Advances in Information and Communication
Proceedings of the 2019 Future of Information and Communication Conference (FICC), Volume 1
Lecture Notes in Networks and Systems

Volume 69

Series editor
Janusz Kacprzyk, Polish Academy of Sciences, Systems Research Institute, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl
The series "Lecture Notes in Networks and Systems" publishes the latest developments in Networks and Systems—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new challenges in, Networks and Systems.

The series covers the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.

** Indexing: The books of this series are submitted to ISI Proceedings, SCOPUS, Google Scholar and Springerlink **

Advisory Board

Fernando Gomide, Department of Computer Engineering and Automation—DCA, School of Electrical and Computer Engineering—FECE, University of Campinas—UNICAMP, São Paulo, Brazil
e-mail: gomide@dca.fee.unicamp.br

Okyay Kaynak, Department of Electrical and Electronic Engineering, Bogazici University, Istanbul, Turkey
e-mail: okyay.kaynak@boun.edu.tr

Derong Liu, Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, USA and Institute of Automation, Chinese Academy of Sciences, Beijing, China
e-mail: derong@uic.edu

Witold Pedrycz, Department of Electrical and Computer Engineering, University of Alberta, Alberta, Canada and Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
e-mail: wpedrycz@ualberta.ca

Marios M. Polycarpou, KIOS Research Center for Intelligent Systems and Networks, Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
e-mail: mpolycar@ucy.ac.cy

Imre J. Rudas, Öbuda University, Budapest Hungary
e-mail: rudas@uni-obuda.hu

Jun Wang, Department of Computer Science, City University of Hong Kong Kowloon, Hong Kong
e-mail: jwang.cs@cityu.edu.hk

More information about this series at http://www.springer.com/series/15179
Advances in Information and Communication

Proceedings of the 2019 Future of Information and Communication Conference (FICC), Volume 1
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible Light Communication Security Vulnerabilities in Multiuser Network: Power Distribution and Signal to Noise Ratio Analysis</td>
<td>1</td>
</tr>
<tr>
<td>Rana Shaaban, Prakash Ranganathan, and Saleh Faruque</td>
<td></td>
</tr>
<tr>
<td>The Applications of Model Driven Architecture (MDA) in Wireless Sensor Networks (WSN): Techniques and Tools</td>
<td>14</td>
</tr>
<tr>
<td>Muhammad Waseem Anwar, Farooque Azam, Muazzam A. Khan, and Wasi Haider Butt</td>
<td></td>
</tr>
<tr>
<td>Real Time Multiuser-MIMO Beamforming/Steering Using NI-2922 Universal Software Radio Peripheral</td>
<td>28</td>
</tr>
<tr>
<td>Aliyu Buba Abdullahi, Rafael F. S. Caldeirinha, Akram Hammoudeh, Leshan Uggalla, and Jon Eastment</td>
<td></td>
</tr>
<tr>
<td>5G Waveform Competition: Performance Comparison and Analysis of OFDM and FBMC in Slow Fading and Fast Fading Channels</td>
<td>51</td>
</tr>
<tr>
<td>Muhammad Imran, Aamina Hassan, and Adnan Ahmed Khan</td>
<td></td>
</tr>
<tr>
<td>Mitigating the Nonlinear Optical Fiber Using Dithering and APD Coherent Detection on Radio Over Fiber</td>
<td>68</td>
</tr>
<tr>
<td>Fakhriy Hario, Sholeh H. Pramono, Eka Maulana, and Sapriesty Nainy Sari</td>
<td></td>
</tr>
<tr>
<td>NavAssist-Intelligent Landmark Based Navigation System</td>
<td>75</td>
</tr>
<tr>
<td>Ratnakumar Madhushan and Cassim Farook</td>
<td></td>
</tr>
<tr>
<td>An Enhanced RSSI-Based Detection Scheme for Sybil Attack in Wireless Sensor Networks</td>
<td>87</td>
</tr>
<tr>
<td>Yinghong Liu and Yuanming Wu</td>
<td></td>
</tr>
<tr>
<td>Optimization of Polar Codes in Virtual MIMO Systems</td>
<td>103</td>
</tr>
<tr>
<td>Idy Diop, Papis Ndiaye, Papa Alioune Fall, Boly Seck, Moussa Diallo, and Sidi Mohamed Farssi</td>
<td></td>
</tr>
</tbody>
</table>

raminrza@yahoo.com
MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey ... 117
Gang Wang and Yanyuan Qin

Accurate Attitude Estimation for Drones in 5G Drone Small Cells ... 143
Vahid Vahidi

Existence of an Optimal Perpetual Gossiping Scheme for Arbitrary Networks ... 154
Ivan Avramovic and Dana S. Richards

How to Achieve Traffic Safety with LTE and Edge Computing .. 164
Niklas Hegenkamp, Christian Facchi, and Stefan Neumeier

Design of Microstrip Patch Antenna with Inset Feed in CST for EBS Channel ... 177
Mian Mujtaba Ali, Muhammad H. D. Khan, and Omer Farooq

Dynamic Spectrum Access of Virtualized-Operated Networks over MIMO-OFDMA Dedicated to 5G Cognitive WSSNs .. 185
Imen Badri and Mahmoud Abdellaoui

Expanding Coverage of an Intelligent Transit Bus Monitoring System via ZigBee Radio Network 203
Ahmad Salman, Samy El-Tawab, and Zachary Yorio

CityAction a Smart-City Platform Architecture ... 217
Pedro Martins, Daniel Albuquerque, Cristina Wanzeller, Filipe Caldeira, Paulo Tomé, and Filipe Sá

Simplified Neural Networks with Smart Detection for Road Traffic Sign Recognition ... 237
Wei-Jong Yang, Chia-Chun Luo, Pau-Choo Chung, and Jar-Ferr Yang

Weighted Histogram of Oriented Uniform Gradients for Moving Object Detection .. 250
Wei-Jong Yang, Yu-Xiang Su, Pau-Choo Chung, and Jar-Ferr Yang

Puneet Kohli and Anjali Chadha

Towards Improved Drink Volume Estimation Using Filter-Based Feature Selection ... 280
Henry Griffith and Subir Biswas

raminrza@yahoo.com
Contents

Benslama Sami, Nasri Sihem, Zafar Bassam, and Cherif Adnen

Optimization of Bus Service with a Spatio-Temporal Transport Pulsation Model .. 304
Shuhan Lou, Ling Peng, Yunting Song, Xuantong Chen, and Chengzeng You

Dorota Jelonek, Agata Mesjasz-Lech, Cezary Stepniak, Tomasz Turek, and Leszek Ziora

Identification of Remote IoT Users Using Sensor Data Analytics .. 328
Samera Batool, Nazar Abbas Saqib, Muazzam Khan Khattack, and Ali Hassan

From Smart Concept to User Experience Practice a Synthetic Model of Reviewed and Organized Issues to Conceive Qualified Interactions .. 338
Cristina Caramelo Gomes

Democratization of Intelligent Sensor Network for Low-Connected Remote Healthcare Facilities—A Framework to Improve Population Health & Epidemiological Studies .. 358
Santosh Kedari, Jaya Shankar Vuppalapati, Anitha Ilapakurti, Chandrasekar Vuppalapati, Sneha Iyer, and Sharat Kedari

Latency-Aware Distributed Resource Provisioning for Deploying IoT Applications at the Edge of the Network .. 377
Cosmin Avasalcai and Schahram Dustdar

IntelliEppi: Intelligent Reaction Monitoring and Holistic Data Management System for the Molecular Biology Lab .. 392
Arthur Neuberger, Zeeshan Ahmed, and Thomas Dandekar

Smart and Pervasive Health Systems—Challenges, Trends, and Future Directions .. 408
Ramesh Rajagopalan

CityBook: A Mobile Crowdsourcing and Crowdsensing Platform .. 420
Gilberto Marzano and Velta Lubkina

A Framework for a Fuzzy Smart Home IoT e-Health Support System .. 432
Moses Adah Agana, Ofem Ajah Ofem, and Bassey Igbo Ele
Evaluation of Accuracy: A Comparative Study Between Touch Screen and Midair Gesture Input .. 448
Zeeshan Haider Malik and Miran Arfan

Uses of Virtual Reality for Communication in Financial Services: A Case Study on Comparing Different Telepresence Interfaces: Virtual Reality Compared to Video Conferencing 463
Abraham G. Campbell, Thomas Holz, Jonny Cosgrove, Mike Harlick, and Tadhg O’Sullivan

Effects of Virtual Agent Gender on User Performance and Preference in a VR Training Program .. 482
Xiumin Shang, Marcelo Kallmann, and Ahmed Sabbir Arif

The Psychoinformatical Complexity of Humanness and Person-Situation Interaction ... 496
Suraj Sood

Improving a Design Space: Pregnancy as a Collaborative Information and Social Support Ecology .. 505
Tamara Peyton and Pamela Wisniewski

Image Gravity: Defining Spatial Constructs for Invisible Phenomena .. 526
Dana Karwas

Service Robot Arm Controlled Just by Sight ... 535
Kohei Arai

Usability Evaluation of Online Flight Reservation Systems ... 546
Zeeshan Haider Malik, Tayyab Munir, and Mesan Ali

MMORPG Player Classification Using Game Data Mining and K-means ... 560
Bruno Almeida Odierna and Ismar Frango Silveira

Accurate, Timely, Reliable: A High Standard and Elusive Goal for Traveler Information Data Quality ... 580
Douglas Galarus, Ian Turnbull, Sean Campbell, Jeremiah Pearce, Leann Koon, and Rafal Angryk

Systematically Dealing Practical Issues Associated to Healthcare Data Analytics ... 599
Zeeshan Ahmed and Bruce T. Liang

Towards Optimizing Data Analysis for Multi-dimensional Data Sets ... 614
Arialdis Japa, Daniel Brown, and Yong Shi
Contents

Clustering of Economic Data with Modified K-Mean Technique 626
Trung T. Pham

Analysis of Data Governance Implications on Big Data 645
Lomso Trom and Johannes Cronje

Predicting Human Position Using Improved Numerical Association
Analysis for Bioelectric Potential Data .. 655
Imam Tahyudin, Berililana, and Hidetaka Nambo

Design of an Analysis Guide for User-Centered Process
Mining Projects ... 667
Yaimara Céspedes-González, Julio J. Valdes, Guillermo Molero-Castillo,
and Patricia Arieta-Melgarejo

LDM: Lineage-Aware Data Management in Multi-tier Storage
Systems .. 683
Pratik Mishra and Arun K. Somani

Potential Data Sources for Sentiment Analysis Tools for Municipal
Management Based on Empirical Research .. 708
Dorota Jelonek, Agata Mesjasz-Lech, Cezary Stepniak, Tomasz Turek,
and Leszek Ziora

Crime Alert! Crime Typification in News Based on Text Mining 725
Hugo Alatrista-Salas, Juandiego Morzán-Samamé, and Miguel Nunez-del-Prado

Classification Model for Student Performance Amelioration 742
Stewart Muchuchuti, Lakshmi Narasimhan, and Freedmore Sidume

Towards Enhancing Historical Analogy: Clustering Users Having
Different Aspects of Events .. 756
Ryohei Ikejiri, Ryo Yoshikawa, and Yasunobu Sumikawa

Educational Database Analysis Using Simple Bayesian Classifier 773
Byron Oviedo and Cristian Zambrano-Vega

Two Approaches to Country Risk Evaluation ... 793
Ramin Rzayev, Sevinj Babayeva, Inara Rzayeva, and Adila Ali

Conceptual Model for the New Generation of Data Warehouse
System Catalog ... 813
Danijela Jaksic, Patrizia Poscic, and Vladan Jovanovic

Towards the Processes Discovery in the Medical Treatment
of Mexican-Origin Women Diagnosed with Breast Cancer 826
Guillermo Molero-Castillo, Javier Jasso-Villazul, Arturo Torres-Vargas,
and Alejandro Velázquez-Mena

raminrza@yahoo.com
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARQA: SPARQL as a Function</td>
<td>839</td>
</tr>
<tr>
<td>Christian Vogelgesang, Torsten Spieldenner, and René Schubotz</td>
<td></td>
</tr>
<tr>
<td>A Holistic Approach to Requirements Elicitation for Mobile Tourist</td>
<td>857</td>
</tr>
<tr>
<td>Recommendation Systems</td>
<td></td>
</tr>
<tr>
<td>Andreas Gregoriades, Maria Pampaka, and Michael Georgiades</td>
<td></td>
</tr>
<tr>
<td>A Marketing Game: A Model for Social Media Mining and Manipulation</td>
<td>874</td>
</tr>
<tr>
<td>Matthew G. Reyes</td>
<td></td>
</tr>
<tr>
<td>Acoustic Event Detection with Sequential Attention and Soft Boundary</td>
<td>893</td>
</tr>
<tr>
<td>Information</td>
<td></td>
</tr>
<tr>
<td>Jingjing Pan and Xianjun Xia</td>
<td></td>
</tr>
<tr>
<td>Statistical Prediction of High-Cost Claimants Using Commercial</td>
<td>904</td>
</tr>
<tr>
<td>Health Plan Data</td>
<td></td>
</tr>
<tr>
<td>Amy Z. Cao and Liana DesHarnais Castel</td>
<td></td>
</tr>
<tr>
<td>A Personalized Blood Pressure Prediction Model Using Recurrent</td>
<td>913</td>
</tr>
<tr>
<td>Kernel Extreme Reservoir Machine</td>
<td></td>
</tr>
<tr>
<td>Sundus Abrar, Ghalib Ahmad Tahir, Habeebah Adamu Kakudi, and Chu</td>
<td></td>
</tr>
<tr>
<td>Kiong Loo</td>
<td></td>
</tr>
<tr>
<td>A Chronicle Review of Code Mixing and Switching or Language</td>
<td>930</td>
</tr>
<tr>
<td>Exchanging in Punjabi Movie Names</td>
<td></td>
</tr>
<tr>
<td>Sanjeev Sharma and Deepak Sharma</td>
<td></td>
</tr>
<tr>
<td>A Track Fuzzy Control of Robot Manipulator with Elastic Links</td>
<td>939</td>
</tr>
<tr>
<td>Nguyen Hoang Mai and Pham Anh Tuan</td>
<td></td>
</tr>
<tr>
<td>Development and Initial Validation of the Big Data Framework for</td>
<td>952</td>
</tr>
<tr>
<td>Agile Business: Transformational Innovation Initiative</td>
<td></td>
</tr>
<tr>
<td>Bhuvan Unhelkar and Joe Askren</td>
<td></td>
</tr>
<tr>
<td>Estimation Model Based on Spectral-Reflectance Data</td>
<td>961</td>
</tr>
<tr>
<td>Tao Chi, Guangpu Cao, Bingchun Li, and Zi Kerr Abdurahman</td>
<td></td>
</tr>
<tr>
<td>Ethics in Analytics and Social Media</td>
<td>970</td>
</tr>
<tr>
<td>Ed Lindoo</td>
<td></td>
</tr>
<tr>
<td>The Effects of the Number of Chinese Visitors on Commercial Sales in</td>
<td>983</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Koi Kyo</td>
<td></td>
</tr>
<tr>
<td>Preliminary Multi-lingual Evaluation of a Question Answering System</td>
<td>998</td>
</tr>
<tr>
<td>Based on the Node of Knowledge Method</td>
<td></td>
</tr>
<tr>
<td>Sanja Candrlitic, Martina Asenbrener Katic, and Alen Jakupovic</td>
<td></td>
</tr>
</tbody>
</table>
Empirical Similarity for Absent Data Generation in Imbalanced Classification
Arash Pourhabib

Prediction Model for Prevalence of Type-2 Diabetes Complications with ANN Approach Combining with K-Fold Cross Validation and K-Means Clustering
Md Tahsir Ahmed Munna, Mirza Mohtashim Alam, Shaikh Muhammad Allayear, Kaushik Sarker, and Sheikh Joly Ferdaus Ara

Internet of Things Based Smart Community Design and Planning Using Hadoop-Based Big Data Analytics
Muhammad Babar, Waseem Iqbal, and Sarah Kaleem

Author Index
Two Approaches to Country Risk Evaluation

Ramin Rzayev¹, Sevinj Babayeva¹(✉), Inara Rzayeva², and Adila Ali³

¹ Department of Information Systems, Institute of Control Systems, ANAS ICS, Baku, Azerbaijan
(raminrza, babayavesevinj)@yahoo.com
² Department of International Economics, Azerbaijan State University of Economics, UNEC, Baku, Azerbaijan
ina3r@mail.ru
³ Department of MSc Business Analytics, University College London, UCL, London, UK
aliadelae@gmail.com

Abstract. Weighted attribute estimates and fuzzy inference methods are based on two approaches to evaluate the levels of country risk which are considered on the base of expert judgments. To obtain the final estimates of the country risk levels for an arbitrary set of alternatives these approaches are used on the base of expert conclusions regarding factors of country risk. The study is completed by comparative analysis of finale estimates of country risks.

Keywords: Country risk · Concordance coefficient · Estimate · Expert conclusion · Fuzzy set · Fuzzy conclusion

1 Introduction

Country risk (CR) is a multifactor category that is characterized by a combined system of financial, economic, socio-political, and legal factors, which distinguishes the market of any country. According to the degree of risk, all countries are ranked by quantitative assessments of CR levels. A consolidated risk indicator R is used, which aggregates the relative influence of the considered number of factors (variables) of CR x_i ($i = 1$–n) by the function $R = R(x_1, x_2, \ldots, x_n)$.

Ranking of countries by degree of CP includes the following stages:

- selection the financial, economic, socio-political and legal variables of the CR;
- identification of the weights of the selected CR variables, based on their relative impact on the CR-level;
- expert evaluation of CR-factors using the expert scale;
- determination of a weighted index reflecting the CR-level.

Currently, many world rating agencies and international institutions, such as the Economist Intelligence Unit, Euromoney, Institutional Investor, Mood’s Investor
Service, Standart & Poor’s Rating Group, The European Bank for Reconstruction and Development (EBRD), the World Bank (WB), etc., range countries on the CR levels and their approaches are determined by qualitative and/or quantitative, economic, combined and structurally-qualitative methods of CR estimation.

To date, there are quite a lot of numerical methods for solving this type of problem. In particular, in Boolean case such estimates can be realized by Boolfilter and BoolNet package vignettes, which were respectively considered in [1, 2]. However, the main purpose of this study is to evaluate the levels of country risk by applying the fuzzy inference for identification the function \(R = R(x_1, x_2, \ldots, x_n) \).

2 Selection of the List of CR-Factors

The CR evaluation is a multi-criteria procedure, implying the use of the composite rule of aggregating the assessment for each of the selected risk factors. To date, there is no unified approach to calculating the CR index, since there are different points of view regarding the composition of CR factors. For example, in the process of ranging analysts of EBRD use indicators such as macroeconomic stability, taxation conditions, the quality of the judicial system, the level of corruption in the country, the finances of the leading base enterprises, the infrastructure. Another authoritative opinion on the investment attractiveness of states is the WB rating, which is established on the base of CR evaluations. At the same time, the WB assessment methodology takes into account the CR factors, such as the risks of nationalization and expropriation, risks related to private and foreign capital, the level of state policy, including the government’s stable policy and its popularity among citizens, the industrial cycle stage, market capacity and the resulting financial and currency risks, labor force qualification.

For visual demonstration of the proposed methods for CR evaluation, we chosen a rather limited list of risk factors used by the audit company Pricewaterhous Coopers in the process of its ranging of the investment attractiveness of states [3]. Namely: \(x_1 \)—the level of corruption; \(x_2 \)—compliance with legislation; \(x_3 \)—level of economic development; \(x_4 \)—state policy on accounting and control; \(x_5 \)—state regulation.

3 Ranking of CR-Variables in the Orders of Experts’ Preferences

Suppose that expert estimates of the importance degrees for CR-factors \(x_i \) \((i = 1–5)\) are determined by separate survey of 15 core specialists. Each expert was invited to arrange the variable \(x_i \) according to the principle: the most important variable should be designated by the number “1”, the next less important one—by the number “2” and further in descending order of importance. Obtained all rank estimates are summarized in the form of Table 1.
To establish the degree of consistency of expert opinions, we use the Kendall concordance coefficient, which demonstrates the multiple rank correlation of expert opinions. According to [4, 5], this coefficient is calculated by the formula:

$$W = \frac{12 \cdot S}{m^2(n^3 - n)},$$ \hspace{1cm} (1)

where m is the number of experts, n is the number of CR-variables, and S is the deviation of expert conclusions from the average value of the CR-variables ranking, which is calculated, for example, by the formula [3]:

$$S = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} r_{ij} - \frac{m(n+1)}{2} \right)^2,$$ \hspace{1cm} (2)

where $r_{ij} \in \{1; 2; 3; 4; 5\}$ is the rank of i-th CR-variable established by j-th expert. Then at the value of $S = 1450$ calculated on the base formula (2) and data from Table 1, the value of the Kendall concordance coefficient is $W = 0.6444 > 0.6$. This indicates a sufficiently strong agreement of expert conclusions regarding the importance degree of CR-variables.

Table 1. Ranking of CR-variables

<table>
<thead>
<tr>
<th>Expert number</th>
<th>CR-variables and their rank estimates (r_{ij})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x_1 x_2 x_3 x_4 x_5</td>
</tr>
<tr>
<td>01</td>
<td>1 2 4 3 5</td>
</tr>
<tr>
<td>02</td>
<td>1 3 2 4 5</td>
</tr>
<tr>
<td>03</td>
<td>2 1 5 4 3</td>
</tr>
<tr>
<td>04</td>
<td>1 2 4 5 3</td>
</tr>
<tr>
<td>05</td>
<td>2 1 3 4 5</td>
</tr>
<tr>
<td>06</td>
<td>1 2 4 5 3</td>
</tr>
<tr>
<td>07</td>
<td>2 1 4 3 5</td>
</tr>
<tr>
<td>08</td>
<td>1 2 4 5 3</td>
</tr>
<tr>
<td>09</td>
<td>1 3 2 4 5</td>
</tr>
<tr>
<td>10</td>
<td>1 3 2 5 4</td>
</tr>
<tr>
<td>11</td>
<td>1 3 4 2 5</td>
</tr>
<tr>
<td>12</td>
<td>1 2 3 5 4</td>
</tr>
<tr>
<td>13</td>
<td>2 1 4 3 5</td>
</tr>
<tr>
<td>14</td>
<td>3 1 2 4 5</td>
</tr>
<tr>
<td>15</td>
<td>1 2 5 4 3</td>
</tr>
<tr>
<td>$\sum r_{ij}$</td>
<td>21 29 52 55 65</td>
</tr>
</tbody>
</table>

To establish the degree of consistency of expert opinions, we use the Kendall concordance coefficient, which demonstrates the multiple rank correlation of expert opinions. According to [4, 5], this coefficient is calculated by the formula:

$$W = \frac{12 \cdot S}{m^2(n^3 - n)},$$ \hspace{1cm} (1)

where m is the number of experts, n is the number of CR-variables, and S is the deviation of expert conclusions from the average value of the CR-variables ranking, which is calculated, for example, by the formula [3]:

$$S = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} r_{ij} - \frac{m(n+1)}{2} \right)^2,$$ \hspace{1cm} (2)

where $r_{ij} \in \{1; 2; 3; 4; 5\}$ is the rank of i-th CR-variable established by j-th expert. Then at the value of $S = 1450$ calculated on the base formula (2) and data from Table 1, the value of the Kendall concordance coefficient is $W = 0.6444 > 0.6$. This indicates a sufficiently strong agreement of expert conclusions regarding the importance degree of CR-variables.
4 Identification of Weights of the CR-Variables

Now, suppose that at the preliminary stage of separate questionnaire each expert was also instructed to establish the values of the normalized estimates of CR-variables, which determine the specific density (weight) of the influence of each factor on the scale of the unit interval. The results of this questionnaire are summarized in Table 2.

<table>
<thead>
<tr>
<th>Expert number</th>
<th>CR-variables and their normalized estimates (x_j)</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td>0.300</td>
<td>0.250</td>
<td>0.150</td>
<td>0.225</td>
<td>0.075</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>0.350</td>
<td>0.175</td>
<td>0.200</td>
<td>0.150</td>
<td>0.125</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>0.225</td>
<td>0.250</td>
<td>0.150</td>
<td>0.175</td>
<td>0.200</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>0.275</td>
<td>0.250</td>
<td>0.175</td>
<td>0.100</td>
<td>0.200</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>0.250</td>
<td>0.275</td>
<td>0.200</td>
<td>0.175</td>
<td>0.100</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>0.300</td>
<td>0.250</td>
<td>0.150</td>
<td>0.200</td>
<td>0.100</td>
</tr>
<tr>
<td>07</td>
<td></td>
<td>0.200</td>
<td>0.375</td>
<td>0.150</td>
<td>0.175</td>
<td>0.100</td>
</tr>
<tr>
<td>08</td>
<td></td>
<td>0.325</td>
<td>0.300</td>
<td>0.150</td>
<td>0.025</td>
<td>0.200</td>
</tr>
<tr>
<td>09</td>
<td></td>
<td>0.275</td>
<td>0.175</td>
<td>0.200</td>
<td>0.100</td>
<td>0.250</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.300</td>
<td>0.200</td>
<td>0.250</td>
<td>0.100</td>
<td>0.150</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.300</td>
<td>0.175</td>
<td>0.150</td>
<td>0.250</td>
<td>0.125</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.300</td>
<td>0.250</td>
<td>0.200</td>
<td>0.100</td>
<td>0.150</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.225</td>
<td>0.250</td>
<td>0.175</td>
<td>0.200</td>
<td>0.150</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0.200</td>
<td>0.300</td>
<td>0.250</td>
<td>0.150</td>
<td>0.100</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.300</td>
<td>0.250</td>
<td>0.125</td>
<td>0.150</td>
<td>0.175</td>
</tr>
<tr>
<td>$\sum x_{ij}$</td>
<td></td>
<td>4.125</td>
<td>3.725</td>
<td>2.675</td>
<td>2.275</td>
<td>2.200</td>
</tr>
</tbody>
</table>

Starting from the data presented in Table 2, let us make preliminary calculations for the subsequent identification of the weights of CR-variables: it is necessary to define their group estimates and the numerical characteristics (degrees) of competence of each expert. To calculate the average value of z_i for i-th group of normalized estimates of CR-variables it is possible use the weighted degrees of expert competence by following difference equation:

$$x_i(t + 1) = \sum_{j=1}^{m} w_j(t) x_{ij}, \quad (3)$$

where $w_j(t)$ is the weight characterizing the competence degree of the jth expert ($j = 1\text{--}m$) at time t. It is clear that the process of finding of group estimates of the normalized values has an iterative character, which is completed under condition:
Two Approaches to Country Risk Evaluation

\[
\max_i \{|\alpha_i(t+1) - \alpha_i(t)|\} \leq \varepsilon, \tag{4}
\]

where \(\varepsilon \) is the allowable accuracy of calculations, which is set in advance. In our case, let it be \(\varepsilon = 0.0001 \).

At the initial stage \(t = 0 \) we assume that experts have the same degrees of competence. Then, assuming for the general case the value \(w_i(0) = 1/m \) as initial value of the competence degree of each expert, the average value for the \(i \)-th group of normalized estimates of CR-variables in the first approximation is obtained from the particular equality:

\[
\alpha_i(1) = \frac{1}{m} \sum_{j=1}^{m} w_j(0) \alpha_{ij} = \frac{1}{m} \sum_{j=1}^{m} \alpha_{ij}. \tag{5}
\]

In accordance with (5), the averaged estimates of CR-variables into divisions in the first approximation are the following corresponding numbers: \(\{\alpha_1(1); \alpha_2(1); \alpha_3(1); \alpha_4(1); \alpha_5(1)\} = \{0.27500; 0.24833; 0.11833; 0.15167; 0.14661\} \). It is not difficult to see that requirement (4) is not satisfied for the first approximation. Therefore, before move up to the next iteration step, it is necessary calculate the normalizing coefficient as:

\[
\eta(1) = \sum_{i=1}^{5} \sum_{j=1}^{15} \alpha_i(1) \alpha_{ij} = 3.2042.
\]

Then the competence indicators of experts can be calculated according to the following expressions:

\[
\begin{align*}
\begin{cases}
 w_j(1) = \frac{1}{\eta(1)} \sum_{i=1}^{5} \alpha_i(1) \cdot \alpha_{ij} (j = 1, 14), \\
 w_{15}(1) = 1 - \sum_{j=1}^{14} w_j(1), \\
 \sum_{j=1}^{15} w_j(1) = 1,
\end{cases}
\end{align*} \tag{6}
\]

where \(w_{15}(1) \) is the competency indicator of the 15-th expert. Thus, on the base of expressions (6), in the 1-st approximation there are following competence indicators of experts:

\[
\begin{align*}
\begin{Bmatrix}
 w_1(1); w_2(1); w_3(1); w_4(1); w_5(1); w_6(1); w_7(1); w_8(1); \\
 w_9(1); w_{10}(1); w_{11}(1); w_{12}(1); w_{13}(1); w_{14}(1); w_{15}(1)
\end{Bmatrix} \\
= \{0.0676; 0.0676; 0.0645; 0.0666; 0.0668; 0.0675; 0.0674; 0.0698; 0.0645; 0.0668; 0.0652; 0.0679; 0.0648; 0.0660; 0.0672\}.
\end{align*}
\]
Now we can proceed to the calculation of the mean group estimate of CR-variables in the 2-nd approximation by the formula (3), or more precisely by its particular expression:

$$x_i(2) = \sum_{j=1}^{15} w_{ij}(1)x_{ij}.$$

In this case, the average estimates of the CR-variables for groups \(i = 1 \div 5\) are the following numbers: \(\{\alpha_1(2); \alpha_2(2); \alpha_3(2); \alpha_4(2); \alpha_5(2)\} = \{0.27547; 0.24876; 0.17821; 0.15116; 0.14640\} \).

Checking these values for the fulfillment of condition (4) and making sure that it is not fulfilled again:

$$\max_i \{|x_i(2) - x_i(1)|\} = 0.0005 > \varepsilon,$$

let us calculate the normalizing coefficient as:

$$\eta(2) = \sum_{i=1}^{5} \sum_{j=1}^{15} x_i(2)x_{ij} = 3.2056.$$

Then the expert competence indicators at the 2-nd approximation \(w_{ij}(2) (j = 1-15)\) will be: \(w_{1j}(2); w_{2j}(2); w_{3j}(2); w_{4j}(2); w_{5j}(2); w_{6j}(2); w_{7j}(2); w_{8j}(2); w_{9j}(2); w_{10j}(2); w_{11j}(2); w_{12j}(2); w_{13j}(2); w_{14j}(2); w_{15j}(2)\} = \{0.0676; 0.0676; 0.0645; 0.0666; 0.0668; 0.0675; 0.0674; 0.0699; 0.0645; 0.0668; 0.0652; 0.0679; 0.0647; 0.0660; 0.0672\}.

The average group estimates for the CR-variables in the 3-rd approximation can be obtained from the following particular case of formula (3), namely: \(x_i(3) = \sum_{j=1}^{15} w_{ij}(3)x_{ij}\). In this case, the average estimates of the CR-variables for groups \(i = 1 \div 5\) are the following numbers: \(\{\alpha_1(3); \alpha_2(3); \alpha_3(3); \alpha_4(3); \alpha_5(3)\} = \{0.27547; 0.24876; 0.17821; 0.15115; 0.14640\} \).

As can be seen, the accuracy of group estimates of the CR-variables in the 3-rd approximation already satisfies condition (4), i.e.: \(\max_i \{|x_i(3) - x_i(2)|\} = 0.00001 < \varepsilon\), which is the reason for stopping the calculations. In this case, the values of the group estimates of the CR-variables, i.e. \(\{\alpha_1(3); \alpha_2(3); \alpha_3(3); \alpha_4(3); \alpha_5(3)\}\) are the final (consolidated) weights of the variables \(x_i (i = 1-5)\).

5 Determination of Weighted CR-Level on the Base of Expert Estimations

The method of expert assessments involves discussing the factors that affect the CR-level of a particular country by a group of experts specially involved for this purpose. Each of the experts is provided with a list of possible risks on the basis of the

ramirza@yahoo.com
CR-variables x_i ($i = 1–5$) and they are invited to give an separate assessment of the probability of their occurrence in percentage terms on the base of the following five-point rating system:

- 5—insignificant risk;
- 4—the risk situation will not come for most probability;
- 3—about the possibility of risk it is impossible to say anything definite;
- 2—the risk situation will most probably come;
- 1—the risk situation will surely come.

Further, expert assessments of risk situations are analyzed for consistency (or inconsistency) according to the rule: the maximum allowable difference between two expert opinions for any type of risk relative to x_i ($i = 1–5$) should not exceed a value of 3. This rule allows to filter out inadmissible deviations in expert assessments of the probability of risk occurrence for the separate CR-variable.

The calculation of the total index, theoretically ranging from 0 to 100, can be carried out by the following evaluation criterion:

$$ R = \frac{\sum_{i=1}^{5} \alpha_i e_i}{\max_i \sum_{i=1}^{5} \alpha_i e_i} \times 100 \quad (7) $$

Table 3. Gradation of the total weighted estimates of CR

<table>
<thead>
<tr>
<th>Interval</th>
<th>CR-level</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(90; 100]</td>
<td>Too low or absent</td>
<td>The financial-economic, socio-political, and state-legal statuses are estimated as stable in the long-term outlook</td>
</tr>
<tr>
<td>(80; 90]</td>
<td>Very low or insignificant</td>
<td>The financial-economic, socio-political, and state-legal statuses are estimated as stable in the medium-term outlook</td>
</tr>
<tr>
<td>(70; 80]</td>
<td>More than low</td>
<td>The financial-economic, socio-political, and state-legal statuses are estimated as stable in the near-term outlook</td>
</tr>
<tr>
<td>(60; 70]</td>
<td>Low</td>
<td>The main indicators of the financial-economic, socio-political, and state-legal conditions are estimated as satisfactory and stable in the near-term outlook</td>
</tr>
<tr>
<td>(50; 60]</td>
<td>High</td>
<td>The main indicators of the financial-economic, socio-political, and state-legal conditions are estimated as satisfactory, but their stability is doubtful</td>
</tr>
<tr>
<td>(40; 50]</td>
<td>More than high</td>
<td>The main indicators of financial-economic, socio-political, and state-legal conditions are estimated as close to satisfactory, but their stability is more than doubtful</td>
</tr>
<tr>
<td>(30; 40]</td>
<td>Very high or significant</td>
<td>The financial-economic, socio-political, and state-legal statuses are estimated as unsatisfactory or close to satisfactory, but unstable</td>
</tr>
<tr>
<td>[0; 30]</td>
<td>Too high or impermissible</td>
<td>Financial-economic, socio-political and state-legal statuses are estimated as stably unsatisfactory</td>
</tr>
</tbody>
</table>
where a_i is the weight of the significance of i-th CR-variable, e_i is the expert estimate of the probability of risk occurrence for i-th CR-variable based on the five-point rating system. In this case, the minimum index means the maximum risk, and vice versa, and the index of CR-level is established on the assumption of the graduation of the resulting weighted estimates, which summarized in Table 3.

Now let us assume that the expert community is offered to test 10 alternative countries a_k ($k = 1-10$) on the five-point system to assess the degree of influence of financial, economic, socio-political and state-legal factors in these countries on their. Thus, for these countries the consolidated (average) expert opinions based estimates of the CR-level are obtained by application of the total evaluation criterion (7). These estimates are summarized in Table 4.

<table>
<thead>
<tr>
<th>State</th>
<th>Identified weights of CR-variables $a_i(3)$</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2755 0.2488 0.1782 0.1512 0.1464</td>
<td></td>
</tr>
<tr>
<td>Normalized estimates of CR-variables</td>
<td>e_1 e_2 e_3 e_4 e_5</td>
<td></td>
</tr>
<tr>
<td>a_1</td>
<td>4.5 4.75 4.5 4.75 4.25</td>
<td>91.27</td>
</tr>
<tr>
<td>a_2</td>
<td>4.85 4.50 4.55 2.75 3.75</td>
<td>84.62</td>
</tr>
<tr>
<td>a_3</td>
<td>3.75 4.00 3.25 3.85 3.25</td>
<td>73.30</td>
</tr>
<tr>
<td>a_4</td>
<td>4.25 3.45 2.85 2.75 1.85</td>
<td>64.47</td>
</tr>
<tr>
<td>a_5</td>
<td>4.00 2.55 3.00 2.25 1.85</td>
<td>57.64</td>
</tr>
<tr>
<td>a_6</td>
<td>3.55 2.85 2.00 1.25 0.85</td>
<td>47.13</td>
</tr>
<tr>
<td>a_7</td>
<td>2.25 1.75 1.25 1.85 1.50</td>
<td>35.54</td>
</tr>
<tr>
<td>a_8</td>
<td>2.25 1.85 1.25 0.75 0.25</td>
<td>29.06</td>
</tr>
<tr>
<td>a_9</td>
<td>5.00 4.75 4.85 4.85 4.75</td>
<td>97.04</td>
</tr>
<tr>
<td>a_{10}</td>
<td>3.25 2.85 3.75 4.25 3.50</td>
<td>68.55</td>
</tr>
</tbody>
</table>

6 Determination of the CR-Level Using the Fuzzy Inference

All existing models of CR-evaluation have certain advantages and disadvantages. For example, the approach described above, which based on the application of the expert evaluation system, is criticized for absence there a cause-effect relations. In particular, the gradation of the CR-levels, presented in Table 3, was chosen conditionally—without any objective justifications. As a rule, such gradation is established by the expert community or heuristic knowledge. Therefore, before we begin to form a model for estimating the CR-level, it is necessary to construct a justified gradation scale.

A. CR-levels classification

CR-level evaluation being a multi-criteria procedure implies application of the composite rule of aggregation of the evaluation in each specific case. To estimate the CR-level we choose eight estimated concepts (or terms): u_1—"too low"; u_2—"very
low”; \(u_3 \) — “more than low”; \(u_4 \) — “low”; \(u_5 \) — “high”; \(u_6 \) — “more than high”; \(u_7 \) — “very high”; \(u_8 \) — “too high”. More simply, by the set \(C = (u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8) \) we will mean the set of criterions of classification of the CR-levels. Then, assuming the factors of CR as linguistic variables, the CR-level estimation can be realized by application of the sufficient set of consistent rules of the form “If \(<..> \), then \(<...> \)” and based on them it is possible to establish the corresponding scale for gradation the final estimates of the CR-levels. The basic judgments can be formulate as follows:

\(d_1 \): “If there is no corruption and economic development is observed, then the CR-level is acceptable”;
\(d_2 \): “If in addition to the above requirements the state policies on accounting and control are implemented, then the CR-level is more than acceptable”;
\(d_3 \): “If in addition to the conditions stipulated in \(d_2 \) there is appropriate legislation and state regulation is implemented, then the CR-level is low”;
\(d_4 \): “If there is no corruption, there is appropriate legislation, economic development is observed, the state policies on accounting and control are implemented, then the CR-level is very acceptable”;
\(d_5 \): “If there is adequate legislation, economic development is observed, and state policies on accounting and control are implemented, but there is display of corruption, the CR-level is still acceptable”;
\(d_6 \): “If there is display of corruption, there is no development of the economy, and there is no state regulation, then the CR-level is unacceptable”.

In the above statements, reflecting the internal cause-effect relations, the factors influencing the CR-level will be considered as inputs in the form of linguistic variables \(x_i \) \((i = 1–5)\), and the output is a linguistic variable \(y \) whose terms reflect the CR-levels. Then, having specified the corresponding terms of these variables, on the basis of the above statements it is possible to construct implicative rules as following [6]:

\(d_1 \): “If \(x_1 \) is absent and \(x_3 \) is observed, then \(y \) is acceptable”;
\(d_2 \): “If \(x_1 \) is absent and \(x_3 \) is observed and \(x_4 \) is implemented, then \(y \) is more than acceptable”;
\(d_3 \): “If \(x_1 \) is absent and \(x_2 \) is exist and \(x_3 \) is observed and \(x_4 \) is implemented and \(x_5 \) is implemented, then \(y \) is low”;
\(d_4 \): “If \(x_1 \) is absent and \(x_2 \) is exist and \(x_3 \) is observed and \(x_4 \) is implemented, then \(y \) is very acceptable”;
\(d_5 \): “If \(x_1 \) is display and \(x_2 \) is exist and \(x_3 \) is observed and \(x_4 \) is implemented, then \(y \) is very acceptable”;
\(d_6 \): “If \(x_1 \) is display and \(x_3 \) is not visible and \(x_5 \) is not implemented, then \(y \) is unacceptable”.

Linguistic variable \(y \) can be defined on the discrete set \(J = \{0; 0.1; 0.2; ...; 1\} \). Then, \(\forall j \in J \) its terms can be described by fuzzy subsets of \(J \) by following membership functions [6]: \(S = \) acceptable, \(M_S(j) = j \); \(M_S = \) more than acceptable, \(\mu_{M_S}(j) = \sqrt{j} \); \(L = \) low, \(\mu_L(j) = 1 \), if \(j = 1 \) and \(\mu_L(j) = 0 \), if \(j < 1 \); \(V = \) very acceptable, \(\mu_V(j) = j^2 \); \(U = \) unacceptable, \(\mu_U(j) = 1 - j \).
The fuzzification of terms in the left-hand parts of the rules can be realized by
Gaussian membership function: \(\mu(u) = \exp\left(-\frac{(u - u_0)^2}{\sigma_i^2}\right) \) (\(i = 1 - 5 \)), which restore fuzzy subsets of the discrete universe \(C = \{u_1, u_2, u_3, \ldots, u_8\} \), where \(u_k = (a_{k+1} + a_k)/2 \) (\(k = 1 - 8 \)) (see Fig. 1). In this case, the density of elements distribution \(\sigma_i^2 \) for the \(i \)-th factor is chosen individually on the assumption of condition of its criticality. It should be noted that the inaccuracy as a result of an arbitrary density choice is eliminated during the intersection of fuzzy sets in the left-parts of the rules. In Fig. 1, the gradation of CR-factors is presented in a general form. However, it is obvious the segment \([a_0, a_8]\) can be easily reduced to the unit segment \([0; 1]\) by a simple transformation \(t = (u - a_0)/(a_8 - a_0) \), where \(u \in [a_0, a_8], t \in [0; 1] \).

![Fig. 1. Uniform gradation of CR-factors](image)

![Fig. 2. Uniform gradation of CR-factors at the scale of the unit segment](image)

Estimating the CR-level from the point of view of the factors \(x_i \) (\(i = 1 - 5 \)), which are graded at the scale of the unit segment (Fig. 2), where \(a_k = 0.125 \) \(k = 0 - 8 \), all terms from the left-hand parts of the rules can be fuzzyfied in the following form:

- Absent (corruption): \(A = \{0.9070/u_1; 0.6766/u_2; 0.4152/u_3; 0.2096/u_4; 0.0870/u_5; 0.0297/u_6; 0.0084/u_7; 0.0019/u_8\} \);
- Exist (appropriate legislation): \(B = \{0.9070/u_1; 0.6766/u_2; 0.4152/u_3; 0.2096/u_4; 0.0870/u_5; 0.0297/u_6; 0.0084/u_7; 0.0019/u_8\} \);
- Observed (economic development): \(C = \{0.9394/u_1; 0.7788/u_2; 0.5698/u_3; 0.3679/u_4; 0.2096/u_5; 0.1054/u_6; 0.0468/u_7; 0.0183/u_8\} \);
- Implemented (state policies on accounting and control): \(D = \{0.9497/u_1; 0.8133/u_2; 0.6282/u_3; 0.4376/u_4; 0.2749/u_5; 0.1557/u_6; 0.0796/u_7; 0.0367/u_8\} \);
- Implemented (state regulation) \(E = \{0.9575/u_1; 0.8406/u_2; 0.6766/u_3; 0.4994/u_4; 0.3379/u_5; 0.2096/u_6; 0.1192/u_7; 0.0622/u_8\} \).

Then taking into account these formalisms, the implicative rules in the symbolic expression will be as:

- \(d_1: (x_1 = A) \land (x_3 = C) \Rightarrow (y = S) \);
- \(d_2: (x_1 = A) \land (x_3 = C) \land (x_4 = D) \Rightarrow (y = MS) \);
- \(d_3: (x_1 = A) \land (x_2 = B) \land (x_3 = C) \land (x_4 = D) \land (x_5 = E) \Rightarrow (y = L) \);
- \(d_4: (x_1 = A) \land (x_2 = B) \land (x_3 = C) \land (x_4 = D) \Rightarrow (y = VS) \);
- \(d_5: (x_1 = \neg A) \land (x_2 = B) \land (x_3 = C) \land (x_4 = D) \Rightarrow (y = S) \);
- \(d_6: (x_1 = A) \land (x_3 = \neg C) \land (x_5 = \neg E) \Rightarrow (y = US) \).
Further, for the left-parts of these rules, it necessary to find the membership functions of appropriate fuzzy sets obtained by intersection [6]:

\[d_1: \mu_{M_1}(u) = \min\{\mu_A(u), \mu_C(u)\}, \ M_1 = \{0.9070/u_1; 0.6766/u_2; 0.4152/u_3; 0.2096/u_4; 0.0870/u_5; 0.0297/u_6; 0.0084/u_7; 0.0019/u_8\}; \]
\[d_2: \mu_{M_2}(u) = \min\{\mu_B(u), \mu_D(u)\}, \ M_2 = \{0.9070/u_1; 0.6766/u_2; 0.4152/u_3; 0.2096/u_4; 0.0870/u_5; 0.0297/u_6; 0.0084/u_7; 0.0019/u_8\}; \]
\[d_3: \mu_{M_3}(u) = \min\{\mu_A(u), \mu_B(u), \mu_C(u), \mu_D(u)\}, \ M_3 = \{0.9070/u_1; 0.6766/u_2; 0.4152/u_3; 0.2096/u_4; 0.0870/u_5; 0.0297/u_6; 0.0084/u_7; 0.0019/u_8\}; \]
\[d_4: \mu_{M_4}(u) = \min\{\mu_A(u), \mu_B(u), \mu_C(u), \mu_D(u)\}, \ M_4 = \{0.9070/u_1; 0.6766/u_2; 0.4152/u_3; 0.2096/u_4; 0.0870/u_5; 0.0297/u_6; 0.0084/u_7; 0.0019/u_8\}; \]
\[d_5: \mu_{M_5}(u) = \min\{1-\mu_A(u), \mu_B(u), \mu_C(u), \mu_D(u)\}, \ M_5 = \{0.0930/u_1; 0.3234/u_2; 0.4994/u_3; 0.2910/u_4; 0.1453/u_5; 0.0622/u_6; 0.0228/u_7; 0.0072/u_8\}; \]
\[d_6: \mu_{M_6}(u) = \min\{1-\mu_A(u), 1-\mu_C(u), 1-\mu_D(u)\}, \ M_6 = \{0.0425/u_1; 0.1594/u_2; 0.3234/u_3; 0.5006/u_4; 0.6621/u_5; 0.7904/u_6; 0.8808/u_7; 0.9378/u_8\}. \]

As a result, the rules can be described as:

\[d_1: (x = M_1) \Rightarrow (y = S); \]
\[d_2: (x = M_2) \Rightarrow (y = MS); \]
\[d_3: (x = M_3) \Rightarrow (y = L); \]
\[d_4: (x = M_4) \Rightarrow (y = VS); \]
\[d_5: (x = M_5) \Rightarrow (y = S); \]
\[d_6: (x = M_6) \Rightarrow (y = US). \]

These rules are transformed by Lukasiewicz's implication [7]:

\[\mu_{U \times J}(u,j) = \min\{1, 1 - \mu_U(u) + \mu_J(j)\}, \quad (8) \]

as a result of which for each pair \((u, j) \in U \times J\) the fuzzy relations are obtained in the form of correspondent matrix:

\[
R_i = \begin{bmatrix}
0 & 0.0930 & 0.1930 & 0.2930 & 0.3930 & 0.4930 & 0.5930 & 0.6930 & 0.7930 & 0.8930 & 0.9930 & 1.0000 \\
0.6766 & 0.3234 & 0.4234 & 0.5234 & 0.6234 & 0.7234 & 0.8234 & 0.9234 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.4152 & 0.5848 & 0.6848 & 0.7848 & 0.8848 & 0.9848 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.2096 & 0.7904 & 0.8904 & 0.9904 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0870 & 0.9130 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0297 & 0.9703 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0084 & 0.9916 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0019 & 0.9981 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
\end{bmatrix}
\]
R. Rzayev et al.

\[
R_2 = \begin{bmatrix}
0 & 0.3162 & 0.4472 & 0.5477 & 0.6325 & 0.7071 & 0.7746 & 0.8367 & 0.8944 & 0.9487 & 1 \\
0.9070 & 0.0930 & 0.4093 & 0.5403 & 0.6408 & 0.7255 & 0.8001 & 0.8676 & 0.9297 & 0.9875 & 1.0000 & 1.0000 \\
0.6766 & 0.3234 & 0.6396 & 0.7706 & 0.8711 & 0.9558 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.4152 & 0.5848 & 0.9010 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.2096 & 0.7904 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0870 & 0.9130 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0297 & 0.9703 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0084 & 0.9916 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0019 & 0.9981 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
\end{bmatrix}
\]

\[
R_3 = \begin{bmatrix}
0 & 0.01 & 0.04 & 0.09 & 0.16 & 0.25 & 0.36 & 0.49 & 0.64 & 0.81 & 1 \\
0.9070 & 0.0930 & 0.1330 & 0.1830 & 0.2530 & 0.3430 & 0.4530 & 0.5830 & 0.7330 & 0.9030 & 1.0000 \\
0.6766 & 0.3234 & 0.3334 & 0.3634 & 0.4134 & 0.4834 & 0.5734 & 0.6834 & 0.8134 & 0.9634 & 1.0000 \\
0.4152 & 0.5848 & 0.5848 & 0.6248 & 0.6748 & 0.7448 & 0.8348 & 0.9448 & 1.0000 & 1.0000 & 1.0000 \\
0.2096 & 0.7904 & 0.8004 & 0.8304 & 0.8804 & 0.9504 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0870 & 0.9130 & 0.9230 & 0.9530 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0297 & 0.9703 & 0.9803 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0084 & 0.9916 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0019 & 0.9981 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
\end{bmatrix}
\]

\[
R_4 = \begin{bmatrix}
1 & 0.9 & 0.8 & 0.7 & 0.6 & 0.5 & 0.4 & 0.3 & 0.2 & 0 & 1 \\
0.0425 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9575 & 0.9575 \\
0.1594 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.8406 \\
0.3234 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9766 & 0.8766 \\
0.5006 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9994 & 0.8994 & 0.7379 \\
0.6621 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.9379 & 0.8379 & 0.7379 & 0.6379 & 0.5379 & 0.4379 & 0.3379 \\
0.7904 & 1.0000 & 1.0000 & 1.0000 & 0.9096 & 0.8096 & 0.7096 & 0.6096 & 0.5096 & 0.4096 & 0.3096 & 0.2096 \\
0.8808 & 1.0000 & 1.0000 & 0.9192 & 0.8192 & 0.7192 & 0.6192 & 0.5192 & 0.4192 & 0.3192 & 0.2192 & 0.1192 \\
0.9378 & 1.0000 & 0.9022 & 0.8022 & 0.7022 & 0.6022 & 0.5022 & 0.4022 & 0.3022 & 0.2022 & 0.1022 & 0.0022 \\
\end{bmatrix}
\]
As a result of intersection of fuzzy relations R_1, R_2, \ldots, R_6 we finally obtain a general functional solution R reflecting the cause-effect relations between the factors x_i ($i = 1-5$), on the one hand, and, in fact, the CR-level, on the other.

$$R = \begin{bmatrix}
 u_1 & 0.0930 & 0.0930 & 0.0930 & 0.0930 & 0.0930 & 0.0930 & 0.0930 & 0.0930 & 0.9575 \\
 u_2 & 0.3234 & 0.3234 & 0.3234 & 0.3234 & 0.3234 & 0.3234 & 0.3234 & 0.3234 & 0.8406 \\
 u_3 & 0.5006 & 0.5848 & 0.5848 & 0.5848 & 0.5848 & 0.5848 & 0.5848 & 0.5848 & 0.6766 \\
 u_4 & 0.7090 & 0.7904 & 0.7904 & 0.7904 & 0.7904 & 0.7904 & 0.7904 & 0.6994 & 0.4994 \\
 u_5 & 0.8547 & 0.9130 & 0.9130 & 0.9130 & 0.9130 & 0.8379 & 0.7379 & 0.6379 & 0.5379 \\
 u_6 & 0.9378 & 0.9703 & 0.9703 & 0.9096 & 0.8096 & 0.7096 & 0.6096 & 0.5096 & 0.4096 \\
 u_7 & 0.9772 & 0.9916 & 0.9192 & 0.8192 & 0.7192 & 0.6192 & 0.5192 & 0.4192 & 0.3192 \\
 u_8 & 0.9928 & 0.9622 & 0.8622 & 0.7622 & 0.6622 & 0.5622 & 0.4622 & 0.3622 & 0.2622 \\
\end{bmatrix}$$

To determine the CR-level it is necessary to apply the rule of composite conclusion in a fuzzy environment [6]:

$$E_k = G_k^* R,$$

where E_k is the acceptability degree of risk relative to the k-th CR-level ($k = 1-8$), G_k is the mapping of the k-th CR-level in the form of a fuzzy subset of the discrete universe J. Then, choosing a composite rule as [6]

$$\mu_{E_k}(j) = \max_{j \in J}\{\min\{\mu_{G_k}(j), \mu_{R}(j)\}\},$$

and assuming that in this case $\mu_{G_k}(j) = \begin{cases} 0, & j \neq j_k; \\
1, & j = j_k, \end{cases}$ finally we have: $\mu_{E_k}(u) = \mu_R(j_k, u),$

that is, in other words, E_k is the k-th row of the matrix R.

Now, to classify the CR-levels defuzzification procedure for the fuzzy outputs of the applied model is used. So, for the estimated concept u_1 of risk acceptability, the fuzzy interpretation of the corresponding CR-level will be the following fuzzy subset of the universe J: $E_1 = \{0.0930/0; 0.0930/0.1; 0.0930/0.2; 0.0930/0.3; 0.0930/0.4; 0.0930/0.5; 0.0930/0.6; 0.0930/0.7; 0.0930/0.8; 0.0930/0.9; 0.9575/1\}$. Setting the level sets $E_{1\alpha}$ and calculating the corresponding powers $M(E_{1\alpha})$ by the formula $M(E_{1\alpha}) = \sum_{r=1}^{n} \frac{x_r}{n}$, we have:

- for $0 < \alpha < 0.0930$: $\Delta \alpha = 0.0930$, $E_{1\alpha} = \{0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1\}$, $M(E_{1\alpha}) = 0.5$;
- for $0.0930 < \alpha < 0.9575$: $\Delta \alpha = 0.8645$, $E_{1\alpha} = \{1\}$, $M(E_{1\alpha}) = 1$.

For numerical estimations of fuzzy outputs E_k ($k = 1-8$) following formula can be applied [8, 9]:

$$F(E_k) = \frac{1}{\alpha_{\text{max}}} \int_{0}^{\alpha_{\text{max}}} M(E_{k\alpha}) d\alpha, (k = 1-5),$$

raminrza@yahoo.com
where \(\alpha_{\text{max}} \) is the maximum value on \(E_k \). Thus, in this case we have:

\[
F(E_1) = \frac{1}{0.9575} \int_{0}^{0.9575} M(E_{1\alpha})d\alpha = \frac{0.5 \cdot 0.0930 + 1.0 \cdot 0.8645}{0.9575} = 0.9514.
\]

For estimated concept \(u_8 \) of risk acceptability, the reflection of the corresponding CR-level will be following fuzzy set: \(E_8 = \{0.9928/0; 0.9622/0.1; 0.8622/0.2; 0.7622/0.3; 0.6622/0.4; 0.5622/0.5; 0.4622/0.6; 0.3622/0.7; 0.2622/0.8; 0.1622/0.9; 0.0622/1\} \), for which we have, respectively:

- for \(0 < \alpha < 0.0622 \): \(\Delta \alpha = 0.0622, E_{8\alpha} = \{0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9\}; M(E_{8\alpha}) = 0.5\);
- for \(0.0622 < \alpha < 0.1622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9\}; M(E_{8\alpha}) = 0.45\);
- for \(0.1622 < \alpha < 0.2622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8\}; M(E_{8\alpha}) = 0.40\);
- for \(0.2622 < \alpha < 0.3622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7\}; M(E_{8\alpha}) = 0.35\);
- for \(0.3622 < \alpha < 0.4622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6\}; M(E_{8\alpha}) = 0.30\);
- for \(0.4622 < \alpha < 0.5622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1; 0.2; 0.3; 0.4; 0.5\}; M(E_{8\alpha}) = 0.25\);
- for \(0.5622 < \alpha < 0.6622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1; 0.2; 0.3; 0.4\}; M(E_{8\alpha}) = 0.20\);
- for \(0.6622 < \alpha < 0.7622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1; 0.2; 0.3\}; M(E_{8\alpha}) = 0.15\);
- for \(0.7622 < \alpha < 0.8622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1; 0.2\}; M(E_{8\alpha}) = 0.10\);
- for \(0.8622 < \alpha < 0.9622 \): \(\Delta \alpha = 0.1, E_{8\alpha} = \{0; 0.1\}; M(E_{8\alpha}) = 0.05\);
- for \(0.9622 < \alpha < 0.9928 \): \(\Delta \alpha = 0.0307, E_{8\alpha} = \{0\}; M(E_{8\alpha}) = 0\).

Then the numerical estimate of the fuzzy output \(E_8 \) will be:

\[
F(E_8) = \frac{1}{0.9928} \int_{0}^{0.9928} M(E_{8\alpha})d\alpha = 0.2579.
\]

Point estimates for remaining fuzzy outputs are calculated by similar actions: for the estimated concept \(u_2 \) of risk acceptability—\(F(E_2) = 0.8077; u_3—F(E_3) = 0.5741; u_4—F(E_4) = 0.4689; u_5—F(E_5) = 0.3964; u_6—F(E_6) = 0.3324; u_7—F(E_7) = 0.2863. F(E_8) = 0.2579 \) is the least defuzzified output of the applied model of the multi-criterion assessment of the CR-level, as the upper bound it corresponds to the consolidated estimation of the CR-level “too high or impermissible”. From the point of view of the influence of the CR-factors, for others the defuzzified outputs we have, respectively:

- 0.2863 is upper bound of estimate “very high or significant”;
- 0.3324 is upper bound of estimate “more than high”;
- 0.3964 is upper bound of estimate “high”;

raminrza@yahoo.com
Two Approaches to Country Risk Evaluation

0.4689 is upper bound of estimate “low”;
0.5741 is upper bound of estimate “more than low”;
0.8077 is upper bound of estimate “very low or insignificant”;
0.9514 is upper bound of estimate “too low or absent”.

As a criterion for the forming of the final estimation the following equality

\[E = \frac{F(E_k)}{F_{\text{max}}} \times 100 \] (12)

is applied, where \(F(E_k) \) is the estimate of the \(k \)-th CR-level (to wide extent also any other estimate); \(F_{\text{max}} = F(E_1) = 0.9514 \). Then, in the accepted assumptions, the justified scale for estimation the CR-level within the framework of the segment \([0; 100]\) is summarized in Table 5.

<table>
<thead>
<tr>
<th>Interval</th>
<th>CR-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(84.90; 100)</td>
<td>Too low or absent</td>
</tr>
<tr>
<td>(60.34; 84.90)</td>
<td>Very low or insignificant</td>
</tr>
<tr>
<td>(49.29; 60.34)</td>
<td>More than low</td>
</tr>
<tr>
<td>(41.66; 49.29)</td>
<td>Low</td>
</tr>
<tr>
<td>(34.94; 41.66)</td>
<td>High</td>
</tr>
<tr>
<td>(30.09; 34.94)</td>
<td>More than high</td>
</tr>
<tr>
<td>(27.11; 30.09)</td>
<td>Very high or significant</td>
</tr>
<tr>
<td>[0; 27.11]</td>
<td>Too high or impermissible</td>
</tr>
</tbody>
</table>

Table 5. Gradation of CR-levels using the fuzzy inference

B. CR-levels classification

To construct the fuzzy inference system according to the CR-level estimation, the basis verbal model is chosen by above statements \(d_1 - d_6 \). As alternatives, ten hypothetical states \(a_k \) \((k = 1-10)\) are used, which having passed expert examination on a five-mark grading system for the influences of CR-factors \(x_i \) \((i = 1-5)\) on their CR-levels (see Table 4). In this case, for the terms from the left-hand parts of the rules \(d_1 - d_6 \), the procedure for fuzzification can be applied somewhat differently, namely: each term is reflected as a fuzzy subset of the final set of estimated alternatives (countries) \(\{a_1, a_2, ..., a_{10}\} \) as \(A_i = \{\mu_{A_i}(a_1)/a_1; \mu_{A_i}(a_2)/a_2; \ldots; \mu_{A_i}(a_{10})/a_{10}\} \), where \(\mu_{A_i}(a_t) \) is the value of the membership function of the fuzzy set \(A_i \), i.e. it characterizes the country \(a_t \) with respect to the assessment criterion \(A_i \). As a membership function, Gaussian function is chosen in the form of:

\[\mu_{A_i}(a_t) = \exp\{-[e_t(a_t) - 5]^2/\sigma_i^2\}, \]

where \(e_t(a_t) \) is the consolidated expert evaluation of the country \(a_t \) \((t = 1-10)\), which is given by five-mark grading system for compliance with the \(i \)-th CR-factor as non-
existent; \(\sigma_i^2 \) is the density of the location of the nearest elements, which is chosen as 4 for all cases of the fuzzification. Then, assuming each of the CR-factors CP \(x_i (i = 1-5) \) as the linguistic variable, one of its terms, namely "non-existent risk" can be described in the form of the corresponding fuzzy subset \(A_i \) of the discrete universe \(U = \{ a_1, a_2, ..., a_{10} \} \) as follows [7]:

- \(A_1 = \{ 0.9394/a_1; 0.9944/a_2; 0.6766/a_3; 0.8688/a_4; 0.7788/a_5; 0.5912/a_6; 0.1510/a_7; 0.1510/a_8; 1.0000/a_9; 0.4650/a_{10} \} \);
- \(A_2 = \{ 0.9845/a_1; 0.9394/a_2; 0.7788/a_3; 0.5485/a_4; 0.2230/a_5; 0.3149/a_6; 0.0713/a_7; 0.0837/a_8; 0.9845/a_9; 0.3149/a_{10} \} \);
- \(A_3 = \{ 0.9394/a_1; 0.9506/a_2; 0.4650/a_3; 0.3149/a_4; 0.3679/a_5; 0.1054/a_6; 0.0297/a_7; 0.0297/a_8; 0.9944/a_9; 0.6766/a_{10} \} \);
- \(A_4 = \{ 0.9845/a_1; 0.2821/a_2; 0.7185/a_3; 0.2821/a_4; 0.1510/a_5; 0.0297/a_6; 0.0837/a_7; 0.0109/a_8; 0.9944/a_9; 0.8688/a_{10} \} \);
- \(A_5 = \{ 0.8688/a_1; 0.6766/a_2; 0.4650/a_3; 0.0837/a_4; 0.0837/a_5; 0.0135/a_6; 0.0468/a_7; 0.0036/a_8; 0.9845/a_9; 0.5698/a_{10} \} \).

Then, taking these formalisms into account and presented above formal descriptions of terms from the right-hand parts of the rules \(d_1-d_6 \), the basic model is written as following:

- \(d_1: (x_1 = A_1) \land (x_3 = A_3) \Rightarrow (y = S) \);
- \(d_2: (x_1 = A_1) \land (x_3 = A_3) \land (x_4 = A_4) \Rightarrow (y = MS) \);
- \(d_3: (x_1 = A_1) \land (x_2 = A_2) \land (x_3 = A_3) \land (x_4 = A_4) \land (x_5 = A_5) \Rightarrow (y = L) \);
- \(d_4: (x_1 = A_1) \land (x_2 = A_2) \land (x_3 = A_3) \land (x_4 = A_4) \Rightarrow (y = VS) \);
- \(d_5: (x_1 = \neg A_1) \land (x_2 = A_2) \land (x_3 = A_3) \land (x_4 = A_4) \Rightarrow (y = S) \);
- \(d_6: (x_1 = A_1) \land (x_3 = \neg A_3) \land (x_5 = \neg A_5) \Rightarrow (y = US) \).

Similarly, intersections of fuzzy sets from the left-parts of the rules are established. In the discrete case, these are determined by finding the minimum of the corresponding values of membership functions, namely:

- \(d_1: \mu_{M1}(u) = \min(\mu_{A1}(u), \mu_{A3}(u)), M_1 = \{ 0.9394/a_1; 0.9506/a_2; 0.4650/a_3; 0.3149/a_4; 0.3679/a_5; 0.1054/a_6; 0.0297/a_7; 0.0297/a_8; 0.9944/a_9; 0.4650/a_{10} \} \);
- \(d_2: \mu_{M2}(u) = \min(\mu_{A1}(u), \mu_{A3}(u), \mu_{A4}(u)), M_2 = \{ 0.9394/a_1; 0.2821/a_2; 0.4650/a_3; 0.2821/a_4; 0.1510/a_5; 0.0297/a_6; 0.0297/a_7; 0.0109/a_8; 0.9944/a_9; 0.4650/a_{10} \} \);
- \(d_3: \mu_{M3}(u) = \min(\mu_{A1}(u), \mu_{A2}(u), \mu_{A3}(u), \mu_{A4}(u), \mu_{A5}(u)), M_3 = \{ 0.8688/a_1; 0.2821/a_2; 0.4650/a_3; 0.0837/a_4; 0.0837/a_5; 0.0135/a_6; 0.0297/a_7; 0.0036/a_8; 0.9845/a_9; 0.3149/a_{10} \} \);
- \(d_4: \mu_{M4}(u) = \min(\mu_{A1}(u), \mu_{A2}(u), \mu_{A3}(u), \mu_{A4}(u)), M_4 = \{ 0.9394/a_1; 0.2821/a_2; 0.4650/a_3; 0.2821/a_4; 0.1510/a_5; 0.0297/a_6; 0.0297/a_7; 0.0109/a_8; 0.9845/a_9; 0.3149/a_{10} \} \);
- \(d_5: \mu_{M5}(u) = \min(1 - \mu_{A1}(u), \mu_{A2}(u), \mu_{A3}(u), \mu_{A4}(u)), M_5 = \{ 0.0606/a_1; 0.0056/a_2; 0.3234/a_3; 0.1312/a_4; 0.1510/a_5; 0.0297/a_6; 0.0297/a_7; 0.0109/a_8; 0.0000/a_9; 0.3149/a_{10} \} \);
- \(d_6: \mu_{M6}(u) = \min(1 - \mu_{A1}(u), 1 - \mu_{A3}(u), 1 - \mu_{A5}(u)), M_6 = \{ 0.0606/a_1; 0.0056/a_2; 0.3234/a_3; 0.1312/a_4; 0.2212/a_5; 0.4088/a_6; 0.8490/a_7; 0.8490/a_8; 0.0000/a_9; 0.3234/a_{10} \} \).
As a result, the rules are described in a more compact form:

\[d_1: (x = M_1) \Rightarrow (y = S); \]
\[d_2: (x = M_2) \Rightarrow (y = MS); \]
\[d_3: (x = M_3) \Rightarrow (y = L); \]
\[d_4: (x = M_4) \Rightarrow (y = VS); \]
\[d_5: (x = M_5) \Rightarrow (y = S); \]
\[d_6: (x = M_6) \Rightarrow (y = US). \]

As above these rules are transformed by Lukasiewicz’s implication (8) into the fuzzy relations \(R_1, R_2, \ldots, R_6 \), intersection of which creates the following general matrix solution \(R \).

\[
R = \begin{bmatrix}
0 & 0.1006 & 0.3494 & 0.2494 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 \\
0.0060 & 0.0706 & 0.1312 & 0.1312 & 0.1312 & 0.1312 & 0.1312 & 0.1312 & 0.1312 & 0.1312 & 0.1312 \\
0.0444 & 0.1494 & 0.2494 & 0.6494 & 0.4944 & 0.4944 & 0.5494 & 0.7179 & 0.7179 & 0.7179 & 0.9944 \\
0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 & 0.5350 \\
0.6851 & 0.7279 & 0.7579 & 0.8079 & 0.8779 & 0.9163 & 0.9163 & 0.9163 & 0.9163 & 0.9163 & 0.8688 \\
0.6321 & 0.7321 & 0.8321 & 0.9163 & 0.9163 & 0.9163 & 0.9163 & 0.9163 & 0.9163 & 0.8788 & 0.7788 \\
0.8946 & 0.9803 & 0.9865 & 0.9865 & 0.9865 & 0.9865 & 0.9865 & 0.9865 & 0.9865 & 0.9865 & 0.9865 \\
0.9703 & 0.9703 & 0.9510 & 0.8510 & 0.7510 & 0.6510 & 0.5510 & 0.4510 & 0.3510 & 0.2510 & 0.1510 \\
0.9703 & 0.9964 & 0.9510 & 0.8510 & 0.7510 & 0.6510 & 0.5510 & 0.4510 & 0.3510 & 0.2510 & 0.1510 \\
0.0056 & 0.0155 & 0.0155 & 0.0155 & 0.0155 & 0.0155 & 0.0155 & 0.0155 & 0.0155 & 0.0155 & 1.0000 \\
0.5350 & 0.6350 & 0.6851 & 0.6851 & 0.6851 & 0.6851 & 0.6851 & 0.6851 & 0.6851 & 0.6851 & 0.6766 \\
\end{bmatrix}
\]

On the discrete set \(J \) the matrix \(R \) reflects the cause-effect relations between the consolidated expert assessments of countries by CR-factors \(x_i \) (i = 1–5), on the one hand, and, corresponding their CR-levels, on the other.

According to (9) and (10), the \(k \)-th row of the matrix \(R \) is a fuzzy conclusion relative to the aggregated CR-level for the \(k \)-th alternative (country). In order to numerically interpret each of these fuzzy conclusions it necessary to apply the defuzzification procedure based on the method of point estimation of fuzzy sets. In particular, for a fuzzy conclusion regarding the CR-level of the first alternative \(E_1 = (0.0606/0; \ 0.0706/0.1; \ 0.1006/0.2; \ 0.1312/0.3; \ 0.1312/0.4; \ 0.1312/0.5; \ 0.1312/0.6; \ 0.1312/0.7; \ 0.1312/0.8; \ 0.1312/0.9; \ 0.9394/1) \) according to the above arguments, we have:

- for \(0 < \alpha < 0.0606 \): \(\Delta \alpha = 0.0606, \ E_{1\alpha} = \{0; \ 0.1; \ 0.2; \ 0.3; \ 0.4; \ 0.5; \ 0.6; \ 0.7; \ 0.8; \ 0.9; \ 1\}, M(E_{1\alpha}) = 0.5; \)
- for \(0.0606 < \alpha < 0.0706 \): \(\Delta \alpha = 0.01, \ E_{1\alpha} = \{0.1; \ 0.2; \ 0.3; \ 0.4; \ 0.5; \ 0.6; \ 0.7; \ 0.8; \ 0.9; \ 1\}, M(E_{1\alpha}) = 0.55; \)
- for \(0.0706 < \alpha < 0.1006 \): \(\Delta \alpha = 0.03, \ E_{1\alpha} = \{0.2; \ 0.3; \ 0.4; \ 0.5; \ 0.6; \ 0.7; \ 0.8; \ 0.9; \ 1\}, M(E_{1\alpha}) = 0.60; \)
- for \(0.1006 < \alpha < 0.1312 \): \(\Delta \alpha = 0.0306, \ E_{1\alpha} = \{0.3; \ 0.4; \ 0.5; \ 0.6; \ 0.7; \ 0.8; \ 0.9; \ 1\}, M(E_{1\alpha}) = 0.65; \)
- for \(0.1312 < \alpha < 0.9394 \): \(\Delta \alpha = 0.8082, \ E_{1\alpha} = \{1\}, M(E_{1\alpha}) = 1. \)
Then, according to (11) the numerical estimate of E_1 is:

$$F(E_1) = \frac{1}{0.9388} \int_{0}^{0.9388} M(E_{a2}) \, dx = 0.9388.$$

The point estimates of fuzzy conclusions about CR-levels for other alternative countries are established by similar actions: $F(E_2) = 0.7687$; $F(E_3) = 0.6047$; $F(E_4) = 0.5370$; $F(E_5) = 0.5206$; $F(E_6) = 0.4552$; $F(E_7) = 0.3055$; $F(E_8) = 0.3001$; $F(E_9) = 0.9927$; $F(E_{10}) = 0.5140$. As a result, according classification presented in Table 5, the ratio of the total estimates of the CR-levels on the scale of the interval $[0; 100]$ are obtained by simply multiplying these values by 100.

7 Conclusion

So, two approaches to the evaluation of CR-levels are considered on the base of the application of expert conclusions regarding the degrees of influence of the factors x_i ($i = 1-5$) on the CR-level.

As a result of applying the method of weighted estimates of attributes, it was possible to determine the coefficient of rank correlation of CR-factors x_i ($i = 1-5$), which indicated sufficiently high degree of agreement between expert opinions, but also a close relationships between the considered CR-factors.

In addition, within the framework of this approach the generalized values of the weights of the CR-factors x_i ($i = 1-5$) were calculated by analytical reasoning, which became the basis for justifying and developing recommendations for the formation of final estimates of the CR-levels by the established comparison criterion at the scale of the interval $[0; 100]$.

The method of weighted estimates can be used in the decision-making process as effective mechanism for multicriterion evaluation of alternatives characterized by a certain set of attributes.

In fact, fuzzy inference, which is the essence of the second approach similarly solves the discussed problem, with the only difference that it relies not on an indirect, but on a direct cause-effect relations between the factors x_i ($i = 1-5$) and CR-levels. As a result of the application of fuzzy inference, it was possible to formulate a valid scale of CR-levels gradation and it is relatively easy to obtain finale estimates of the CR-levels.

Comparative analysis of the results of estimations the CR-levels for hypothetical alternatives (countries) a_k ($k = 1-10$) obtained by both methods is presented in the form of Table 6.

As can be seen from Table 6, the orders of final estimates of the CR-levels only for alternatives a_4, a_5 and a_{10} are different. With comparing by denominations of estimates, the CR-levels do not always coincide too. It is explained by different approaches to the formation of a grading scale for the final estimates of the CR-levels. Nevertheless, the
Two Approaches to Country Risk Evaluation

Table 6. Comparative analysis of the obtained results

<table>
<thead>
<tr>
<th>(\alpha_i)</th>
<th>Weighted estimation</th>
<th>Fuzzy inference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CR-level according to</td>
<td>CR-level according to</td>
</tr>
<tr>
<td></td>
<td>uniform gradation</td>
<td>fuzzy gradation</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>91.27</td>
<td>Too low or absent</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>84.62</td>
<td>Very low or insignificant</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>73.30</td>
<td>More than low</td>
</tr>
<tr>
<td>(\alpha_4)</td>
<td>64.47</td>
<td>Low</td>
</tr>
<tr>
<td>(\alpha_5)</td>
<td>57.64</td>
<td>High</td>
</tr>
<tr>
<td>(\alpha_6)</td>
<td>47.13</td>
<td>More than high</td>
</tr>
<tr>
<td>(\alpha_7)</td>
<td>35.54</td>
<td>Very high or significant</td>
</tr>
<tr>
<td>(\alpha_8)</td>
<td>29.06</td>
<td>Too high or impermissible</td>
</tr>
<tr>
<td>(\alpha_9)</td>
<td>97.04</td>
<td>Too low or absent</td>
</tr>
<tr>
<td>(\alpha_{10})</td>
<td>68.55</td>
<td>Low</td>
</tr>
</tbody>
</table>

The authors consider necessary to express their sincere appreciation to the direction of the Institute of Control Systems of the Azerbaijan National Academy of Sciences represented by professors T. A. Aliev and O. G. Nusratov for the help that they rendered during the process of writing and preparing this article.

References