорости ветра воздух не подается на значительные расстояния нет расхода энергии
256	Давл	ление воздуха в воздуховодах kakим прибором измеряется?
	00000	психрометром; гигрометром; барометром-анероидом; манометром спидометром;
257	При	kakoм условии работает естественная система вентиляции?
	00000	при разности расходов наружного и внутреннего воздуха; при разности объемных весов внутреннего и наружного воздуха; при разности скоростей при разности плотностей при разности давления наружного и внутреннего воздуха
258	kakи	е основные конструктивные элементы имеет вытяжная система вентиляции?
	00000	Вытяжные решетки, калорифер, приточная камера, воздуховоды. Вытяжная шахта, воздуховоды, калорифер. Вытяжная камера, калорифер, фильтр, вытяжная шахта. Вытяжные решетки, воздуховоды, вытяжная камера, вытяжная шахта. вытяжная шахта, фильтр, воздуховоды.
259	Mex	аническая система вентиляции работает?
	\bigcirc	при помощи воздушной струи;

1/25/2017

5/2017	
\circ	при помощи калориферов;
	при помощи вентиляторов
\bigcirc	при помощи фильтров;
\circ	при помощи воздуховодов;
260 kakı	не требования и факторы должны учитываться при выборе системы вентиляции?
\circ	должны учитываться санитарно-гигиенические требования
	должны учитываться санитарно-гигиенические и технологические требования
Ō	должны учитываться санитарно-гигиенические и технологические требования, а также экономические факторы;
\bigcirc	должны учитываться экономические факторы
\circ	должны учитываться технологические требования
261 Что	такое система вентиляции?
\circ	устройство для удаления воздуха
\circ	устройство для подачи воздуха
\circ	устройство для обработки воздуха
\circ	устройство для транспортирования воздуха
	совокупность устройств для обработки, транспортирования, подачи и удаления воздуха
262 Что	такое вентиляционные установки?
\circ	устройства, обеспечивающие в помещении нормальную скорость движения воздуха.
\circ	устройства, обеспечивающие в помещении нормальную чистоту воздуха
<u> </u>	устройства, обеспечивающие в помещении нормальное состояние воздушной среды
Q	устройства, обеспечивающие в помещении нормальную относительную влажность воздуха.
\circ	устройства, обеспечивающие в помещении нормальную температуру воздуха
263	
	мое термическое сопротивление конструкции R ₀ тр по какой формуле вычисляется (t _в –
темпер	атура внутреннего воздуха, t _н – температура наружного воздуха, ?t ⁿ – нормированный
	д температур, о _в — коэффициент теплоотдачи внутренней поверхности конструкции, n —
200	очный коэффициент к разности температур)?
_	
\mathcal{L}_{0}	$qp = \frac{l_s - l_H}{l_s}$
_	$\Delta t^{r_s} \cdot \alpha_g$
Ω_{ϵ}	$ \frac{np}{\Delta t^n \cdot \alpha_e} = \frac{t_e - t_h}{\Delta t^n \cdot \alpha_e} $ $ \frac{np}{\Delta t^n} = \frac{t_e}{\Delta t^n} \cdot n $
	$\frac{\Delta t}{t}$
No.	$\frac{dp}{\Delta t^n \cdot \alpha_{\rm B}}$
	$np = \frac{t_s - t_H}{\Delta t^n \cdot c} \cdot n$

264 kakue виды вредных выделений имеются в общественных зданиях в теплый период года ? 1. тепловыделения. 2. влаговыделения. 3. газовыделения. 4. пылевыделения.

	все виды
\bigcirc	никакие;
\bigcirc	только 1, 4;
\bigcirc	только 2, 4;
\bigcirc	только 1, 3;

$R = R_{II} + 2R_{\perp}$
3
$\bigcirc = (R_{\text{TT}} + R_{\perp})/3$

	(III) -		
272 B kal	272 В kakoм виде теплопередачи происходит перенос вещества.		
	при теплопередаче вещество не переносится. теплопроводность; излучение; конвекция во всех видах теплопередачи;		
273 От че	его зависит коэффициент теплопроводности наружных ограждающих конструкций.		
000	от материала ограждающих конструкций от температуры наружного воздуха от температуры внутреннего воздуха от поверхности ограждающих конструкций; от массы ограждающих конструкций		
274 kak k	лассифицируются устройства для воздушной завесы?		
000	по режиму работы по направлению струи при подаче воздуха снизу вверх и сверху вниз при горизонтальной подаче воздуха по режиму работы и направлению струи, по месту воздухозабора и температуре воздуха		
275 Осно	вной целью одоризации впажного воздуха является?		
	ионирование воздуха озонирование воздуха очистка воздуха от бактерий и удаление неприятных запахов увлажнение воздуха облучение воздуха ультрафиолетовыми лучами		
276 kak классифицируются фильтры для очистки воздуха?			
Q	тканевые бумажные, тканевые, масляные, электростатические электростатические масляные бумажные		
277 Влия помещен	ние kakux сил не используется для удаления пыли из приточного воздуха, подаваемого в ие?		
	сил тяжести сил трения ядерные силы сил инерции сил гравитации;		
278 Для І	каких целей используются воздушные фильтры ?		
	для осушения воздуха; для очистки воздуха для нагрева воздуха; для увлажнения воздуха;		

1/25/2017	
\bigcirc	для охлаждения воздуха;
Ŭ	
279 kak l	классифицируются устройства для нагрева вентиляционного воздуха?
	по виду теплоносителя и их конструкции
\sim	калориферы, работающие при горячей воде и паре;
\sim	пластинчатые калориферы электрические калориферы
\simeq	огневые калориферы
$\overline{}$	отперые калориферы
280 kak	классифицируются устройства для очистки воздуха от пыли?
	по назначению и принципу действия
	пылеосадочная камера
\sim	воздушные фильтры
$\widetilde{\bigcirc}$	мокрый способ очистки воздуха
$\tilde{\bigcirc}$	сухой метод очистки воздуха
· ·	
281 По k	акой причине происходит процесс теплообмена в теплообменных аппаратах CkB?
	В результате разницы температур сред
Ŏ	В результате разницы скоростей сред;
Ŏ	В результате разницы расходов сред
\bigcirc	В результате разницы парциальных давлений сред;
\circ	В результате разных объемов сред
282 Что	является рабочей средой в системах кондиционирования воздуха?
	обрабатываемый воздух
$\tilde{\bigcirc}$	подающие воздуховоды
$\tilde{\bigcirc}$	калориферы
Ŏ	подающий вентилятор
Ŏ	фильтр для очистки воздуха
202 C Iro	kož voji je prvi kovajenog godinegom i p CkD
205 C Ka	кой целью применяются сепараторы в CkB.
	для улавливания водяных капель в воздухе.
\bigcirc	для очистки воздуха
\circ	для увлажнения воздуха
Q	для охлаждения воздуха;
\circ	для нагрева воздуха;
284 C ka	кой целью используются комфортные системы кондиционирования воздуха?
\circ	для нагрева подаваемого воздуха
\bigcirc	для фильтрации подаваемого воздуха
	для обеспечения условий комфортности внутри здания
Q	для увеличения относительной влажности внутреннего воздуха
\circ	для ведения производственных процессов
285 Где	в основном применяются технологические системы kB?
\bigcirc	в ресторанах;
$\tilde{\cap}$	в жилых зданиях
Ŏ	в спортивных залах
Ŏ	в кинотеатрах.
	в промышленных зданиях;

286 kak называется температура выравнивания физических свойств между ненасыщенным воздухом и насыщенным паром обрабатываемого воздуха?

293 Согласно какому выражению построена I-d диаграмма влажного воздуха? I- энтальпия влажного воздуха kДж/kг; d- влагосодержание воздуха r/kr; t- температура воздуха $^{\circ}C$.

энтальпия и энтропия; энтальпия и температура; температура и давление энтальпия и давление

$$\bigcirc = 1,8 \cdot 10^{-3} \text{ t} \cdot \text{d}$$

$$\bigcirc = 2,5d + 1,005t + 1,8 \cdot 10^{-3} \text{ t} \cdot \text{d}$$

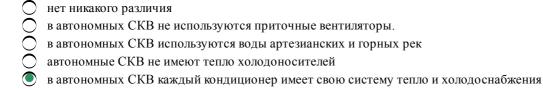
$$\bigcirc = \frac{2,5d}{1,005t} + 1,8 \cdot 10^{-3} \text{ t} \cdot \text{d}$$

$$\bigcirc = 2,5d + 1,005t$$

$$\bigcirc = 2,5d + 1,8 \cdot 10^{-3} \text{ t} \cdot \text{d}$$

294 Между какими из перечисленных ниже параметров, характеризующими состояние влажного воздуха, отображаются зависимости на I - d диаграмме? 1.температура, t°C; 2. Энтальпия, I, kДж/kг; 3. Влагосодержание, d, г/kг; 4. относительная влажность ϕ %. 5.парциальное давления водяных паров, P, Па.; 6.расход воздуха, L, м³/час

\bigcirc	1, 5, 6
\bigcirc	5,6
	1, 2, 3, 4, 5
_	2, 3, 5, 6
\bigcirc	1, 4, 5, 6


295 B центральном кондиционере марки kTЦ 3-40 производится обработка воздуха в объеме L =32000 м³/час. Вычислить относительный расход воздуха.

	0,8
\bigcirc	0,32
\bigcirc	1,5;
\bigcirc	1;
\bigcirc	0,5.

²⁹⁶ В теплый период наружная температура района строительства составляет 35°С. какую расчетную температуру внутреннего воздуха следует принять при проектировании СkВ?

20 °C
 27 °C
 32 °C;
 25 °C;
 22 °C

297 каковы основные различия между автономной и неавтономной системами кондиционирования воздуха по расположению основных элементов?

298 kakue условия соответствуют режиму изотермического увлажнения воздуха в теплообменных аппаратах CkB? 1. I =const; 2. d =const; 3. T =const; 4. I≠const; 5. d≠const; 6. T≠const;

	3, 4, 5
\bigcirc	2, 4, 6;
\bigcirc	1, 5, 6;
\bigcirc	1, 3, 5;
\bigcirc	1, 2, 6;

299 При каком значении относительной влажности, в системах кондиционирования воздуха, обрабатываемый воздух находится в ненасыщенном состоянии на I-d диаграмме?
ненасыщенное состояние не наблюдается. при всех значениях относительной влажности.
300 При каком значении относительной влажности, в системах кондиционирования воздуха, обрабатываемый воздух находится в насыщенном состоянии на I-d диаграмме?
насыщенное состояние не наблюдается. При всех значениях относительной влажности.
301 На I-d диаграмме при каком значении относительной влажности, в системах кондиционирования воздуха, обрабатываемый воздух находится в сверх насыщенном состоянии?
ϕ =100% при всех значениях относительной влажности. Сверх насыщенное состояние не наблюдается. Ниже кривой ϕ =100% ϕ <100%
302 По какой формуле определяется расчетная температура внутреннего воздуха в летний период при расчетной наружной температуре воздуха $t_{\rm H} > 30^{\rm 0}{\rm C}$?
$ Q_{\rm E} = t_{\rm H} - 10^{\circ} \text{C} Q_{\rm E} = t_{\rm H} - 0.4 (t_{\rm H} - 30) Q_{\rm E} = 25 - 0.4 (t_{\rm H} - 30) Q_{\rm E} = 0.4 (t_{\rm H} - 30) Q_{\rm E} = 25 + 0.4 (t_{\rm H} - 30) $
303 Укажите дифференциальную уравнение внутренней энергии.
$Qu = Tds + pd\upsilon + \upsilon dp$ $Qu = Tds + pd\upsilon;$ $Qu = Tds - \upsilon dp;$ $Qu = Tds + \upsilon dp;$ $Qu = Tds - pd\upsilon;$
304 На основание какого закона был открыт уравнение клапейрона –Менделеева?
 ШАРЛ; Бойлл-Мариотт; Амага; ВАВАГАДРО ГЕЙ-Люссак;
305 какой температурной шкалой пользуются в Англии и в Америке?
Реомюр;

\circ	Кельвин
Ŏ	Ренкин
$\widecheck{\bigcirc}$	Фаренгейт
\sim	Цельсий
\cup	цельени
	овной целью смешивания наружного и удаляемого из помещения воздуха для повторной а циркуляцию в системах центрального кондиционирования является?
\circ	повышение надежности системы
Ŏ	очистка от вредных примесей удаляемого воздуха;
Ŏ	экономия наружного воздуха
	уменьшение энергозатрат на обработку воздуха
$\tilde{\bigcirc}$	уменьшение потерь давления в системе
Ŭ	
307 kakи	им способом можно достигнуть сбережения расхода энергии в работе CkB?
\bigcirc	при использовании нефтяных продуктов
\circ	при использовании природных газов
\circ	не возможно сбережение расхода энергии в работе СКВ;
\circ	при использовании каменного угля
	при использовании воды артезианских и горных рек
	подразумевается под понятием обработка воздуха условно сухим методом в поверхностных менниках?
	обработка воздуха при политропическом режиме
$\tilde{\bigcirc}$	нагрев воздуха при постоянной энтальпии
$\widetilde{\bigcirc}$	охлаждение воздуха при постоянной энтальпии
$\widetilde{\bigcirc}$	изотермическое увлажнение воздуха
	обработка воздуха при постоянном влагосодержании
	й из параметров, характеризующий состояние воздуха в процессе его обработки в режиме -сухое охлаждение' в теплообменном аппарате центрального кондиционера, остается ным?
\circ	парциальное давление;
Ŏ	температура;
Ŏ	температурный напор;
	влагосодержание
Ŏ	энтальпия;
котором	называется в паро-компрессорных холодильных установках теплообменный аппарат, в происходит переход паров холодильного агента в жидкое состояние за счет отнятия скрытой парообразования?
\bigcirc	генератор
	конденсатор
$\tilde{\bigcirc}$	компрессор
$\tilde{\bigcirc}$	испаритель
Ŏ	маслоотделитель;
311 крит	ерий, определяющий характер течения воздуха в воздуховодах системы кондиционирования?
•	
$\widetilde{\mathcal{C}}$	такой критерий отсутствует.
\supset	критерий Граскофа;
Ŏ	критерий Прандтля;
Ŏ	число Луиса;
	число Рейнольдса

1/25/2017

\bigcirc	термометр.
\bigcirc	манометр.
	пьезометр

вискозиметр;

313 kakoe давление определяет состояние газа

атмосферное давление;

барометрическое давление;

манометрическое давление;

абсолютное давление

избыточное давление:

314 По какой формуле определяется гидравлический уклон фильтрационного (ламинарный режим) потока?

$$O_{\mathbf{J_n}} = \frac{\left(z + \frac{P_I}{\lambda} + \frac{U_I^2}{2g}\right) - \left(z_2 + \frac{P_2}{\gamma} + \frac{U_2^2}{2g}\right)}{\ell}$$

$$J_{\mathbf{a}} = \frac{\left(z + \frac{P_{I}}{\delta y}\right) - \left(z_{2} + \frac{P_{2}}{\delta y}\right)}{\ell}$$

$$O_{\mathbf{n}} = \frac{P_{1} - P_{2}}{\gamma}$$

$$J_{\mathbf{n}} = \frac{P_{1} - P_{2}}{\ell}$$

$$\int_{\mathbf{a}} = \frac{\left(\frac{U_1^2}{2g} - \frac{U_2^2}{2g}\right)}{\ell}$$

$$\int_{\mathbf{n}} = \frac{H_1 + H_2}{I}$$

315 Для какого вида движение грунтовых вод, при линейном закон фильтрации, применима уравнение $q = K_{\phi} \cdot h \left(i - \frac{dh}{dh} \right)$?

- уравнение е движения фильтрационного потока при нелинейном законе фильтрации
- уравнение установившегося равномерного движения фильтрационного потока
- уравнение установившегося неравномерного движения фильтрационного потока
- уравнение установившегося равномерного движения фильтрационного потока уравнение установившегося неравномерного движения фильтрационного потока
- 316 Укажите закон Амага

$$Q = \sum s_i$$

$$Q = \sum p_i$$

$$\bigcirc = \sum V_i$$

$$\Omega = \sum M_i$$

$$\bigcirc = \sum i_i$$

317 Укажите уравнение кларейрона для данной массы газа

1/25/2017	
\circ	$P_{\mathcal{V}} = \rho RT$;
\mathcal{O}	$PT = \upsilon \rho$ $Pb\upsilon = mRT;$
Ŏ	$PT = \rho RCv$;
318 Осн	овной механизм процесса охлаждения в камере рассеивания центрального кондиционера дит?
\circ	из-за скоростного течения воздуха в камере
	из-за нахождения сепараторов в камере рассеивания
	из-за процесса тепло масса обмена между воздухом и хладагентом из-за накопления на дне камеры хладагента
Ŏ	из-за меняющегося поперечного сечения труб камеры
	очником искусственного холода для охлаждения воздуха в системах кондиционирования т. 1. вода артезианских колодцев 2. вода горных рек 3. охлаждающие машины 4. природный газ
\circ	2, 3;
_	1, 2, 4;
	2, 4 3;
Ŏ	3; 3, 4;
320 Сте	пень сухости водяного пара на kakux пределах может измениться?
\circ	0,1-0,2;
	0÷1; 0,5÷1;
$\tilde{\circ}$	0÷0,5;
\circ	не меняется;
	чего проводятся аэродинамические расчеты воздуховодов в центральных системах онирования воздуха?
	для определения диаметров воздуховодов и общих потерь давления в системе
O	для определения расхода воздуха
\sim	для определения начальной и конечной температуры воздуха для определения начальной и конечной энтальпии воздуха
$\tilde{\circ}$	для определения относительной влажности воздуха
322 kaka	я величина определяет параметра влажного пара?
\circ	температура;
\sim	давление; плотность;
\odot	степень сухости
\circ	объем;
323 .Как	and the state of t
КОН	диционирования при скорости течения воздуха $\vartheta = 3$ м / сек. в воздуховоде с
поп	еречным сечением $S = 0,4 \text{ m}^2$ за 1 час?
•	4320 m^3
\circ	4000 m ³
\mathcal{C}	360 m^3 $1,2 \text{ m}^3$
Ŏ	900 м ³

324 Укажите дифференциалы давление для переменных v и T

1/25/2017

325. По какой формуле определяется объем воздуха V, движущегося со скоростью 9 в воздуховоде диаметром d за время t?

$$V = \frac{4 \cdot \theta \cdot t}{\pi d^2}$$

$$V = \frac{\pi d^2}{4 \cdot \theta} \cdot t$$

$$V = \frac{\pi d^2}{4} \cdot \theta \cdot t$$

$$V = \frac{\pi d^2}{4} \cdot \theta \cdot t$$

$$V = \frac{d \cdot \theta}{t}$$

- 326 Укажите единицу измерение давления в новым международном измерительный системе
- 327 Укажите закон Далтона

$$\begin{array}{l}
\bigcirc = \sum V_{i} \\
\bigcirc = \sum p_{i} \\
\bigcirc = \sum s_{i} \\
\bigcirc = \sum i_{i} \\
\bigcirc M = \sum M_{i}
\end{array}$$

По какой формуле определяются потери давления воздуха по причине местных сопротивлений на участке l ?(R — удельные потери давления на 1м длины прямолинейного участка воздуховода, Па/м;

 $\beta_{\kappa\kappa}$ — коэффициент фактической шероховатости внутренней поверхности воздуховода; $\sum \xi$ -сумма коэффициентов местных сопротивлений;

 ${
m P}_{\! d}$ - динами ческое давлени е воздуха на участке, Па).

$$\begin{aligned} & \Omega P = \sum \xi P_d + R \beta_{kk} l \\ & \Omega P = R \beta_{kk} l \\ & \Omega P = P_d \sum \xi \\ & \Omega P = \frac{R \beta_{kk}}{P_d} l \\ & \Omega P = \sum \xi P_d R \beta_{kk} l \end{aligned}$$

329

По какой формуле определяются общие потери давления воздуха на участке 1?

(R – удельные потери давления на 1м длины прямолинейного участка воздуховода, Па/м; β_{кк} – коэффициент фактической шероховатости внутренней поверхности воздуховода;

 $\sum \xi$ -сумма коэффициентов местных сопротивлений; P_d - динамическое давление воздуха на участке, Πa).

$$\begin{aligned} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

330 kak называется схема включения потребителей горячей воды в тепловую сеть, с непосредственным отбором воды из тепловой сети?

\bigcirc	закрытая
	открытая
\bigcirc	независимая
\bigcirc	местная
\bigcirc	статическая

331 kak называется схема включения потребителей горячей воды в тепловую сеть, через промежуточный поверхностный подогреватель?

\bigcirc	открытая
\bigcirc	местная
\bigcirc	статическая
\bigcirc	зависимая
	закрытая

332 Для подготовки горячей воды какая схема включения в тепловую сеть подогревателей не используется?

- предвключенная одноступенчятая параллельная
 предвключенная
 трехтсупенчатая последовательная
 двухступенчатая смешанная
- двухступенчатая последовательная

333 С какой целью проводится гидравлический расчет тепловых сетей?

- для определения эквивалентной длины участков и термических удлинений
 для определения диаметров трубопроводов и потерь давления в них
 для определения диаметров и длин участков трубопроводов
- для определения диаметров и длины трубопроводов
 для определения потерь давления и длины трубопроводов
- 334 С какой целью строится пьезометрический график тепловых сетей?

пет правильного ответа

Для определения высоты зданий

Для определения термического расширения в любом участке сети

🔘 для определения диаметра трубопровода в любой точки сети

🔘 для определения напора и перепадов напора в любой точке тепловой сети

335 По какой формуле определяется смоченный периметр для открытого русла трапецидального сечения?

$$\begin{aligned}
& = 2h\sqrt{l+m^2} \\
& = b + 2h\sqrt{l+m^2} \\
& = 2h\sqrt{m^2 + l} \\
& = bm + \sqrt{l+m^2} \\
& = h\sqrt{l+m^2 - m}
\end{aligned}$$

336 По какой формуле определяется гидравлически наивыгоднейшее сечение канала (β)?

$$\beta_{T.H.} = 2h\sqrt{m^2 - 1}$$

$$\beta_{T.H.} = 2\left(\sqrt{1 + m^2} - m\right)$$

$$\beta_{T.H.} = 2m + \sqrt{1 + m^2}$$

$$\beta_{T.H.} = bm + \sqrt{1 + m^2}$$

$$\beta_{T.H.} = \sqrt{1 + m^2} - m$$

337 В чем различие установившегося движения от неустановившегося?

при неустановившегося движении скорость зависит только от координат пространства при установившегося движение в отличие от неустановившегося скорость и расход во времени изменяются

установившееся движение может быть только равномерным

при установившегося движение в отличие от неустановившегося скорость и расход во времени не изменяются
 при установившемся движение скорость зависит от времени

338 kak называется элемент тепловой сети предназначенный для восприятия и передачи нагрузок на несущие конструкции или же на грунт?

345 При каких условиях образуется совершенный гидравлический прыжок?

61/121

25/2017
$\widetilde{h}_c'' > 2h_c'$
$\bigcirc_{\!\!\scriptscriptstyle\mathcal{G}}=h_{\scriptscriptstyle\mathcal{G}}$
$O_c = 2h_{kp}$
$\widehat{h_c''} = \frac{1}{3}h_c'$
346 При kakux условиях образуется надвинутый прыжок?
$\bigcirc_{\!\scriptscriptstyle\mathcal{S}}=h_{k\!\scriptscriptstyle\mathbf{a}}$
$\Omega_{\delta} < h_{c}^{"}$
$\mathfrak{D}_{\delta} > h_{\bullet}^{"}$
$\bigcirc_{\varepsilon} = h_{\varepsilon}''$
$\bigcirc_{\varepsilon} = h_{\varepsilon}^{t}$
347 При каких условиях образуется отчитанный прыжок?
$\Omega_c' < h_c'$
$igotimes_{c}^{t} > h_{\delta}$
$\bigcirc_c < h_{cm}$
$\bigcirc_{\!\scriptscriptstyle\mathcal{E}} = h_{\scriptscriptstyle\mathcal{E}}$
$\bigcirc_{\varepsilon} < h_{\varepsilon}$
348 На основе какого закона выводится основное уравнение гидравлического прыжка?
на основе закона сохранения массы жидкости.
 на основе теоремы об изменении количества движения (закон сохранения импульса сил) на основе закона сохранения энергии
на основе уравнение неразрывностина основе уравнения Бернулли
349 Где располагается гидравлический прыжок по отношению к сооружению?
после критической глубины;
после сооружения, в НБдо сооружения в НБ
после бытовой глубины в НБ;
перед первой сопряжений глубиной.
350 Через kakyю глубины происходит изменении состояние потока при гидравлическом прыжке?
\mathbb{Q} рез нормальную (h_a)
$igotimes$ рез критическую (h_{ip})
через вторую сопряженную глубинучерез максимальную глубинучерез первую сопряженную глубину

351 Через какие конструкции происходят теплопотери?
 междуэтажные перекрытия перегородки внутренние двери внутренние стены наружные ограждающие конструкции
352 Посредством чего соединены между собой газопроводы высокого, среднего, низкого давлений?
 компрессоров вентилей кранов задвижек регуляторов давления 353 Определить скорость течения газа в газопроводе диаметром 500 мм и имеющим расход 720 м³/ч
$(\pi = 3, 2).$
 4 m/cek 2 m/cek 5 m/cek 10 m/cek 6 m/cek
354 каких из нижеуказанных диаграммах целесообразно показывать техническую работу газа?
Диаграмме iT1; Фиаграмме pv Диаграмме Ts; диаграмме is; диаграмме pT1;
355 Для kakux режимов работы koльцевых систем газоснабжения выполняется их гидравлический расчет ?
 Для двух нормальных и двух аварийных режимов только лишь раз - для нормального режима два раза - для нормального и аварийного режимов трижды − для аварийных и одного нормального режимов двух нормальных режимов
356 М ожет ли при условии $h'_c = h''_c = h_{g_0}$ возникнуть гидра влический прыжок?
Опи $h_0 = h_{cw}$ • невозможно • возможно • при определенных условиях • Пи $h_{ky} = h_0$
357 Как связаны между собой сопряженные глубины h_c' и h_c''
Оши $h''_c = h_{kp}$, $h''_c = 1$ Ом меньше h'_c , тем меньше h''_c Ом меньше h'_c , тем больше h''_c Оши $h'_c > h_{kp}$, $h'_c < h_{kp}$

 $\check{\text{чем}}$ меньше h_c' , тем больше h_c'' и наоборот

- 358 По основе какого уравнения определяют потери энергии в гидравлическом прыжке?
 - уравнение равномерного движения.
 - уравнения Беланже;
 - уравнения Бернулли
 - уравнения Буссинеска;
 - уравнение Эйлера
- 359 По какой формуле определяют потери энергии (напора) в гидравлическом прыжке?

$$\bigcap_{h_{T_p}} = \frac{h_c'' - h_c'}{4h}$$

$$\hat{h}_{T_{p_1}} = \frac{\left(h_c'' - h_c'\right)}{4h_c' \cdot h_c''}$$

$$\bigcap_{n_{Tp}} = \frac{h_c'' + h_c'}{\varpi_1 + \varpi_2}$$

360 какое их этих уравнений является уравнением гидравлического прыжка?

$$\bigcap_{\alpha,\alpha} Q^{2} \left(\frac{1}{\omega_{2}} - \frac{1}{\omega_{1}} \right) \Delta t = \Delta m \upsilon$$

$$\frac{QQ^2}{g\,\omega_1} + \frac{\omega^3}{B}$$

$$\frac{\mathbb{Q}_{Q^2}}{g \omega_1} + h'_{\psi F} \cdot \omega_1 = \frac{\alpha Q^2}{g \omega_2} + h''_{\psi F} \cdot \omega_2$$

$$\bigcap_{h_1} + \frac{\alpha \mathcal{Q}^2}{2g\,\varpi_1^2} + h_2 + \frac{\alpha \mathcal{Q}^2}{2g\,\varpi_2^2}$$

$$\frac{Q_Q}{2g} = \frac{\omega^3}{B_{kp}}$$

- 361 В зависимости от соотношения сопряженных глубин и условий прыжки различают?
 - О несовершенный, поверхностный, подтопленный
 - О совершенный поверхностный, подпертый
 - подтопленный, неподтопленный, совершенный
 - поверхностный, волнистый, совершенный
 - 🔘 совершенный и несовершенный (волнистый), подпертый, подтопленный, поверхностный
- 362 какие делают допущения при выводе уравнении гидравлического прыжка?
 - учитываются проекция силы тяжести и сила гидродинамического давления
 - учитывается только сила тяжести и сила гидростатического давления
 - не учитываются проекция силы тяжести и силы трения, возникающие на стенках и дна русла
 - учитывают проекцию силы тяжести
 - учитывают силы трения

363 В области гидравлического прыжка какие силы участвуют?

сила тяжести, сила Архимеда

- собственный вес жидкости проекция силы тяжести сила трения потока о дно и стенки русла, сила гидростатического давления?
- сила инерции, сила поверхностного натяжениясила поверхностного натяжения
- сила гидростатического давления, сила трения

364 По какой формуле проводится расист комбинированного гасителя?

$$Q_{\mathbf{BO}} = E_0 - H + d$$

$$\bigcirc \leq d + D_{10} + H_1$$

$$Q \leq d - D_{m0} - H_1$$

$$Q = H_{10} - H_1 + d$$

$$Q = E_0 - H - d$$

365 Чему равна сжатая глубина при истечение из-под затвора?

$$Q = 0.85\varepsilon \cdot \dot{a}$$

$$Q_{ce} = \beta \cdot \alpha$$

$$Q_{\alpha} = \varepsilon \cdot \alpha = h'_{\epsilon}$$

366 По какой формуле определяется сжатая глубина (h_{α}) ?

$$Q = tE_0 - h_2$$

$$Q = (P - 0.5h_{\text{max}})$$

$$Q = P + h_0'$$

$$Q_c = \varphi b \sqrt{2g(H_s - h_{ce})}$$

367 Исходя из какой условия определяется высота водобойной стенки (Рст)?

$$\mathbb{Q} \leq H_{\mathbf{b}} - H_{\mathbf{1}}$$

$$\bigcirc \leq E_{10} + H_1$$

$$Q_{0} = h_{t}'' + H_{1}$$

$$Q = H_1 + d - D_{10}$$

$$Q = H_1 - D_{00}$$

368 По какой формуле определяется глубина колодца (д)?

$$O = h_z^{\mu} + \Delta z$$

$$\bigcirc = h_s + h_t'' + \Delta z$$

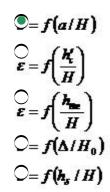
$$\bigcirc_c = h_s + \Delta z$$

$$\bigcirc_c = h_s - d$$

 $\bigcirc = h_z'' - \Delta z - h_z$

369 На каком участке находится бытовая глубина?

\bigcirc	в канале до сооружения в ВБ
	в канале после сооружения, в НБ
\bigcirc	до второй сопряженной глубины.
\bigcirc	до сжатой глубины
\bigcirc	после первой сопряженной глубины.


370 На каком участке образуется сжатая глубина при истечении из-под щита?

\bigcirc	после бытовой глубины
	на расстоянии от затвора, в НБ
\bigcirc	на участке верхнего бъефа
\bigcirc	на гребне водослива, без затвора.
\bigcirc	после второй сопряженной глубины.

371 Виды гидравлического прыжка в зависимости от их расположения к сечению за гидротехническим сооружением?

P	ыжок в предельном положение $h_{\varepsilon}'' = h_{\delta}$, отогнанный и надвинутый прыжки
\bigcirc	прыжок устойчивый и неустойчивый:
\bigcirc	слабый и сильный прыжки:
\bigcirc	волнистый и отогнанный:
\bigcirc	надвинутый и отогнанный прыжки:

372 Определите зависимость коэффициента вертикального сжатия при истечении из-под щита?

373 При каком условии струя является неизотермической?

	температура подаваемой в помещение струи отличается от температуры окружающего воздуха.
Ā	скорость струи постепенно уменьшается.
Ä	скорость движения струя постепенно затухает.
	температура струи равна температуре окружающего воздуха.
$\overline{}$	расход струи постепенно увеличивается.
_	

374 При каком условии струя является изотермической?

	Температура подаваемой в помещение струи равна температуре окружающего воздуха
\bigcirc	при движении струи в помещении происходит искривление струи
\bigcirc	температура струи отличается от температуры окружающего воздуха

25/2017
струя при выходе из отверстия расширяется и ширина ее растет
скорость по мере удаления постепенно уменьшается и затухают
375 По kakим признакам классифицируется система вентиляции?
 □ по размещению приточных отверстий в помещений □ по способам перемещения воздуха, по принципу организации воздухообмена и по назначению □ по воздушным зонам в помещении □ по принципу работы системы □ по размещению вытяжных отверстий в помещении
376 При kakoм условий образуется оттопанный прыжок?
$Q_c = h_s - h_c'$
$ \bigcirc_{c} = h_{s} - h'_{c} $ $ \bigcirc_{c} > h_{s} $ $ \bigcirc_{c} < h_{s} $ $ \bigcirc_{c} = h_{s} $ $ \bigcirc_{c} = 2h_{s} $
$\mathbb{Q}_{\epsilon} < h_s$
Q = h
$\bigcirc = 2h$
377 На каком участке флютбет гасится основная часть избыточной кинетической
$igodot$ на водобой на попурс на рисберме на входе в канал $igodot$ участке где $u' > i_{kp}$
378 При kakих условиях глубина водобойного колодца будет максимальный?
\bigcap_{ϵ} и минимальный значении $h_{\epsilon}'' - h_{\delta}$
\mathbb{Q}_{p} и максимальном значении $h''_{\epsilon} - h_{\delta}$
Q и условии $h''_{\varepsilon} > h'_{kp}$
\mathbb{Q}_{p} и условии $h''_{\varepsilon} > 2h'_{\delta}$
Ω ри условии $h''_{\varepsilon} = h_{\delta}$
379 По какой формуле определяется нормальная глубина в лотке быстротока?
 □ по формуле Павловского; □ по формуле Шези □ по формуле Агроскина; □ по формуле Бахметьева; □ по формуле Манинга;
380 По какой формуле определяется длина гидравлического прыжка, предложенная Павловским Н.Н в прямоугольном русле?
$\bigcirc_{\mathbf{p}} = 4.5h_{\mathbf{c}}^{\mathbf{p}}$
$ \bigcirc_{p} = 4.5h_{c}^{p} $ $ \bigcirc_{p} = 4h'\sqrt{1+2\bar{I}_{k}} $

t,	$=6\bar{I}_{I}$
O , :	$=2.5(1.9h_{c}''-h_{c}')$
ې د	$= 2.5(1.9h_c'' - h_c')$ $= 5(h_c'' - h_c')$
	е режимы сопряжения бьефов образуются при движении потока из под завтра или через с затвором на гребне?
000	совершенный и несовершенный донный, поверхностный, поверхностно -донный донный и совершенный режим поверхностный и отогнанный донный, несовершенный, отогнанный
382 При 1	каком условии образуется подвинутый гидравлический прыжок?
Q.	c k '.
Q =	= 2 <i>h</i> . ^r
Q .	< h _s
Q=	$= h_s$
, Q>	$= 2h'_{\xi}$ $= h_{\delta}$ $= h_{\delta}$
383 kakoй вентиляці	й из них не является основным конструктивным элементом механической системы ии?
000	компенsатор воздухоприемные устройства; приточная камера; воздуховоды; воздухораспределители;
384 каким	ии приборами измеряется ckopocть движения воздуха, подаваемого системой вентиляции?
000	анемометро манометром; термистером; ареометром; психрометром;
385 какие	е схемы не используются в механических системах вентиляции на практике?
000	сверху-вниз сверху-вверх снизу-вниз схемы естественного притока и вытяжки снизу-вверх
386 kak p	ассчитывается входная часть перепада?
	как водоскат как водослив с широким порогом, щелевой водослив как истечение из-под щита как водослив с тонкой стенкой

25/2017			
\circ	как гасительное устройство		
387 Из каких участков состоит быстроток?			
0000	из водостока и гасителя входного, водоската и выходного участков из входного и выходного из четырех участков из двух участков		
388 Виді	ы гасительных устройств?		
00000	шпунтовая стенка, водоупор водобойный колодец, водобайная стенка, комбинированный тип гасителя дюкер, акведук быстроток, консольный перепад перепад, водобойная стенка		
389 Назн	пачение гасительных устройств?		
0000	для перехода потока из ВБ в НБ для гашения избытка кинетической энергии в НБ сооружения для создания бурного потока для гашение потенциальной энергии для создания отоганного прыжка		
390 Фун	кции φ и ψ называются сопряженными, что это означает?		
00000	зная одну функцию, можно найти другую эти функции равны эти функции пропорциональны определяется в случае когда режим движения турбулентный их связывают уравнение неразрывности		
391 Зави	сит ли удельная энергия фильтрационного потока от скорости (при ламинарном режиме я)?		
00000	частично; нет зависит в квадратной степени; периодически; да;		
392 Чему	у равна удельная энергия фильтрационного потока при ламинарном режиме движения?		
	$= \frac{1}{z} + P/\gamma$ $= z + \frac{P}{\gamma}$ $= H_0 + \frac{\alpha v^2}{rg}$ $= P/\gamma$ $= z - P/\gamma$		
393 kako	е движение грунтового потока называется установившемся?		
\circ	фильтрационный расход зависит от времени		

уравнение Бернулли уравнение неразрывности

уравнение Дюпюи уравнение функции тока Уравнение Лапласа

407 kak kлассифицируются устройства аэрации для промышленных зданий?	
дефлекторы	
аэрационные фрамуги	
конструктивное оформление аэрационных устройств	
 аэрация под действием только гравитационных сил и ветра незадуваемые фонари 	
408 kak kлассифицируются устройства для kak kлассифицируются устройства для местной вентиляции? 1. По вытяжным зонтам. 2. По устройствам бортового отсоса. 3. вытяжным шкафам. По воздушным душам.	4.
 По всем 1,3 2,4 1,4 3,4 	
409 В kakoм случае не нарушается линейный закон фильтрации?	
$ \begin{aligned} & \bigcirc \mathbf{e} < \mathbf{Re}_{\mathbf{p}} \\ & \bigcirc \mathbf{e} > \mathbf{Re}_{\mathbf{p}} \\ & \bigcirc \mathbf{e} = 1 - \mathbf{Re}_{\mathbf{p}} \\ & \bigcirc \mathbf{e} = \sqrt{R_{\mathbf{p}}} \\ & \bigcirc \mathbf{e} = \frac{1}{\mathbf{Re}_{\mathbf{p}}} \end{aligned} $	
$\Omega_c > Re_b$	
$\Omega_{\mathbf{e}} = 1 - \mathbf{Re}_{\mathbf{p}}$	
$\mathbf{Re} = \sqrt{\mathbf{R_L}}$	
$\mathbf{Q}_{\mathbf{r}}$	
$Re = \frac{Re_{ip}}{Re_{ip}}$	
410 Что называется фильтрацией?	
движение жидкости в трещиноватых грунтах;	
🔘 движение жидкости в пористой среде	
движение жидкости в однородном грунте;	
	
411 kakoe фильтрационное движение называется напорным?	
если на свободной поверхности потока давление равно атмосферному;	
🖲 движении грунтовых вод сверху и снизу ограниченно водоупорами	
движение грунтовых вод только снизу ограниченно водоупорами	
 О движение грунтовых вод только сверху ограниченно водонепроницаемым участком; О если грунтовый поток ограничен депрессионной кривой 	
412 Чему равны компоненты вихря при поступательном движении фильтрационного потока?	
\sim 2	
$ \bigcirc_{\mathbf{x}} = \sqrt{\boldsymbol{\omega}_{\mathbf{x}} + \boldsymbol{\omega}_{\mathbf{y}}} $	
$\bigcirc_{x} \neq \boldsymbol{\omega_{y}} \neq \boldsymbol{\omega_{z}}$	
$ \bigcirc_{\boldsymbol{\sigma}_{\mathbf{x}}} = \frac{1}{\boldsymbol{\omega}_{\mathbf{y}}} = \frac{1}{\boldsymbol{\omega}_{\mathbf{x}}} $	

413 При плавно- изменяющемся движении грунтовых вод, какая зависимость между скоростью υ и местной скоростью υ

- **○**≠ **u**
- <u>==</u>
- O= 2u
- $O = \frac{1}{v}$
- $Q = \sqrt{u}$

414 По какой формуле определяется критическая глубина на водоскате быстротока, если сечение русла прямоугольное?

$$\bigcirc_{h_{\underline{l}p}} = \sqrt[3]{\frac{\alpha v^2}{g}}$$

$$\bigcirc_{h_{lp}} = \sqrt[3]{\frac{aQ^2}{g}}$$

$$\bigcirc_{h_{lp}} = 0.5 \sqrt{\frac{kv^2}{g}}$$

415 Укажите на движение Лапласа для потенциального движения грунтовых вод?

$$\frac{2P}{\partial x} + \frac{\partial \varphi}{\partial y} + \frac{\partial \varphi}{\partial z} = 0$$

$$\frac{\bigcirc^{1} \varphi}{\partial x^{2}} + \frac{\partial^{2} \varphi}{\partial y^{2}} + \frac{\partial^{2} \varphi}{\partial z^{2}} = 0$$

$$\frac{\partial_{u_x}}{\partial x} + \frac{\partial u_y}{\partial v} + \frac{\partial u_x}{\partial z} = 0$$

$$\frac{\partial P}{\partial x^2} + \frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} = 0$$

$$\frac{\bigcirc^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y} = 0$$

416 При каком уклоне русла строится перепад?

- C=0,001 ÷ 0,005
- 0,25 ÷ 0,35
- C= 0,2 ÷ 0,6
- C= 0,025 ÷ 0,035

$i = i_{ba} > 0$

417 Какие водосливы применяются на входном участке перепада, если расходы изменяются

OT	Q_{max}	ло	0.	•
O1	Y max	до	× min	

\bigcirc	треугольный во	дослив
\sim	r - J	F 1

- щелевые водосливы с трапециидальным сечением
- прямоугольные водосливы водосливы с острым ребром
- трапецеидальный водослив

418 Возможные формы стенки падения перепада?

- наклонная, под углом 30°
- Вертикальная, наклонная или криволинейная
- криволинейная, тонкостенная
- наклонная под углом 50°
- полигональная и вертикальная

419 Что такое жидкость

- нет правильного ответа;
- физическое вещество, способное заполнять пустоты;
- физическое вещество, способное изменять форму под действием сил;
- физическое вещество, способное изменять свой объем;
- физическое вещество, способное течь.

420 Укажите на уравнение Лапласа для функции тока?

$$\frac{\partial^2 \psi}{\partial x} + \frac{\partial^2 \psi}{\partial y} + \frac{\partial^2 \psi}{\partial z} = 0$$

$$\frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial y^2} - \frac{\partial^2 \psi}{\partial z^2} = 0$$

$$\frac{\sum^2 \psi}{\partial x} + \frac{d^2 \psi}{\partial y} + \frac{d^2 \psi}{\partial z} = 0$$

$$\frac{\partial \psi}{\partial x^2} + \frac{\partial \psi}{\partial y^2} + \frac{\partial \psi}{\partial z^2} = 0$$

$$\frac{\nabla \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = 0$$

421 При каком уклоне русла строится быстроток

- \bigcirc 0.02
- O= 0,02 ÷ 0,05
- O=0
- \bigcirc 0.08
- 0=0.01

422 kakue воды называются грунтовыми?

движение воды под действием капиллярных сил;

\bigcirc	движение воды под действием сил вязкости;
\bigcirc	движение воды под действием сил инерции;
\bigcirc	движение воды под действием сил натяжения;
	движение воды под действием сил тяжести

423 В каких состояниях находится вода в грунтах?

\bigcirc	капиллярном, гигроскопическом и гравитационном
	гигроскопическом, пленочном, капиллярном и гравитационном
\bigcirc	капиллярном и гравитационном
\bigcirc	пленочном и капиллярном
\bigcirc	гигроскопическом и капиллярном

424 Укажите на формулу Дюпюи для плавно –изменяющегося фильтрационного потока?

425 В какой зависимости находится скорость всех частиц жидкости потенциального потока от функции тока?

426 какие существуют методы определения коэффициента фильтрации?

	полевой, лабораторный, эмпирический формулы
\bigcirc	полевой и лабораторный
\bigcirc	эмпирический и теоретический
\bigcirc	аналоговый и эмпирический
\bigcirc	лабораторный и теоретический

427 На что указывает уравнение неразрывности записанная для фильтрационного потока?

\bigcirc	объем жидкости остается не постоянной
	данная масса все время занимает один и тот же объем жидкости
\bigcirc	занимаемый объем жидкости не зависит от формы сосуда
\bigcirc	плотность жидкости не постоянна
\bigcirc	данная масса по истечению времени меняется

- когда соблюдаются кинематическое подобие
 - огда учитывают действие всех действуют
- от когда невозможно, при гидродинамическом подобии учесть действие
- когда соблюдаются геометрическое подобие
- Когда соблюдаются динамическое подобие

429 Укажите на критерий Ньютона (Ne)?

$$\mathbf{Re} = \frac{\mathbf{v} \cdot \mathbf{d}}{\mathbf{v}}$$

$$\bigcap_{Ne} = \frac{P}{\rho \cdot W}$$

$$\bigvee_{Ne} = \frac{\sum F}{\rho \cdot \nu}$$

430 Что называется гидродинамической сеткой?

- семейство линий тока расположены под углом 300 К семейству линий потенциала
- семейство линий тока ортогональный с семейством линий равного потенциала (напора)
- семейство линий равного напора пересекающиеся между собой
- семейство линий пересекающиеся между собой
- семейство линий тока параллельны с семейством линий равного потенциала

431 При каких условиях соблюдается кинематическое подобие?

$$QF_{H}/\Sigma F_{H}=M_{F}$$

$$\frac{\mathcal{O}_{H}}{W_{H}} = M_{W}; \frac{o_{H}}{o_{H}} = M_{o}$$

$$\frac{\bigcirc_{\underline{H}}}{D_{\underline{H}}} = M_{o}, \quad \frac{t_{\underline{H}}}{t_{\underline{H}}} = M_{f}, \quad \frac{j_{\underline{H}}}{j_{\underline{H}}} = M_{j}$$

$$\frac{O_H}{\ell_H} = \frac{R_H}{R_H} = \frac{B_H}{B_H} = M_A$$

$$\frac{\mathcal{O}_H}{W_H} = M_W = M_A^3 \; ; \quad \ell_H / \ell_H = M_A$$

432 При каких условиях соблюдается геометрическое подобие гидравлических явлений?

$$Q_H/W_H = M_{\tau}; \ v_H/v_H = M_{\sigma}; \ T_H/T_H = M_{\tau};$$

$$O_{H}/W_{H} = M_{W}$$
; $T_{H}/T_{H} = M_{s}$; $R_{H}/R_{H} = M_{R}$;

$$O_{\mathbf{H}}/P_{\mathbf{H}}=M_{\tau}; \ \boldsymbol{\omega}_{\mathbf{H}}/\boldsymbol{\omega}_{\mathbf{H}}=M_{\sigma}; \ \boldsymbol{\ell}_{\mathbf{H}}/\boldsymbol{\ell}_{\mathbf{H}}=M_{d};$$

$$Q_H / \chi_M = M_T; \ v_H / v_M = M_v; \ T_H / T_M = M_v$$

$$\frac{\ell_H}{\ell_M} = M_4; \quad \frac{\omega_H}{\omega_M} = M_{\omega}; \quad \frac{W_H}{W_M} = M_{W}; \quad \frac{R_H}{R_M} = M_R$$

- 433 Виды режима движения грунтовых вод?
 - Неплавноизменяющиеся и плавноизменяющиеся;
 - Установивший и неустановивший;
 - Переменный и постоянный
 - Ламинарный и турбулентный
 - Вихревое и поступательное;
- 434 Грунтовые воды перемещаются под действием каких сил?
 - под действием сил инерции;

 - под действием сил массовых;
 под действием сил поверхностного натяжения.
 под действием сил тяжести
 под действием сил гидростатическое давления. под действием сил гидростатическое давления.
- 435 Укажите на критерий Рейнольдса?

$$\mathbf{Re} = \frac{\boldsymbol{v} \cdot \boldsymbol{\omega}}{\boldsymbol{\rho} \cdot \boldsymbol{\ell} \boldsymbol{v}}$$

$$\mathbf{Re} = \frac{\mathbf{v} \cdot \mathbf{d}}{\mathbf{v}}$$

$$\mathbf{Re} = \frac{\mathbf{v} \cdot \boldsymbol{\rho}}{\mathbf{v}}$$

$$\mathbf{Re} = \frac{\mathbf{v} \cdot \mathbf{\ell}}{\mathbf{u}}$$

$$\mathbf{Re} = \frac{\mathbf{Q} \cdot \mathbf{\ell}}{\mathbf{V}}$$

436 При каких условиях соблюдается динамическое подобие?

$$\Omega_{\mathbf{r}}/\mathbf{Re}_{\mathbf{H}}=M_{\mathbf{Re}}$$

$$Q_{\mathbf{H}}/j_{\mathbf{H}} = \mathbf{M}_{i}$$

$$\frac{\bigcirc F_H}{\sum F_H} = M_F$$

$$O_{\!\!M}/v_{\!\!M}=M_{\scriptscriptstyle 0}$$

$$\mathcal{O}_{\mathbf{H}}/B_{\mathbf{H}}=\ell_{\mathbf{H}}/\ell\mathbf{M}=\mathbf{M}_{\mathbf{A}}$$

- 437 Для полного механического подобия гидравлических явлений необходимо?
 - динамическое подобие
 - геометрическое, кинематическое и динамическое подобия
 - геометрическое и динамическое подобия
 - кинематическое подобие
 - требуется равенства критериев Маха для модели и натуры;
- 438 Что лежит в основе моделирования?

.5/2017		
	\bigcirc	геометрическое подобие
		механическое подобие и теория размерностей
	\bigcirc	физическое подобие и теория размерностей;
	Ō	теория размерностей и аэродинамическая аналогия;
	\bigcirc	динамическое и кинематическое подобия
439 I	На ч	ем основан метод ЭГДА?
		газогидравлическая аналогии
	\sim	аналогии между магнитный потоком и грунтовым потоком
		математическая аналогия постоянным электрическим током в проводящей и движе-нием грунтового потока
	Ŏ	аналогии между движением газа и электрическим током
	Ŏ	Основан на аэродинамической аналогии
440 I	На ч	то указывают коэффициент фильтрации?
	\sim	на водопропускную способность грунта; на степень неводопроницаемости грунта;
	\sim	на вид движения фильтрационного потока;
		на степень водопроницаемости грунта
	\sim	на величину потерь при движении
	\cup	па вели инпу потерв при движении
441 ^प	Іто	означает аналоговое моделирование?
	\bigcirc	моделирование на основе динамического подобия
		явления в натуре и на модели имеют различную физическую природу, но описываются системами одинаковых математических уравнений
	\bigcirc	явление в натуре и на модели имеют одинаковую физическую природу
	\bigcirc	гидравлические явление модели и натуры не одинаковую физическую природу
	\bigcirc	моделирование на основе только лабораторных исследований
442 l	каки	ве виды моделирования гидравлических явлении известны?
	\bigcirc	механическое, физическое, аналоговое
	$\tilde{\bigcirc}$	механическое и аналоговое
		физическое, аналоговое и математическое (численное)
	Ŏ	аналоговое и численное
	Ŏ	гидравлическое и механическое
443 l	каки	е функции называются сопряженными при изучении движения фильтрационного потока?
		функции тока и напора
		функции тока и потенциала скорости
	\sim	функции напряжения и потенциала скорости;
	\sim	функции скорости и напора
	$\widetilde{\mathcal{C}}$	функции потенциала скорости и напора;
	_	
		жите на дифференциальные уравнение неразрывности при потенциальном дви-жение ционного потока?
	\sim	.3
	6	$\frac{\varphi}{z} + \frac{\partial^2 \varphi}{\partial z} = 0$
	àх	$a^2 \partial y^2$
		Au a.
	-	$\frac{\partial}{\partial x} + \frac{\partial u_y}{\partial x} + \frac{\partial u_z}{\partial x} = 0$
	а	c dy dz
	\bigcirc 2	т a²π
	<u>~</u>	$\frac{\Psi}{2} + \frac{U\Psi}{0.2} = 0$
	da	c'⊢ ∂yr'

$$\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} + \frac{\partial \varphi}{\partial z} = 0$$

$$\frac{\bigcap_{\mathbf{du}_{\mathbf{r}}^2} + \frac{1}{\mathbf{du}_{\mathbf{r}}^2} + \frac{1}{\mathbf{du}_{\mathbf{r}}^2}$$

445 kakaя сила является определяющей при истечении через водослив?

\bigcirc	Сила	T	эен	ия

- Сила гидростатического давления;
- Сила поверхностного натяжения;
- Сила инерции;
- О Сила тяжести

446 какие формы отверстия водосливов известны?

- Замкнутой, распластанной, криволинейной
- Распластанного и сегментной, треугольной
- Прямоугольной, трапецеидальной, треугольной и криволинейной
- Треугольной и полигональной
- С Криволинейной и параболической, прямоугольной

447 По какой формул определяется, пропуская способность водослива?

$$Q = wc\sqrt{RJ}$$

$$\bigcirc Q = m6\sqrt{2} \Rightarrow H_0^{\frac{3}{2}}$$

$$Q = \epsilon m \epsilon \epsilon \sqrt{2} \Im H_0$$

$$\bigcirc_{\mathbf{Q}=1,56H_{\frac{3}{4}}}^{\underline{5}}$$

$$\bigcirc_{\mathbf{Q}=23\mathbf{e}\left(H^{\frac{1}{2}}+\mathbf{e}\right)}$$

448 На какие типы классифицируются водосливы?

- водослив с широкой стенкой, водослив полигональный и криволи-нейный;
- водослив с тонкой стенкой, практического профиля, с широкой порогам
- водослив с широкой стенкой, с узким порогам;
- водослив с толстой стенкой, водослив криволинейный с узким порогам;
- водослив с тонкой стенкой, полигонального очертания, с узким порогам;

449 какое движение грунтовых вод называется (плоская задача) напорным?

- Движение гр. вод ограниченное сверху
- О Сверху и снизу поток ограничен водоупорами
- Сверху не ограничен водоупором
 - Движение гр. вод имеющие свободные криволинейные поверхности;
- Движение гр. вод имеющие на свободной поверхности атмосферное давление;

450 kakoe движение грунтовых вод называется безнапорным?

- движение гр. вод имеющие свободную криволинейную поверхность;
- Если имеется свободная поверхность потока
 - Если на свободной поверхности потока давление P>Ратм;

5/2017
Движение гр. вод не имеющих свободной поверхности; Движение гр. вод между двумя водоупорами;
451 kakue русла называются призматическими?
русла, уклон дна и шероховатость переменна русла, в которых основные геометрические параметры потока остаются переменны по всей длине; русла, уклон дна которого переменная величина русла, гидравлические параметры которого переменны русла, в которых основные геометрические параметры потока остаются постоян-ными по всей длине
452 Определите размерность коэффициент фильтрации Кф?
Везразмерно м ^{0,5}
$\bigcup_{\mathbf{M}^{U,D}/\mathbf{C}}$
$\frac{O}{M^3/C}$
M^2/C
453 По какой формуле определяется удельный расход фильтрационного потока
(при w= b h прямоугольном)?
$Q = w \cdot J$
$O_{q=K_{A}\cdot i}$
$\bigcirc = w \cdot K_{\pm}$
$ Q = w \cdot K_{\phi} $ $ Q = b \cdot K_{\phi} \cdot J $
$q = \partial \cdot K_{\Phi} \cdot J$
454 kakue русла называются призматическими?
русла, в которых основные геометрические параметры потока остаются постоян-ными по всей длине русла, уклон дна и шероховатость переменна
русла, гидравлические параметры которого переменны
 русла, уклон дна которого переменная величина русла, в которых основные геометрические параметры потока остаются переменны по всей длине;
455 По kakoй формуле определяется режим движения?
Числом Рейнольдса $R_e = \frac{\iota u l}{\nu} = \frac{\iota u R}{\nu}$;
Озффициентом сопротивления Е

 \mathbb{R} оэффициентом Шези $C = \frac{1}{n} R^{\nu}$; \bigcirc эффициентом сопротивления λ ;

 Ω вномерного движения $\upsilon = C\sqrt{Ri}$;

456 каково значение критического Рейнольдса для открытого русла?

$$Q_{\mathbf{k}_{\mathbf{k}}} = 1000$$

457 kak записывается основное уравнение равномерного движения?

$$\bigcirc_{0} = \gamma J R;$$

$$\bigcirc \frac{dh}{ds} = \frac{i - \frac{Q^{2}}{\varpi^{2} C^{2} R}}{I - \frac{\alpha Q^{2} \beta}{g \varpi^{3}}}.$$

$$\bigcirc \frac{1}{\omega} = \frac{dQ}{d\omega} = \frac{1}{\omega} \frac{\omega dt}{T};$$

$$\bigcirc_{abc} = \frac{\omega d}{v};$$

$$\bigcirc_{abc} = P_{o} + \gamma h;$$

458 По какой формуле определяется расход через подтопленный водослив?

$$Q = M \varepsilon \varepsilon \sqrt{2} gH$$

$$\bigcirc_{\mathbf{Q} = \mathbf{M} \in \sqrt{2} \mathbf{g} \mathbf{H}_{\mathbf{0}}^{\frac{3}{2}}}$$

$$\bigcirc Q = \sigma \mathbf{M} \cdot \mathbf{B} \cdot \sqrt{2gH^{\frac{3}{2}}}$$

$$Q = cbh\sqrt{2}n(H_0 - h)$$

$$Q = une\sqrt{2gH}$$

459 По какой формуле определяется средняя скорость фильтрационного потока (ламинарный режим)?

$$\nabla = K_{\dot{\Phi}} J$$

$$\nabla = (K_{\dot{\Phi}} - 1) V^{\frac{1}{2}}$$

$$\nabla = W J^{n}$$

$$\nabla = K_{\dot{\Phi}} \sqrt{J}$$

$$\nabla = V J^{n}$$

460 По какой формуле определяется расход при равномерноми ламинарном движение грунтовых вод?

$$Q = K_{\phi} \cdot i \cdot l$$

$$Q = K_{\phi} J \frac{W_{0}}{W}$$

$$Q = W K_{+} I$$

461 В каком соотношение находятся пьезометрический и гидродинамический напоры при ламинарном, равномерном движении фильтрационного потока?

	Jn=Jp
\bigcirc	Jn=Jp=O
\bigcirc	Jn
\bigcirc	Jn
	Jn>Jn

462 Что определяет режимы движения?

Олощ адь живого сечения-ω;
С Коэффициент Шези-С С эффициент сопротивления по длине-λ.
Смоченный периметр-χ;
extstyle ex
kakue формы отверстия водосливов известны

463

\bigcirc	Распластанного и сегментной, треугольной
\bigcirc	Замкнутой, распластанной, криволинейной
\bigcirc	Треугольной и полигональной
\bigcirc	Криволинейной и параболической, прямоугольной
	Прямоугольной, трапецеидальной, треугольной и криволинейной

464 Что не является единицей измерения давления?

\bigcirc	мм ртутного столба:
\bigcirc	кПа:
\bigcirc	м водного столба:
\bigcirc	бар:
	MM

465 На какие типы классифицируются водосливы?

	водослив с тонкой стенкой, практического профиля, с широкой порогом
\bigcirc	водослив с широкой стенкой, с узким порогам:
\bigcirc	водослив с толстой стенкой, водослив криволинейный с узким порогом:
\bigcirc	водослив с тонкой стенкой, полигонального очертания, с узким порогом:
\bigcirc	водослив с широкой стенкой, водослив полигональный и криволи¬нейный:

466 какой закон гласит: объем смеси идеальных газов равен сумме их парциальных объемов?

\bigcirc	Авагадро:
\bigcirc	Шарля:
	Амага
\bigcirc	Гей-Люссака:
\bigcirc	Дальтона:

467 Показать одно из основных положений молекулярно-кинетической теории газов.

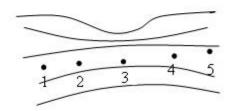
частицы излучают свет:	
частицы поглощают свет:	
упорядоченное движение частиц:	
частицы находятся в состоянии покоя:	
• частицы движутся хаотически	
468 kakим выражением определяется гидростатическое давление?	
$\frac{\rho u^2}{2}$ $\frac{\rho v^2}{2} + \rho g h$	
$\bigcirc \dots ^2$	
$\frac{\rho v}{}$	
2	
Q_{n}^{2}	
$\frac{\rho v}{2} + \rho g h$	
2	
$\sqrt{2gh}$ $\frac{\rho v^2}{4}$	
$\sqrt{2gn}$	
\bigcirc ₀₀ 2	
<u> </u>	
4	
469 Несжимаемой жидкостью называется:	
жидкость, плотность которой меняется со временем	
жидкость, плотность которой не зависит от температуры	
жидкость, плотность которой зависит от температуры	
жидкость, плотность которой не меняется со временем и всюду одинакова	
жидкость, плотность которой повсюду разная	
470 Определите, во сколько раз внешнее давление на борт подводной лодки, находящейся на глубине 100 м, превышает атмосферное? Плотность воды 1030 кг/м3. Атмосферное давление Po = 100 кПа	
471 Почему два подвешенных листа бумаги приближаются друг k другу, если между ними продувать воздух?	
с увеличением скорости потока воздуха между листами уменьшается давление	
с увеличением скорости потока воздуха между листами увеличивается давление;	
с увеличением скорости потока воздуха между листами повышается температура;	
с увеличением скорости потока воздуха между листами понижается температура;	
поток воздуха увлекает за собой листы бумаги;	
472 Почему два подвешенных листа бумаги приближаются друг k другу, если между ними продувать воздух?	
поток воздуха увлекает за собой листы бумаги;	
с увеличением скорости потока воздуха между листами повышается температура;	
с увеличением скорости потока воздуха между листами увеличивается давление;	
с увеличением скорости потока воздуха между листами понижается температура;	
с увеличением скорости потока воздуха между листами уменьшается давление	

4/3 Почему тело глуооководной рыбы раздувается, если рыбу извлечь на поверхность?
 на большой глубине давление меньше атмосферного внешнее давление станет равным атмосферному, а давление внутри рыбы остается прежним из-за наличия в жидкости поверхностного натяжения на поверхности давление внутри рыбы резко уменьшается в воде рыба испытывает молекулярное давление
474 При подъеме вверх поршня в цилиндре водяного насоса вода поднимается вверх вслед за ним потому, что
 Воздух обладает способностью заполнять пустоту. Он стремиться в цилиндр насоса и вталкивает туда находящуюся на его пути воду. атмосферное давление снаружи больше давления разряженного воздуха в цилиндре насоса во жидкость обладает свойством расширения и заполняет любое пустое пространст. пустой сосуд втягивает воду.
475 При выдувании получили два мыльных пузыря разного диаметра, в kakom из них воздух находится под большим давлением?
в большом и малом пузыре воздух находится под одинаковым давлением. в пузыре меньшего диаметра воздух находится под большим давлением в пузыре меньшего диаметра воздух находится под меньшим давлением. в пузыре большего диаметра воздух находится под большим давлением. правильный ответ не дан.
476 При каком условии тело тонет в жидкости?
□ > p _m □ pa < pm □ = p _m □ = V _m □ Het верного ответа
477 Принцип действия гидравлической машины основан на
 Законе Дальтона; законе Паскаля законе Карно; законе Ньютона; законе Архимеда;
478 Уравнением Бернулли является:
$ \frac{\rho v^{2}}{2} $ $ \frac{\rho v^{2}}{2} $ $ \frac{\partial}{\partial v^{2}} = \sqrt{2gh} $ $ \frac{\partial}{\partial v^{2}} + \rho gh + P = const $ $ \frac{\partial}{\partial v_{1}} = S_{2}v_{2} $

479 Уравнением неразрывности является:

1/25/2017

$$\frac{\rho v^{2}}{2} + \rho g h + P = const$$


$$\mathbf{S}_{1} \mathbf{v}_{1} = \mathbf{S}_{2} \mathbf{v}_{2}$$

$$\mathbf{F} = 6 \pi \eta r \mathbf{v}$$

$$\mathbf{F} = \eta \left| \frac{\Delta v}{\Delta x} \right| S$$

$$\mathbf{F} = \sqrt{2gh}$$

480 На рисунке представлены линии тока стационарного течения жидкости. В какой точке скорость течения жидкости большая

481 kakoe выражение показывает уравнение Бернулли для трубки тока жидкости, находящейся под наклоном?

482 каким выражением определяется гидростатическое давление?

$$\frac{\sqrt{2gh}}{2}$$

$$\frac{\rho v^2}{2}$$

$$\frac{\rho v^2}{4}$$

$$\frac{\rho v^2}{2} + \rho g h$$

483 как меняются динамическое и статическое давление при увеличении скорости течения жидкости?

- динамическая- понижается, статическая повышается. не меняются. динамическая- понижается, статическая – не меняется.
- динамическая- повышается, статическая понижается динамическая- не меняется, статическая – понижается.

484 Плотность жидкости

- зависит от коэффициента внутреннего трения.
- не зависит от давления
- мало зависит от температуры.
- мало зависит от давления.
 - ни от чего не зависит.

485 Несжимаемой жидкостью называется:

- жидкость, плотность которой не зависит от температуры
- жидкость, плотность которой не меняется со временем и всюду одинакова
- жидкость, плотность которой меняется со временем
- жидкость, плотность которой повсюду разная
- жидкость, плотность которой зависит от температуры

486 каком термодинамическом процессе теплота не выделяется?

- адиабатическом
- изобарическом. изохорическом.
- политропическом.
- изотермическом.

487 Укажите уравнение адиабатического процесса?

$$Q_{v^{\kappa}} = 0$$

$$\bigcirc^{\kappa} = \text{konst}$$

$$Qv^2 = KT$$

$$Q_0 = RT^2$$

$$C_{\underline{\nu}}$$

$$\bigcap_{\mathbf{P}} \frac{c_{\nu}}{c_{n}} = 0$$

488 Дан график зависимости от высоты столба жидкости давления на дно сосуда. Чему равна плотность жидкости?

P •
$\alpha \longrightarrow h$
getga getga tg \alpha gga
gsinα gtgα
489 kak меняется выталкивающая сила, действующая на тело, если его погружать в жидкость на разную глубину?
 сначала убывает, начиная с определенной глубины возрастает. с уменьшением глубины возрастает. с увеличением глубины возрастает. на разных глубинах разная. на разных глубинах будет также одинакова
490 Идеальной жидкостью называется:
 часть жидкости, ограниченная линиями напряженности. жидкость, плотность которой всюду разная плотность, которой всюду одинакова вязкую жидкость жидкость, в которой отсутствую силы внутреннего трения
491 Единица измерения давления:
©/cek
Ω / M^3
Ω / M^3
$\bigcap_{M^2} H$
492 kak называется метод определения вязкости, основанный на измерении скорости медленно движущихся в жидкости небольших тел сферической формы?
Капица.Торричелли.СтоксаПуазейля.

- $1000 \le \text{Re} \ge 2000$.
- 500 При помощи чего можно измерить статическое давление?
 - пикнометр;
 - динамометр;
 - манометр
 - ареометр: мензурка
- 501 Сколько видов давлений имеется в уравнении Бернулли?
- 502 Сколько сил действуют на шарик, падающий вертикально вниз в жидкости?
- 503 Следствие из уравнения Бернулли:
 - Скорость движения жидкости меняется со временем;
 - Скорость жидкости всюду одинакова;
 - Скорость жидкости всюду одинакова;Скорость течения жидкости в узком сечении мала;
 - Скорость течения жидкости больше в местах сужения
 - Скорость течения жидкости в широком сечении большая;
- 504 Уравнение неразрывности струи жидкости имеет

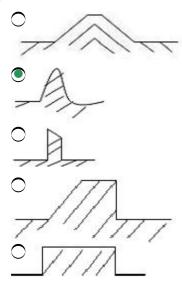
$$\mathcal{D}_1^2 \boldsymbol{v}_2^2 = S_2^2 \boldsymbol{v}_1^2$$

$$\mathbf{S}_1 \mathbf{v}_1 = \mathbf{S}_2 \mathbf{v}_2$$

$$\mathcal{O}_1 \mathbf{v}_2^2 = S_2 \mathbf{v}_1^2$$

$$\mathcal{D}_1 \boldsymbol{v}_2 = \mathcal{S}_2 \boldsymbol{v}_1$$

$$\mathbf{S}_1^2 \mathbf{v}_2 = S_2^2 \mathbf{v}_1$$


505 Чему равно изменение полной энергии идеальной несжимаемой жидкости:

$$E = \frac{m \mathbf{v}^2}{2}$$

-) Π+E=T= const

506 Что и	изучает гидроаэромеханиka?
	газы и твердые тела; газы и твердые тела: жидкости и газы жидкости и твердые тела; газы и аморфные тела;
507 kakon $Q = c_{\bullet} (T_2)$	м термодинамическом процессе количества теплоты выражается формулой $-m{T_1}$
	политропическом; изотермическом; изобарическом; изохорическом адиабатическом;
508 kakas	н сила является определяющей при истечении через водослив?
	Сила гидростатического давления; Сила инерции; Сила трения; Сила тяжести Сила поверхностного натяжения;
509 Укаж	ките термодинамический процесс где Q=0.
000	политропическом; изотермическом; изобарическом; изохорическом; адиабатическом
510 kakon	м термодинамическом процессе работа не совершается
000	политропическом; изотермическом; изобарическом; изохорическом адиабатическом;
511 Уkаж	сите на тип водослива с широким порогом
0 7 0 1 0	

512 Укажите на тип водослива практического профиля

513	Что	означает	сублимация	?
-----	-----	----------	------------	---

\bigcirc	нет правильного ответа
	переход вещества из твёрдого состояния сразу в газообразное, минуя жидкое.
\bigcirc	физический процесс перехода вещества из газообразного состояния в твёрдое, минуя жидкое.
\bigcirc	переход вещества в жидкое состояние из газообразного.
\bigcirc	переход вещества из твердого состояние в жидкое.

514 Определить работу, производимую при передаче 4,5 kДж тепла 1 kг углекислого газа при постоянной температуре?

	4,5 кДж
\bigcirc	3 кДж
\bigcirc	0 кДж
\bigcirc	1,5 кДж
\bigcirc	9 кДж

515 Определить работу производимую при передаче 1 кг воздуха 5 кДж тепла при постоянном объеме?

\bigcirc	10 кДж
\bigcirc	3 кДж
\bigcirc	2 кДж
\bigcirc	2,5 кДж
	0 кЛж

516 Что означает десублимация?

\bigcirc	нет правильного ответа
\bigcirc	переход вещества из твёрдого состояния сразу в газообразное, минуя жидкое.
	переход вещества в жидкое состояние из газообразного.
	физический процесс перехода вещества из газообразного состояния в твёрдое, минуя жидкое.
\bigcirc	переход вещества из твердого состояние в жидкое.

517 Указать выражение энтальпии (і- энтальпия, u- внутренняя энергия, p,v,t -давление, удельный объем и температура газа)?

\bigcirc	i=u+tv
Ŏ	i=u-pv
\bigcirc	i=u+pt
\bigcirc	i=u-pt
	i=u+pv

518 каким выражением определяется изменение энтропии газа при изотермическом процессе?

$$\Delta s = R \ln \frac{v_2}{v_1}$$

$$c_p \ln \frac{p_2}{p_1}$$

$$\Omega_{5} = c_{v} \ln \frac{v_{2}}{v_{1}}$$

- 519 какие основные характерные геометрические параметры водосливов?
 - b, H, P, B, S

 - b, H, P, B,
 H, b, S, 1
 Q, V, m H
 H, b, m, S
 b V P O I
- 520 каким выражением не определяется работа совершаемой при подводе постоянной температуре?

$$Q_T = p_2 v_2 \ln \frac{v_2}{v_1}$$

$$O_{I_T} = p_2 v_2 \ln \frac{p_1}{p_2}$$

$$O_T = p_1 v_1 \ln \frac{v_2}{v_1}$$

$$Q_T = RT \ln \frac{p_1}{p_2}$$

- 521 каком термодинамическом процессе работа совершается за счет изменение внутренний энергией
 - политропическом
 - изохорическом
 - изобарическом
- 522 kakoe значение отношения S/H указывает на водослив с широким порогом?

$$\bigcirc,67 < \frac{C}{III} < 2,0$$

$$\frac{C}{III} < 0,67$$

$$\overrightarrow{9}, 0 < \frac{C}{III} < 8,0$$

$$\frac{C'}{III} > 3, 0$$

$$\vec{S,0} < \frac{C}{III} < 10$$

523 kakoe значение отношения S/H указывает на водослив с острым ребром?

$$0.5 < \frac{C}{2} < 10$$

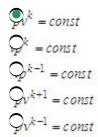
$$0.5 < \frac{C}{2} < 10$$

$$0.67$$

$$0.67$$

$$0.67 < \frac{C}{2} < 2.0$$

$$0.0 < \frac{C}{2} < 8.0$$


524 kakoe значение отношения S/H указывает на водослив практического профиля?

$$\begin{array}{l}
\bigcirc, 5 < \frac{C}{2} < 5 \\
\bigcirc, 67 < \frac{C}{2} < 2 \\
\bigcirc, 67 < \frac{C}{2} < 2
\end{array}$$

$$\begin{array}{l}
\bigcirc, 67 < \frac{C}{2} < 8,0 \\
\bigcirc, 0 < \frac{C}{2} < 8,0
\end{array}$$

$$\begin{array}{l}
\bigcirc, 0,67 \\
\bigcirc, 0 < 67
\end{array}$$

525 Показать уравнение адиабатического процесса (v, p-удельный объем и давления газа, k-показатель адиабаты)?

526 За счет чего в адиабатическом процессе газ производит работу?

- За счет изменения энтропии газа
 За счет тепла, передаваемого газу
 нет верного ответа
 За счет внутренней энергии газа
- За счет тепла, выделяемого при сгорании природного газа

527 Во сколько раз увеличится объем газа если нагреть его от 27°С до 327°С (при постоянном давлении)?

528 (п+а/ v^2)(v-б)= РТ выражение какого уравнение?

универсальное уравнение уравнение Вириала

\bigcirc	уравнение Гирна
\bigcirc	уравнение Дюпре
	уравнение Ван-дер -Ваалса

529

Определить уравнение I закона термодинамики при изохорическом процессе $(c_p, c_v$ теплоемкость при постоянном давлении и объеме, t_1, t_2 - начальная и конечная температура газа, u-внутренняя энергия газа, i-энтальпия, R- газовая постоянная)?

$$\bigcirc = c_p(t_2 - t_1)$$

$$\bigcirc = c_v(t_2 - t_1)$$

$$\bigcirc = u(t_2 - t_1)$$

$$\bigcirc = R(t_2 - t_1)$$

$$\bigcirc = i(t_2 - t_1)$$

530 (п+а/ ($T(v+ж)^2$)(v-6)= PT выражение какого уравнение?

	уравнение Клаизуса
\bigcirc	уравнение Гирна
\bigcirc	уравнение Дюпре
\bigcirc	уравнение Ван-дер –Ваалса
\bigcirc	универсальное уравнение

531 Определить работу, совершаемую при подводе 5 кДж тепла 1 кг воздуха при постоянной температуре?

\bigcirc	0 кДж
\bigcirc	3 кДж
	4,5 кДж
\bigcirc	9 кДж
\bigcirc	1,5 кДж

532

Каким выражением определяется работа, совершаемая при адиабатическом процессе (R - газовая постоянная, p_1, p_2 - начальное и конечное давление газа, v_1, v_2 - начальный и конечный удельный объем газа, c_y, c_y - теплоемкость при постоянном давлении и объеме)?

533 Из каких процессов состоит цикл карно?

\bigcirc	2 изобары и 2 изохоры
\bigcirc	2 изобары и 2 изотермы
\bigcirc	2 изохоры и 2 изотермы
\bigcirc	2 адиабаты и 2 изохоры
	2 адиабаты и 2 изотермы

25/2017 534 Определить работу, совершаемую при подводе 5 kДж тепла 1 kг воздуха при постоянном объем	æ?
○ 3 кДж ● 0 кДж	
○ 2,5 кДж	
○ 2 кДж	
○ 10 кДж	
535 Укажите основные параметры состояния	
концентрация	
Энтальпия	
Внутренняя энергия	
температура	
энтропия	
536 Укажите основные параметры состояния идеального газа	
объем масса давление	
О V объем плотность температура	
масса давление внутренняя энергия	
плотность масса барометрическое давление	
объем температура давление	
537	
Выделить показатель адиабатного процесса (c_p , c_v , c_t - теплоемкость при постоянных давлени	IИ,
объеме и температуре)?	
$ \begin{array}{l} $	
Выделить I закон термодинамики для изобарного процесса $(c_p, c_v$ - теплоемкость п	ри
постоянном давлении и постоянном объеме, t_1, t_2 - начальная и конечная температура газа,	и -
внутренняя энергия газа, i -энтальпия, R - газовая постоянная)?	
$\bigcirc = u(t_2 - t_1)$ $\bigcirc = c_V(t_2 - t_1)$	

$$q = i(t_2 - t_1)$$

539

Определить уравнение Майера (c_p , c_v - теплоемкости при постоянном давлении и объеме, u - внутренняя энергия газа, R -газовая постоянная)?

540

Определить показатель политропного процесса (c_p, c_v - теплоемкость при постоянном давлении и объеме, c -теплоемкость)?

$$\bigcap_{n=1}^{\infty} \frac{c - c_{p}}{c + c_{v}}$$

$$\bigcap_{n=1}^{\infty} \frac{c_{p} - c}{c_{v} - c}$$

$$\bigcap_{n=1}^{\infty} \frac{c_{p} - c}{c_{v} - c}$$

$$\bigcap_{n=1}^{\infty} \frac{c_{p} - c}{c_{v} - c}$$

$$\bigcap_{n=1}^{\infty} \frac{c_{p} - c}{c_{v} + c}$$

541 Что означает конденсация?

физический процесс перехода вещества из газообразного состояния в твёрдое, минуя жидкое.
переход вещества из твёрдого состояния сразу в газообразное, минуя жидкое.
нет правильного ответа
переход вещества из твердого состояние в жидкое.
переход вещества в жидкое или твердое состояние из газообразного.

542

Каким выражением определяется удельный объем влажного пара (x-степень сухости, v', v''удельные объемы насыщенного и сухого насыщенного пара)?

О нет правильного ответа $Q_{g,n} = xv' + (1+x)v''$ $Q_{g,n} = xv'' + (1-x)v''$ $Q_{g,n} = xv' - (1-x)v''$ $Q_{g,n} = xv' + (1-x)v''$

543

Указать выражение влагосодержания (d-влагосодержание, $p_{\varepsilon,\varepsilon}$, p_{κ} - парциальное давление влажного воздуха и насыщенного пара, φ -относительная влажность)?

$$a = \frac{0.622 \, p_{\text{N}}}{p_{\text{e.e.}} - p_{\text{N}} \, \varphi}$$

$$d = \frac{0.622 p_{H} \varphi}{p_{es} - p_{H} \varphi}$$

$$Q = \frac{0.922 p_{H} \varphi}{p_{e.e} - p_{H} \varphi}$$

$$Q = \frac{0.622 p_{e.e} \varphi}{p_{e.e} - p_{H} \varphi}$$

$$Q = \frac{0.622 p_{H} \varphi}{p_{e.e} - p_{H} \varphi}$$

$$Q = \frac{0.622 p_{H} \varphi}{p_{e.e} - p_{H} \varphi}$$

544 От каких параметров состояния зависит внутренняя энергия реального газа?

$$\bigcirc = f(P, \upsilon, \rho);$$

$$\bigcirc = f(\upsilon, C_{\upsilon}, T);$$

$$\bigcirc = f(T, \upsilon, m);$$

$$\bigcirc = f(P, \upsilon, T);$$

$$\bigcirc = f(P, \upsilon, C_{p});$$

545 выражение $(\pi + \pi) (v-6) = PT$ уравнение чего?

уравнение Гирнауравнение Вириалауравнение Дюпреуравнение Ван-дер −Ваалсуниверсальное уравнение

546

Каким выражением определяется работа, совершаемая при адиабатическом процессе (R - газовая постоянная, p_1, p_2 - начальное и конечное давление газа, v_1 - начальный удельный объем газа, k-показатель адиабаты)?

$$\begin{bmatrix} O \\ l_a = \frac{p_1 v_1}{k-1} \\ 1 + \left(\frac{p_2}{p_1}\right)^{\frac{k+1}{k}} \end{bmatrix}$$

$$\begin{bmatrix} O \\ l_a = \frac{p_1 v_1}{k+1} \\ 1 - \left(\frac{p_2}{p_1}\right)^{\frac{k+1}{k}} \end{bmatrix}$$

$$\begin{bmatrix} O \\ l_a = \frac{p_1 v_1}{k-1} \\ 1 - \left(\frac{p_2}{p_1}\right)^{\frac{k+1}{k}} \end{bmatrix}$$

$$\begin{bmatrix} O \\ l_a = \frac{p_1 v_1}{k+1} \\ 1 - \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}} \end{bmatrix}$$

$$\begin{bmatrix} O \\ l_a = \frac{p_1 v_1}{k+1} \\ 1 - \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}} \end{bmatrix}$$

$$\begin{bmatrix} O \\ I_a = \frac{p_1 v_1}{k-1} \\ I_a = \frac{p_1 v_1}{k-1} \end{bmatrix}$$

$$\begin{bmatrix} O \\ I_a = \frac{p_1 v_1}{k-1} \\ I_a = \frac{p_1 v_1}{k-1} \end{bmatrix}$$

547 В каком фазовом состоянии находится вода при температуре 130°С, если показания манометра равно 15 барам, атмосферное давление 750 мм. рт. ст.?

С сухой насыщенный пар

23/2017	
\circ	нагретый пар
\circ	влажный пар
\circ	насыщенная жидкость
	ненасыщенная жидкость
548 Из k дизеля?	аких процессов состоит рабочий цикл двигателя внутреннего сгорания компрессорного
\sim	2 изотермы, 1 изохора и 1 изобара;
\sim	2 адиабаты, 1 изотерма и 1 изобара.
\sim	2 адиабаты, 1 изохора и 1 изобара; 2 адиабаты, 1 изотерма и 1 изобара;
	2 адиаоаты, 1 изотерма и 1 изобара 2 изохоры, 1 изотерма и 1 изобара
549 Из k дизеля?	аких процессов состоит рабочий цикл двигателя внутреннего сгорания без компрессорного
\bigcirc	2 адиабаты, 1 изотерма и 1 изобара;
\bigcirc	2 адиабаты, 2 изотермы и 1 изобара;
\circ	2 изохоры, 1 изотерма и 2 изобары.
\circ	2 адиабаты, 1 изохоры и 2 изобары;
	2 адиабаты, 2 изохоры и 1 изобара
550 Из k	аких процессов состоит цикл карбюраторного двигателя внутреннего сгорания?
\bigcirc	2 изобары и 2 изотермы;
	2 адиабаты и 2 изохоры
Ō	2 изохоры и 2 изотермы;
Ō	2 изобары и 2 изохоры;
\circ	2 адиабаты и 2 изобары;
551 Что	называется водосливом?
	преграда в русле потока, через которую переливается вода
\circ	криволинейный порог в русле
\circ	боковое отверстие в русле
Ō	безнапорное отверстие только кругового сечение
\circ	напорное отверстие вырезанное в стенке
552 По І	акой формуле определяется расход водослива с тонкой стенкой, отверстие трапецеидальное?
<u>_</u>	=1,25Щ ^{3/2}
	1,2Щ ² б
	1,86 Щ ^{5/2}
Q	1,44 Щ ^{3/2}
	1,86ILI ^{3/2}
D	1,0011
553 Уka	вать уравнение Ван-Дер-Ваальса для реальных газов (р, v, Т-давление, удельный объем и

$$\binom{p + \frac{a}{p^2}}{(v - b)} = RT$$

$$\binom{v + \frac{a}{v^2}}{(p - b)} = RT$$

$$\left(p + \frac{a}{v}\right)(v - b) = RT$$

$$\left(p + \frac{a}{v^2}\right)(v + b) = RT$$

$$\left(p + \frac{a}{v^2}\right)(v - b) = RT$$

554 kak определяется энтальпия влажного воздуха (t, I, d - температура, энтальпия и влагосодержание влажного воздуха)?

- I=t+d(2500+2,81t)
- I=t-d(2500+1,81t)
 I=t+d(2500+1,81t)
 I=t+d(2500+1,81t)
 I=t+d(2500+2,81t)

555 какими энергетическими способами можно определить техническую работу газа

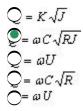
- внутренней энергией и специальной тепловой;
- внутренней энергией и энтропией;
 - энтропией и свободной энергией;
- удельный тепловой и энтальпией
- внутренней энергией и энтальпией;

556 Чему равна энтальпия влажного пара, сухость которого равна 50%, если энтальпия насыщенной жидкости при давлении 9 бар равна 743 кДж/кг, а энтальпия сухого насыщенного пара равна 2773 kДж/kг?

557 При каких условиях водослив считается с боковым сжатием?

- $\bigcirc < B$
- $\bigcirc \leq B$
- $\bigcirc = B/n$

558 какой коэффициент учитывает боковое сжатие водослива?


- 559

Каким выражением определяется изменение энтропии газа при адиабатическом процессе (R постоянная газа c_p , c_v - теплоемкости при постоянных давлении и объеме, p_1 , p_2 -начальная и конечная давлении газа, v_1, v_2 - начальный и конечный удельный объем газа, T_1, T_2 - начальная и конечная абсолютная температуры газа)?

$Q_{S} = R \ln \frac{p_{1}}{p_{1}}$
$Q_{S} = R \ln \frac{v_{2}}{v_{1}}$
$ \Omega = c_v \ln \frac{T_2}{T_1} $ $ \Omega = c_p \ln \frac{v_2}{v_1} $
560 При какой температуре закипает вода, если абсолютное давление равно 16 барам?
 200 °C 150 °C 130 °C 160 °C 106 °C
561 Сколько способов выдавания состав смеси газов?
 пять три два четыре один
562 ($\pi + a/(T v^2)$ ($v - 6$)= РТ выражение какого уравнение?
 уравнение Бертло уравнение Клаизуса уравнение Гирна уравнение Дюпре уравнение Ван-дер –Ваалса
563 Чему равен удельный тепловой поток (Вт/м²) бетонной стены, толщина которой равна 150 мм коэффициент теплопроводности 1,5 Вт/(м.°К), разница температур поверхности стены составляет 15°С?
 225 150 1,5 15 300
564 Наличие перенасыщенного пара возможно в следующих случаях:
 все варианты правильные отсутствие ядер конденсации — взвешенных в атмосфере твёрдых частиц или капелек жидкости, а также ионов (наиболее активные ядра конденсации).
 отсутствие жидкой или твёрдой фазы того же вещества. конденсация в атмосфере другого газа — в этом случае скорость конденсации ограничена скоростью диффузии паров из газа к поверхности жидкости. нет правильного ответа
565 Чему равна единица измерения удельного линейного теплового потока?
Вт/см
$\langle \cdot \rangle$ R_{T}

1/25/2017	
\circ	$\mathrm{Br/M^3}$
	$B_{\mathrm{T/M}}$
Ŏ	$\mathrm{Br/}\mathrm{M^2}$
566 Пok	азать единицу измерения коэффициента температуропроводности?
\bigcirc	M/cek²
\sim	°С/сек
\simeq	С/сек
\sim	К/сек
\widecheck{igo}	m²/ceĸ
	akих параметров зависит значение критерия Nu при свободном движении жидкости (Re, Pr, ерий Рейнольдса, Прандтля, Грасгофа)?
\bigcirc	Re, Pr, Gr
\simeq	Re Re
\simeq	Pr, Re
\simeq	
	Pr C. P.
	Gr, Pr
568 Что с	значает коэффициент «с» в скоростном напоре реального потока жидкости?
\circ	коэффициент вязкости жидкости
	коэффициент Кариолиса
	коэффициент сопротивления
	коэффициент температурного расширения
	коэффициент теплопроводности жидкости
	изменяется полная удельная энергия по направлению движения при установившемся и реального потока?
\circ	увеличивается
$\tilde{\bigcirc}$	остается постоянной
$\tilde{\bigcirc}$	изменяется нелинейно
\sim	резко увеличивается
	уменьшается
	уменьшается
570 kaku	е виды движения известны с учетом живого сечения и средней скорости?
\circ	волнообразное и напорное
	волнообразное и прямолинейное
	равномерное и неравномерное
	равномерное и равнозамедленное
Ŏ	пульсационное и криволинейное
571 kakи	е виды движения известны, в зависимости от измерения характеристик движения во времени?
\circ	напорное и безнапорное
	установившееся и неустановившееся
$\tilde{\cap}$	винтовое и равномерное
$\widetilde{\frown}$	вынужденное и колебательное
$\tilde{\bigcirc}$	вихревое и установившееся
572 Осно	овные характеристики безнапорного движения?
	живое сечение потока равно внутреннему поперечному трубопровода или открытого русла
	поток ограниченный твердой и свободной поверхностью потока
	площадь живого сечение потока равно поперечному сечению русла
\cup	площидь живого сечение потока равно поперечному сечению русла

- поток на имеющий свободную поверхность
 поток в русле работающий полным сечением
- 573 По какой формуле определяется расход при равномерном движении?

- 574 По какой формуле определяются средняя скорость течения при равномерном движе-нии?
 - $\bigcirc = \omega J$ $\bigcirc = C \sqrt{RJ}$ $\bigcirc = K \sqrt{R}$ $\bigcirc = \pi \gamma J$ $\bigcirc = Q \omega$
- 575 Определить основные условия при равномерном установившемся движении в открытых руслах?
- 576 Определите критическое число Рейнольдса для безнапорного движения потока?
 - $egin{align*} egin{align*} egin{align*}$
- 577 какие основные особенности турбулентного режима движения?
 - местные скорости при движении постоянны
 параллельно-струйчатое движение
 при движении жидкости нет пульсации скоростей
 частицы жидкости не перемешиваются
 хаотические , беспорядочное движение имеется пульсация скоростей
- 578 какие особенности ламинарного режима движения жидкости?
 - увеличивается скорость при движении потока.
 параллельно-струйчатое движение
 имеется пульсация скоростей
 местные скорости потока изменяются.
 при движении происходит перемешивание частиц жидкости.
- 579 каким выражением определяется коэффициент теплоотдачи ($Bт/м^2$ -град) при кипении (p-dавление кипящей воды, бар; Δt разность температур поверхности и кипящей воды, $\Box C$)?

$$\alpha = 45,3 \Delta t^{2,33} p^{0,45}$$

$$\Omega = 45,3 \Delta t^{2,33} p^{0,35}$$

$$\Omega = 45,3 \Delta t^{2,33} p^{0,25}$$

$$\Omega = 45,3 \Delta t^{2,33} p^{0,15}$$

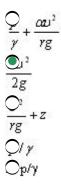
$$\Omega = 45,3 \Delta t^{2,33} p^{0,15}$$

580 От каких параметров зависит значение критерия Nu при принудительном движении жидкости (Re, Pr, Gr -критерий Рейнольдса, Прандтля, Грасгофа)?

Re, Pr
Re, Pr, Gr
Pr
Gr, Pr
Re

581 Указать выражение, определяющее критерий Прандтля (α, ν - коэффициент температуропроводности и кинематическая вязкость)?

$$\Pr = \frac{a}{v^2}$$


$$\Pr = \frac{a^2}{v}$$

$$\Pr = \frac{a^3}{v}$$

$$\Pr = \frac{v}{a}$$

$$\Pr = \frac{a}{v}$$

582 Укажите на скоростной напор?

583 В какой зоне пользуются формулой Ш ези $u = ж\sqrt{Pb}$?

в переходной зоне турбулентного режима
 в квадратичной зоне турбулентного режима
 в ламинарной зоне
 в зоне гидравлически гладких русл
 доквадратичной зоне турбулентного режима

584 Как располагаются по отношению к линии дна руспа (l_p) потока J_n и J_T при равномерном движении в открытых руслах?

$$\bigcirc_{\Gamma} = J_n = i_p$$

1/25/2017

$$\begin{split} \bar{J}_{\mathbf{r}} &> J_{n} < 0 \\ \bigcirc_{\mathbf{r}} &< J_{n} = i_{p} \\ \bigcirc_{\mathbf{r}} &\neq J_{n} \neq i_{p} \\ \bigcirc_{\mathbf{r}} &> J_{n} \neq i_{p} \end{split}$$

585

Указать выражение, определяющее критерий Грасгофа (β , ν -коэффициент объемного расширения и кинематическая вязкость газа, g-ускорение свободного падения, l-геометрическая величина, Δt -разность температур газа и поверхности)?

$$Gr = \frac{\beta g l \Delta t}{v^2}$$

$$Gr = \frac{\beta g l \Delta t}{v}$$

$$Gr = \frac{\beta g l^2 \Delta t}{v}$$

$$Gr = \frac{g l^3 \Delta t}{\beta v^2}$$

$$Gr = \frac{\beta g l^3 \Delta t}{\rho v^2}$$

$$Gr = \frac{\beta g l^3 \Delta t}{v^2}$$

586 Показать выражение, определяющее критерий Рейнольдса (ω , ν - скорость движения и кинематическая вязкость газа, l -геометрическая величина)?

$$Re = \frac{l}{v\omega}$$

$$Re = \frac{v\omega}{\omega l}$$

$$Re = \frac{v\omega}{l}$$

$$Re = \frac{vl}{\omega}$$

$$Re = \frac{\omega l}{v}$$

587 Указать выражение, определяющее критерий Нусселта (α , λ - коэффициент теплоотдачи и теплопроводности, 1- геометрическая величина)?

588

Указать выражение теплового потока в процессе конвективной теплоотдачи (λ - коэффициент теплопроводности стенки, F -площадь поверхности, t_{∞} , t_n -температура жидкости и поверхности, α -коэффициент теплоотдачи)?

$$Q = \lambda F(t_{\mathcal{H}} - t_n)$$

$$Q = \lambda(t_{\mathcal{H}} - t_n)$$

$$Q = \alpha(t_{\mathcal{H}} - t_n)$$

$$Q = \alpha F(t_{\mathcal{H}} - t_n)$$

$$Q = \alpha F(t_{\mathcal{H}} - t_n)$$

$$Q = \alpha F(t_{\mathcal{H}} - t_n)$$
нет правильного ответа

589 Что является единицей измерения линейного теплового потока?

_	
\bigcirc	нет правильного ответа
\bigcirc	Дж/ M^2 ;
	Вт/м
\bigcirc	Дж/(сек•м²);
\bigcirc	$\mathrm{BT/M^3}$;

590

Каким выражением определяется максимальная температура в центре цилиндрического стержня при внутреннем тепловыделении (t_c -температура поверхности стенки, λ , r-коэффициент теплопроводности материала и радиус стенки, q_v - объемный удельный тепловой поток)?

591 выражение π (υ-б) = PT уравнение чего?

\bigcirc	уравнение Вириала
\bigcirc	универсальное уравнение
\bigcirc	уравнение Ван-дер –Ваал
	уравнение Дюпре
\bigcirc	уравнение Гирна

592 Укажите простых (элементарных) вида передачи тепла:

	А,Б,С правильные варианты
\bigcirc	Конвекция
\bigcirc	Тепловое излучение
\bigcirc	правильного ответа нет
\bigcirc	Теплопроводность

593 kakoe из приведенных является выражением критерия Нуссельта для конвективного массообмена (D- коэффициент диффузии, м²/сек, β- коэффициент массоотдачи, м/сек, l- определяющий размер, м)?

$$Nu_d = \frac{D}{\beta \cdot l}$$
Het upagu

 $Nu_d = \frac{\beta \cdot l}{D}$

$$Nu_d = \frac{D}{D}$$

$$Nu_d = \frac{D \cdot l}{\beta}$$

$$\Omega u_d = \frac{\beta}{D \cdot l}$$

594 По какой формуле рассчитывается теоретическое количество воздуха (м³/м³), необходимого для горения газообразного топлива?

$$\bigcirc_{o} = 0.46 CO + 0.5H_{2} + 1.5H_{2}S + CH_{4} - O_{2}$$

$$\bigcirc_{o} = 0.27[0.5CO + 0.5H_{2} + 1.5H_{2}S + \Sigma(m+n/4)C_{m}H_{n} - O_{2}]$$

$$\bigcirc_{o} = 0.5CO + 0.5H_{2} + 1.5H_{2}S + \Sigma(m+n/4)C_{m}H_{n} - O_{2}$$

$$\bigcirc_{o} = 0.476[0.5CO + 0.5H_{2} + 1.5H_{2}S + \Sigma(m+n/4)C_{m}H_{n} - O_{2}]$$

595 Для чего предназначены водоопускающие трубы в паровых котлах?

- нет правильного ответа
- для подачи воды из деаэратора в барабан
- для охлаждения воды
- для подачи воды, находящейся в барабане в нижний коллектор

596 каким будет средне логарифмический температурный напор в теплообменном аппарате при значениях большего и меньшего температурных напоров 256 °C и 25,6 °C (в расчете должно учитываться, что lnx=2,304•lgx)?

- нет правильного ответа;
- 115;
- 100

597 Для чего предназначены экранные трубы в паровых котлах?

- для превращения воды в пар
- для охлаждения воды нет правильного ответа
- для подогрева воздуха
- для усиления теплопередачи излучением;

598

Укажите формулу для расчета теоретического количества воздуха (м³/кг), необходимого для сжигания твердого топлива (СР, НР, ОР, SP- содержание в массовых процентах в составе топлива углерода, водорода, кислорода, серы).

$$O_p = 0.04(C^p + 0.2S^p) + 0.265N^p$$

$$\bigcirc_{o} = 0.04(C^{p} + 0.2S^{p}) + 0.265N^{p}$$

$$\bigcirc_{o} = 0.0889(C^{p} + 0.375S^{p}) + 0.265N^{p} - 0.03O^{p}$$

$$Q_o = 0.86(H^p + 0.45S^p) + 0.56C^p - 0.30^p$$

$$\begin{array}{l} \bigcirc_o = 0.86(H^p + 0.45S^p) + 0.56C^p - 0.3O^p \\ \bigcirc_o = 0.0765(H^p + 0.45S^p) + 0.42C^p - 0.3O^p \\ \bigcirc_o = 0.5(C^p + 0.45S^p) + 0.56N^p - 0.03O^p \end{array}$$

599

Каким выражением определяется энергия излучения абсолютно черного тела во всех длинах волн $(c_1, c_2$ - постоянные Планка, t. T - температуры по шкалам Цельсия и Кельвина)?

$$\begin{split} & \sum_{E_0} = \frac{6,49 \cdot c_1}{c_2^4} T^2 \\ & \sum_{E_0} = \frac{6,49 \cdot c_1}{c_2^4} T^3 \\ & \sum_{E_0} = \frac{6,49 \cdot c_1}{c_2^4} t^4 \\ & \bigotimes_{E_0} = \frac{6,49 \cdot c_1}{c_2^4} T^4 \\ & \sum_{E_0} = \frac{6,49 \cdot c_1}{c_2^4} t^3 \end{split}$$

600 Для чего предназначен в парогенераторе экономайзер?

\bigcirc	для охлаждения воздуха
\bigcirc	для нагрева воздуха
	для нагрева питательной воды
\bigcirc	для дегазации воды
\bigcirc	для охлаждения золы выходящей из топки

601 Из каких элементов состоит парогенератор?

\bigcirc	воздухоподогреватель, пароперегреватель, дымосос, дутьевой вентилятор;
\bigcirc	экономайзер, топка, дымовая труба, дутьевой вентилятор
	топка, пароперегреватель, конвективные пучки, воздухоподогреватель
\bigcirc	топка, дымовая труба, экономайзер, воздухоподогреватель
\bigcirc	деаэратор, топка, пароперегреватель, дымовая труба

602 Для чего предназначен барабан в паровых котлах?

\bigcirc	для нагрева воды
\bigcirc	для испарения воды
\bigcirc	нет правильного ответа
\bigcirc	для смешения пара и воды;
	для отделения пара от воды

603 Укажите правильный вариант .кипение различают по типу:

_	
	все варианты правильные
\bigcirc	кипение при свободной конвекции в большом объеме;
\bigcirc	кипение при вынужденной конвекции;
\bigcirc	кипение жидкости, недогретой до температуры насыщения (поверхностное кипение);
\bigcirc	кипение жидкости, догретой до температуры насыщения

604 Что означает энтальпия?

\bigcirc	замораживание
\bigcirc	нагревание;
\bigcirc	охлаждение;
	топление (растворение)
\bigcirc	испарение;

605 Для удаления каких газов предназначен деаэратор?

612 kakue из перечисленных ниже тепловых нагрузок системы теплоснабжения являются сезонными: на отопление (1); на вентиляцию (2); на горячее водоснабжение (3); на технологические нужды

нужды промпредприятий (4)?

1, 2, 4;

1/25/2017
промпредприятий (4)?
 1, 4; 2, 3; 1, 2 1, 3, 4; 2, 4;
613 каких термодинамических процессах не бывает теплообмена
 □ политропических □ изохорических; □ изобарических; □ изотермических; □ адиабатических;
614 От kakux параметров состояния зависит внутренняя энергия идеального газа
$U = f(P\tau);$ $U = f(P);$ $U = f(T);$ $U = f(\upsilon);$ $U = f(P\upsilon);$
615 Каких термодинами ческих процессах $p_1 v_1 = p_2 v_2$
 ∪ изобарических; ∪ изохорических; □ политропических □ адиабатических; □ изотермических;
616 Укажите выражение адиабатического процесса?
<pre>dU = 0; Q = 0; v = const; T = const; P = Pb;</pre>
617 Укажите выражение изотермического процесса?
 ρ = const; T = const P > 0; υ = const; υT = const;
618 каким термодинамическом процессе энтропия остается стабильным
 ∪ изобарическом; ∪ изохорическом; □ политропическом; □ адиабатическом; ∪ изотермическом;

619 В каком из перечисленных ответов правильно и полно указаны включения систем горячего водоснабжения в тепловую сеть?

- независимая, без возврата конденсата;
- зависимая, с возвратом конденсата;
- зависимая, без возврата конденсата;
- открытые и закрытые
- независимая, с возвратом конденсата;
- 620 kakue теплоносители используются в централизованных системах теплоснабжения?
 - нет правильного ответа;
 - водяной пар и дымовые газы;
 - горячий воздух и дымовые газы;
 - вода и пар
 - вода и дымовые газы;
- 621 По какой формуле определяется расход открытого потока при установившемся равномерном движении?

$$\bigcirc = K \cdot J$$

$$\bigcirc = \omega v \cdot C$$

$$\bigcirc = \omega \cup C$$

$$\bigcirc = \omega C \sqrt{RJ}$$

$$Q = C \sqrt{R}$$

$$Q = \frac{Q}{h}$$

622 По какой формуле определяется удельная энергия сечения открытого потока?

$$\Theta = h + \frac{\alpha v^2}{3\pi}$$

$$\bigcirc_{\mathfrak{S}=h+\frac{2Q^2}{2\sigma}}$$

623 Единица измерения коэффициент Шези (С)?

624 Единица измерения удельной энергии потока?

625 От каких гидравлически параметров зависит коэффициент Шези?

$$\bigcirc_{C} = f\left(Re, \frac{\Delta}{d}\right)$$

$$\bigcirc = f\left(R, n\right)$$

$$\bigcirc = f(R,n)$$

$$\bigcirc = f(n, \Delta)$$

$$\bigcirc = f(Re, n)$$

$$\bigcirc = f(Re, n)$$

$$O = f(R)$$

626 По какой формуле определяется расход открытого потока при установившемся равномерном движении?

$$\bigcirc q = \frac{Q}{b}$$

$$\bigcirc = \omega U \cdot C$$

$$\bigcirc = K \cdot J$$

$$\bigcirc = \omega C \sqrt{RJ}$$

$$Q = \omega v \cdot C$$

$$\bigcirc = K \cdot J$$

$$\mathcal{O} = C \sqrt{R}$$

627 Что означает коэффициент п в формуле Шези при расчете каналов?

- коэффициент сопротивления материала облицовки канала;
- коэффициент упругости грунта земляного канала
- коэффициент однородности грунта откосов канала;
- коэффициент неоднородности откоса канала
- коэффициент шероховатости откосов и дна канала

628 какую температуру сетевой воды (°С) в подающих линиях закрытых систем теплоснабжения принимают в точке излома при центральном качественном регулировании?

629 как называется метод регулирования тепловой нагрузки путем изменения расхода воды в подающем трубопроводе?

- термическое регулирование
- местное регулирование
- качественное регулирование
- количественное регулирование зависимое регулирование

630 kakoe максимальное значение температуры в обратной линий теплосети принимается в

двухтрубных системах теплоснабжения от ТЭЦ и котельных?

1/25/2017	
\bigcirc	20;
Ŏ	80;
Ŏ	60;
	пазывается метод регулирования тепловой нагрузки путем изменения температуры воды в
подающе	м трубопроводе?
\circ	термическое регулирование.
\circ	количественное регулирование.
	качественное регулирование
\odot	местное регулирование.
\bigcirc	зависимое регулирование.
632 Var	их термодинамических процессах $Tv^{n-1} = const$
032 Kan	их гермодинамических процессах 1 / — солы
\sim	
\sim	изобарическом;
	изохорическом;
	политропическом
\sim	адиабатическом;
\bigcirc	изотермическом;
633 Kak	им термодинамическом процессе $T^n p^{1-n} = const$
Tear.	ти гермодинами теском процессе т р — солы
\sim	
\bigcirc	политропическом
\sim	изобарическом;
	изотермическом;
	адиабатическом;
\circ	изохорическом;
	изохорическом; ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании?
	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании?
	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75°C;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения?
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения?
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C; 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода
период п	то температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит увеличение вязкости;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит увеличение вязкости; изменения цвета жидкости;
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит увеличение вязкости; изменения цвета жидкости; Нет правильно ответа
период п	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит увеличение вязкости; изменения цвета жидкости; Нет правильно ответа выпадение смол;
635 kaku	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит увеличение вязкости; изменения цвета жидкости; Нет правильно ответа
635 kaku	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит увеличение вязкости; изменения цвета жидкости; Нет правильно ответа выпадение смол; выпадение смол; выпадение шлаков.
635 kaku	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит увеличение вязкости; изменения цвета жидкости; Нет правильно ответа выпадение смол; выпадение шлаков. кость газа при увеличении температуры Нет правильно ответа
635 kaku	ю температуру сетевой воды в подающих линиях открытых систем теплоснабжения в летний ринимают в точке излома при центральном качественном регулировании? 75 °C; 70 °C; 60 °C 50 °C; 45 °C; е виды теплоносителей используются в системах теплоснабжения? пар и газ; вода и газ; нет правильного ответа; пар и вода конденсат и газ; окислении жидкостей не происходит увеличение вязкости; изменения цвета жидкости; Нет правильно ответа выпадение смол; выпадение шлаков. кость газа при увеличении температуры

\bigcirc	остается неизменной;) сначала уменьшается, а затем остается постоянной;
638 Вязk	ость жидкости при увеличении температуры
• 00000	Нет правильно ответа сначала уменьшается, а затем остается постоянной. увеличивается; уменьшается; остается неизменной;
639 В ви	скозиметре Энглера объем испытуемой жидкости, истекающего через капилляр равен
0000	Нет правильно ответа 300 см3; 200 см3; 200 м3; 200 м3;
640 кине	матический коэффициент вязкости обозначается греческой буквой
	Нет правильно ответа $\nu;$ $\mu;$ $\eta;$ $\tau.$
641 Выд	еление воздуха из рабочей жидкости называется
00000	газовыделение. газообразованием;) парообразованием; пенообразованием; Нет правильно ответа
642 Bec :	жидкости в единице объема называют
00•00	весом. удельной плотностью; удельным весом плотностью; Нет правильно ответа;
643 Maco	су жидкости заключенную в единице объема называют
00000	плотностью весом; удельным весом; удельной плотностью; Нет правильно ответа;
644 Если	давление отсчитывают от абсолютного нуля, то его называют
00000	абсолютным Нет правильно ответа; давление вакуума; атмосферным; избыточным;

1/25/2017

645 В каких единицах измеряется давление в системе измерения СИ?

1/25/2017	
Нет правильно ответа;	
653 Что такое жидкость	
 физическое вещество, способное изменять форму под действием сил физическое вещество, способное течь. физическое вещество, способное изменять свой объем физическое вещество, способное заполнять пустоты Нет правильно ответа 	
654 На какие разделы делится гидромеханика?	
 техническая механика и теоретическая механика гидравлика и гидрология Нет правильно ответа механика жидких тел и механика газообразных тел. гидротехника и гидрогеология 	
655 Вязкость жидкости не характеризуется	
 Нет правильно ответа градусами Энглера; динамическим коэффициентом вязкости; кинематическим коэффициентом вязкости; статическим коэффициентом вязкости; 	
656 Сжимаемость это свойство жидкости	
 Нет правильно ответа сопротивляться воздействию давления, не изменяя свою форму; изменять свой объем под действием давления изменять свою форму под действием давления; изменять свой объем без воздействия давления; 	
657 При увеличении температуры удельный вес жидкости	
уменьшается не изменяется. сначала увеличивается, а затем уменьшается; увеличивается; Нет правильно ответа;	
658 Что такое гидромеханика	
 Нет правильно ответа наука о взаимодействии жидкостей наука о равновесии жидкостей наука о движении жидкости наука о равновесии и движении жидкостей 	
659 Чему равно атмосферное давление при нормальных условиях?	
 № 100 кПа 1000 Па. 10 ГПа; 100 МПа; Нет правильно ответа; 	

660 какое давление обычно показывает манометр?

115/121

1/25/2017	
	избыточное
$\tilde{\bigcirc}$	давление вакуума.
$\tilde{\bigcirc}$) атмосферное;
$\tilde{\bigcirc}$	абсолютное;
Ŏ	Нет правильно ответа;
661 Сжи	маемость жидкости характеризуется
	коэффициентом объемного сжатия
$\tilde{\bigcirc}$	коэффициентом поджатия
$\tilde{\bigcirc}$	коэффициентом температурного сжатия;
$\widetilde{\bigcirc}$	коэффициентом Генри
Ŏ	Нет правильно ответа
662 Давл	ение определяется
\bigcirc	Нет правильно ответа
\simeq	отношением площади воздействия к значению силы, действующей на жидкость;
\simeq	произведением силы, действующей на жидкость на площадь воздействия;
	отношением силы, действующей на жидкость к площади воздействия
	отношением силы, деиствующей на жидкость к площади воздействия
–	
663 Если	давление отсчитывают от относительного нуля, то его называют:
	избыточным
\bigcirc	давление вакуума.
	атмосферным;
	абсолютным;
\bigcirc	Нет правильно ответа.
664 Если	давление ниже относительного нуля, то его называют:
	давление вакуума
	избыточным;
	атмосферным;
	абсолютным;
\circ	Нет правильно ответа.
665 Teky	честью жидкости называется
	Нет правильно ответа
	величина обратно пропорциональная кинематическому коэффициенту вязкости.
\sim	величина обратная динамическому коэффициенту вязкости;
\sim	величина прямо пропорциональная динамическому коэффициенту вязкости;
$\tilde{\circ}$	величина пропорциональная градусам Энглера.
666 Вязк	ость жидкости это
<u> </u>	способность сопротивляться скольжению или сдвигу слоев жидкости
Ŏ) способность перетекать по поверхности за минимальное время
Ō	способность преодолевать силу трения жидкости между твердыми стенками;
Ō	способность преодолевать внутреннее трение жидкости
\circ	Нет правильно ответа
667 . kak	ие силы называются массовыми?
\circ	сила молекулярная и сила тяжести;
Ŏ	Нет правильно ответа
Ŏ	сила давления и сила поверхностная;
\simeq	сила инерции и сила гравитационная;

сипа	тяжести	и	сипа	ине	ппи
Сила	тяжести	И	Сила	ине	рциі

	е частицы жидкости испытывают наибольшее напряжение сжатия от действия тического давления?
000	находящиеся на дне резервуара находящиеся на свободной поверхности; находящиеся у боковых стенок резервуара. находящиеся в центре тяжести рассматриваемого объема жидкости. Нет правильно ответа
669 Разд	ел гидравлики, в котором рассматриваются законы равновесия жидкости называется
	гидродинамика; гидростатика Нет правильно ответа. гидравлическая теория равновесия. гидромеханика;
670 Инте	енсивность испарения жидкости не зависит от
	от давления Нет правильно ответа от объема жидкости. от температуры от ветра
671 kak n	называются разделы, на которые делится гидравлика?
000	гидромеханика и гидродинамика; Нет правильно ответа) гидростатика и гидромеханика; гидрология и гидромеханика гидростатика и гидродинамика
672 Осно	овное уравнение гидростатики определяется
00000	произведением давления газа над свободной поверхностью к площади свободной поверхности; суммой давления на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев нет правилных ответов отношением рассматриваемого объема жидкости к плотности и глубине погружения точки. разностью давления на внешней поверхности и на дне сосуда;
673 Отно	ошение расхода жидкости к площади живого сечения называется
00000	максимальная скорость потока; средняя скорость потока средний расход потока жидкости; нет правилных ответов; минимальный расход потока.
674 Объе	ем жидкости, протекающий за единицу времени через живое сечение называется
00000	объемный поток; расход потока скорость расхода. нет правилных ответов; скорость потока;

675 Часть периметра живого сечения, ограниченная твердыми стенками называется

1/25/2017	
	гидравлический периметр.
_ ı	нет правилных ответов;
	смоченный периметр
	периметр контакта;
	мокрый периметр;
676 Плош	адь поперечного сечения потока, перпендикулярная направлению движения называется
\bigcirc (открытым сечением;
_	живым сечением
<u> </u>	площадь расхода.
	нет правилных ответов;
	полным сечением;
677 kak из ускорение	вменится угол наклона свободной поверхности в цистерне, двигающейся с постоянным ем
\circ	свободная поверхность будет горизонтальна;
Ξ.	нет правилных ответов;
<u> </u>	не изменится
$\overline{\bigcirc}$	будет изменяться;
\bigcirc $\stackrel{\cdot}{\circ}$	свободная поверхность примет форму параболы;
678 Во вр	ащающемся цилиндрическом сосуде свободная поверхность имеет форму
	гиперболы;
\bigcirc $\stackrel{\cdot}{\circ}$	свободная поверхность горизонтальна.
-	нет правилных ответов;
<u> </u>	параболы
	конуса;
679 Отно	сительным покоем жидкости называется
\bigcirc 1	равновесие жидкости только при неизменной силе тяжести
1	равновесие жидкости при постоянном значении действующих на нее сил тяжести и инерции
<u> </u>	равновесие жидкости при переменном значении действующих на нее сил тяжести и инерции;
	нет правилных ответов
O 1	равновесие жидкости при неизменной силе тяжести и изменяющейся силе инерции
680 Провеназываетс	еденная через объем жидкости поверхность, во всех точках которой давление одинаково, ся
()	поверхностью уровня
_	свободной поверхностью;
_	поверхностью покоя;
_	статической поверхностью.
_	нет правилных ответов.
601 H 1	1 1
	koму kритерию определяется способность плавающего тела изменять свое дальнейшее е после опрокидывающего воздействия
	по метацентрической высоте
_	по оси плавания
Ξ	по остойчивости
Ĭ.	по водоизмещению
	нет правилных ответов

682 Если судно после воздействия опрокидывающей силы продолжает дальнейшее опрокидывание, то метацентрическая высота

поверхность, во всех точках которой давление изменяется по одинаковому закону;

нет правилных ответов

689 Закон Паскаля гласит
 нет правилных ответов давление, приложенное к внешней поверхности жидкости, увеличивается по мере удаления от свободной поверхности; давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям согласно основному уравнению гидростатики; давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково давление, приложенное к внешней поверхности жидкости равно сумме давлений, приложенных с других сторон рассматриваемого объема жидкости.
690 Давление, приложенное k внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково
 это - закон Паскаля это - закон Жуковского. это - закон Никурадзе; это - закон Ньютона; нет правилных ответов;
691 Уравнение, позволяющее найти гидростатическое давление в любой точке рассматриваемого объема называется
 основным уравнением гидростатики основным уравнением гидродинамической теории; основным уравнением гидромеханики; основным уравнением гидродинамики; Нет правильно ответа
692 Основное уравнение гидростатики позволяет
 определять давление в любой точке рассматриваемого объема определять давление, действующее на погруженное в жидкость тело. определять давление на дне резервуара определять давление, действующее на свободную поверхность; нет правилных ответов
693 Второе свойство гидростатического давления гласит
 гидростатическое давление неизменно во всех направлениях гидростатическое давление неизменно в горизонтальной плоскости; гидростатическое давление изменяется при изменении местоположения точки; гидростатическое давление постоянно и всегда перпендикулярно к стенкам резервуара; Нет правильно ответа
694 Член уравнения Бернулли, обозначаемый буквой z, называется
 □ геометрической высотой □ потерянной высотой □ скоростной высотой □ пьезометрической высотой; □ нет правильных ответов
695 Третье свойство гидростатического давления гласит
 Нет правильно ответа гидростатическое давление зависит от плотности жидкости; пидростатическое давление в точке зависит от ее координат в пространстве гидростатическое давление в любой точке не зависит от ее координат в пространстве

1/25/2017	
○ 1	гидростатическое давление всегда превышает давление, действующее на свободную поверхность жидкости;
696 . Дина	амический коэффициент вязкости обозначается греческой буквой
O r	
697 Гидро	остатическое давление - это давление присутствующее
O F	в покоящейся жидкости в жидкости, помещенной в резервуар; в жидкости, находящейся под избыточным давлением; в движущейся жидкости; Нет правильно ответа;
698 Перво	ое свойство гидростатического давления гласит
	з любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема гидростатическое давление неизменно во всех направлениях и всегда перпендикулярно в точке его приложения к выделенному объему. в каждой точке жидкости гидростатическое давление действует параллельно площадке касательной к выделенному объему и направлено произвольно; в любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует от рассматриваемого объема; Нет правильно ответа
699 Средн	нее гидростатическое давление, действующее на дно резервуара равно
	отношению веса жидкости к площади дна резервуара отношению объема жидкости к ее плоскости произведению веса жидкости на глубину резервуара; произведению глубины резервуара на площадь его дна и плотность; Нет правильно ответа
700 Водои	измещение - это
	вес жидкости, взятой в объеме погруженной части судна нет правилных ответов; объем жидкости, вытесняемый судном при полном погружении; вес жидкости, взятой в объеме судна; максимальный объем жидкости, вытесняемый плавающим судном;