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Preface

The challenge met by the 5th Econophys-Kolkata conference held at the Saha In-
stitute for Nuclear Physics in March 2010 was an interesting one. It was actually
more a question than a challenge: to what extent can one depart from a zoomed-
out point of view providing the usual stylized facts of financial markets and shift
towards a small scale, microscopic type of approach, and still retain a conceptual
view of the way financial markets work?
This shift of perspective was motivated by the necessity of addressing the case of

general order-drivenmarkets. These markets, which have set the standards for major
financial markets such as the Equity, Forex, or Futures contracts markets, have led
to the production of a huge amount of data, and an almost equally huge amount
of scientific and econometric literature, owing to the seemingly perfect information
that they provide to the interested researcher.
As a matter of fact, the paradigmatic case of european equity markets between

(roughly speaking) the years 2000 and 2005 is almost a scientist’s dream come true:
any transaction on a given equity would take place in a single venue of a single
exchange, the liquidity up to the five (or ten, sometimes twenty . . . ) first limits was
public information accessible through the order book data, every event affecting the
order book was time-stamped to the millisecond, and sometime even the identity of
the sender of any given order was accessible.
This clearly transparent situation is still prevailing in some sense, although the

existence of competing exchanges since the early 90’s in the US and 2007 in Europe
has made the situation a bit more difficult to apprehend. More to the point, the
existence of dark pools, or hidden liquidity reservoirs operated by brokers for their
“large” clients, is making this situation even more complex. However, one can still
think that a data-based, in-depth study of the order-drivenmarkets will lead to a good
understanding of the mechanisms of price formation in financial markets.
And indeed, it is the case, at least up to a point: as we shall see frommany contri-

butions in the present volume, the mechanisms ruling short time scales microstruc-
tural effects, price impact, volatility clustering, relaxation of the order book follow-
ing large trades . . . are available for direct observation, and can be well described
using either agent-based or purely statistical models. Of particular interest is the
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question of whether the so-called “zero-intelligence” models may provide a faith-
ful and useful representation of the dynamics of order-driven markets. One can find
in this volume some pieces of empirical evidence against this, in particular regard-
ing the “cat and mouse” game collectively played by liquidity takers and providers,
and several other important effects must therefore be accounted for when design-
ing more realistic models. Interestingly enough, there still exists, as a by-product of
pure zero-intelligence, some sort of stochasticity in the order flow and therefore, in
the price and spread volatility, due to memory effects in the order book. But these
effects may sometimes hinder the researcher’s path, as they play the role of an artifi-
cial source of volatility at the smallest time scales, rather than highlight some more
fundamental behaviours of actual market participants.
In selecting the contributions for the present volume, the editors have tried and

followed the intellectual approach of an experimental physicist: data should come
first, in that they, and only they, can be considered a reliable ground for building up
any kind of theories. Then modelling of course, follows. Models address one partic-
ular phenomenon that is observed and highlighted, they provide some information
as to how one can explain and reproduce this phenomenon. Then equations are stud-
ied, both from a theoretical point of view and from that of numerical simulation. As
a matter of fact, markets tend to behave in such a complicated manner that analyt-
ically tractable models, no matter how appealing they seem to the scientist, hardly
provide a reasonable representation of reality. And the use of numerical simulations,
particularly when one considers “intelligent” agents, is often the best – and some-
times, the only – way to understand and measure the microscopic and macroscopic
impacts of such specific behaviours as market making, order splitting, order flow
correlation between two tradable assets . . .
These proceedings are organized as follows: a first section is concerned with

the study of limit order books – data first, and then models. A second section is
devoted to results on high frequency data and modelling. We have also included
a “miscellaneous” section so as to incorporate relevant contributions from other
areas of Econophysics. Finally, we have summarized in a brief “panel discussion”
section some of the remarks made by the participants during the various interesting
and animated exchanges that took place during the conference.
The editors would like to thank the Centre for Applied Mathematics and Com-

putational Science of the Saha Institute for Nuclear Physics, the Indian Statistical
Institute and the École Centrale Paris for their support in organizing this conference.
They also address their warm thanks to Ioane Muni Toke, who not only contributed
in a significant way to the scientific content of these proceedings, but also provided
an invaluable help and support during the preparation of the manuscript.
We are grateful to the Editorial Board of the New Economic Windows series

for agreeing again to the publish the Proceedings of Econophys-Kolkata V, in
their esteemed series. The earlier Econophys-Kolkata proceedings volumes were:
(i) Econophysics & Economics of Games, Social Choices and Quantitative Tech-
niques, Eds. B. Basu, B.K. Chakrabarti, S.R. Chakravarty, K. Gangopadhyay, Sprin-
ger-Verlag, Italia, Milan, 2010; (ii) Econophysics of Markets and Business Net-
works, Eds. A. Chatterjee, B.K. Chakrabarti, New Economic Windows, Springer-
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Verlag Italia, Milan 2007; (iii) Econophysics of Stock and other Markets, Eds.
A. Chatterjee, B.K. Chakrabarti, New Economic Windows, Springer-Verlag Italia,
Milan 2006; (iv) Econphysics of Wealth Distributions, Eds. A. Chatterjee, S. Yarla-
gadda, B.K. Chakrabarti, New Economic Windows, Springer-Verlag Italia, Milan,
2005.

September 2010 Frédéric Abergel
Bikas K. Chakrabarti
Anirban Chakraborti
Manipushpak Mitra
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École Centrale Paris, Châtenay-Malabry, France
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fabrizio.pomponio@bnpparibas.com

Tobias Preis
Center for Polymer Studies, Department of Physics, Boston, USA
Artemis Capital Asset Management GmbH, Holzheim, Germany
Institute of Physics, Johannes Gutenberg University Mainz, Germany
mail@tobiaspreis.de

Luciano Pietronero
Department of Physics, University of Rome La Sapienza, Rome
Istituto dei Sistemi Complessi, CNR, Rome
luciano.pietronero@roma1.infn.it

Julien Razafinimanana
Crédit Agricole Quantitative Research, Courbevoie, France
jrazafinimanana@cheuvreux.com

Christian Y. Robert
CREST – ENSAE Paris Tech, Paris
chrobert@ensae.fr

Mathieu Rosenbaum
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Part I
Order Book Data and Modelling





Trade-throughs: Empirical Facts
and Application to Lead-lag Measures

Fabrizio Pomponio and Frédéric Abergel

Abstract. Order splitting is a well-known behavior in trading: traders constantly
scan the limit order book and choose to limit the size of their orders to the quan-
tity available at the best limit. Order splitting allows traders not to reveal their in-
tention to the market so as not to move too much the price against them. In this
note, we focus on the other trades, called trade-throughs, which are trades that go
through the best available price in the order book. We provide various statistics on
trade-throughs: their liquidity, their intraday distribution and the spread relaxation
that follows them. We also present a new method to get empirical distributions of
lead-lag parameters between assets, sectors or even markets. This empirical study is
based on tick-by-tick data of major EU and US equity futures fromTRTH (Thomson
Reuters Tick History) database.

1 Introduction

We know from Bouchaud [5] that the trading flow time series is a long-memory
process.1 For example, if we look at the following figures, we see that the trade
sign autocorrelation for the French stock BNP-Paribas is approximately fitted by
a power-law of exponent 0:5 (which is a typical kind of long-memory process).

Fabrizio Pomponio
BNP-Paribas, Equity Derivatives Quantitative Analytics, Chair of Quantitative Finance,
Laboratory of Mathematics Applied to Systems, École Centrale Paris, Châtenay-Malabry, France,
e-mail: fabrizio.pomponio@bnpparibas.com

Frédéric Abergel
Chair of Quantitative Finance, Laboratory of Mathematics Applied to Systems, École Centrale
Paris, Châtenay-Malabry, France,
e-mail: frederic.abergel@ecp.fr

1 A centered process X is said to exhibit long-memory behavior when its series of auto-covariances
is not summable, i.e.

P
h2N

j�.h/j D C1 where �.h/D EŒXt Xt�h�.

F. Abergel, B.K. Chakrabarti, A. Chakraborti, M. Mitra (Eds.) 3
Econophysics of Order-driven Markets. © Springer-Verlag Italia 2011
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Fig. 1 Trade sign autocorrelation for BNP-Paribas stock on March–April 2010

Lillo [4] argues this is mainly explained by the splitting of large orders. Traders
don’t want to reveal their intentions to the markets so the price will not move too
much against them. Assume a trader wants to trade a large order, he will then split
it in several orders to minimize his price impact. In practice, traders constantly scan
the limit order book and mainly restrict the size of their orders to the quantity avail-
able at the best limit. Conversely, sometimes speed of execution is more important
than minimizing market-impact. It may be interesting to study trade-throughswhich
are the trades that stand outside this usual pattern of limiting trade size to the best
limit liquidity.
In Sect. 2, we give a general insight about TRTH’s data we used and how they

are processed at BNP-Paribas. We also present the data we focused on (major US
and EU equity futures and major French stocks).
In Sect. 3, we first look at the fraction of the trading volume that is taken from

each limit of the order book. We precisely define what trade-throughs are and then
provide various statistics2 on them: their occurrence and volume proportions (we
also test the stability of the definition of trade-thoughswith respect to the mean trade
volume). We also provide the intraday timestamp distribution of trade-throughs, on
which we highlight an important peak for equity futures at the same moment of the
day as the release-time of major macro-economic news. This is a first confirmation
of their higher informational content.
In Sect. 4, we focus on the spread behavior after a trade-through. We use the

framework of complex systems to model the limit order book and consider trade-

2 All the statistical computations are made by using the free statistical software R, available at
http://cran.r-project.org.
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throughs as excitations of this complex system. We show that there is a typical
power-law relaxation of the excess spread after trade-throughs in physical time.
In Sect. 5, we use trade-throughs to obtain empirical distributions of lead-lag

parameter.We apply this technique to the global lead-lag between US and EU equity
markets and show that US equity markets are globally leading EU equity markets.
Sect. 6 summarizes the note and presents further research.
The advantages of this general framework based on trade-throughs are:

• We are restricting our set of data to extract very informative events. This sim-
plifies some usual statistics but, more importantly, this allows one to do new
statistics, like lead-lag empirical distributions, that are not possible using all tick-
by-tick data.

• The framework of trade-throughs is flexible enough to adapt the rare events we
are focusing on to the data we are looking at and to the goals we are achiev-
ing (restriction on the limit number touched by the trades, on the size of the
trades, . . . ).

• We can study individual asset (stocks, futures, options, . . . ) but also global sec-
tors, markets or economies.

2 Data Presentation

2.1 General TRTH Data Presentation and BNP-Paribas’s
Processing

The data used for this study come from TRTH (Thomson Reuters Tick History).
The informations stored in the database include quotes (grouped in the ‘Quotes’ file)
and trades (grouped in the ‘Time And Sales’ file). Both quotes and trades are times-
tamped in milliseconds by Thomson-Reuters’s timestamping machines located in
London. Quotes entries are composed of Bid/Ask/BidSize/AskSize. Trades entries
contain Price/Volume of each transaction.
An important point to be mentioned in the data presentation is that TRTH data

are flagged. Each entry of both quotes and trades files has a flag indicating infor-
mation to be taken into account in the data analysis (e.g. this line from the ‘Time
And Sales’ file is a trade from the auction phase, . . . ). Those flags are markets and
exchanges dependent in the sense that specific knowledge from each market and ex-
change is necessary to correctly interpret each TRTH/exchange flag. After this flag
processing3, we end up with trades tagged within a limited number of flags’ cate-
gories. The most important of trades flags (normal, auction, OTC, offbook, block
trade, rck, market closed, cancelled, late0day & lateNdays, late report) are detailed
in the next figure.
Last, some data sent by exchanges are corrections of previous entries. A basic ex-

ample of those correction may be the cancellation of a previous trade that is to be re-

3 The flag processing is done by BNP-Paribas Equities & Derivatives Quantitative R&D Histo
team. It is an ongoing process that seems to be quite reliable on the most important exchanges.
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Flag Information and signification

normal Trades occurring during the continuous trading session.

auction Trades occurring at the end of the auction phase.

OTC Over-the-counter trades occurring directly between two parties.
They are opposed to trades occurring on centralized exchanges.

off book Trades occurring outside the usual trading system of the considered exchange.
They may be trades reported from a broker, for example.

In Euronext, trades outside of the NSC (Nouveau Système de Quotation)
fall inside this category.

block trade Reporting of block trades (very large trades).

rck TRTH/exchange’s threshold break alerting that price and/or volume of this trade
(as reported by the exchange) seem too different from an usual behavior

and should not be considered as relevant.

market
closed

Trades occuring before or after the regular trading session.

cancelled Cancelled trades.

late 0 day &
lateNdays

Trades that were reported the same day or N days after.

late report Trades reported later in market data feeds.
They include late0day and lateNdays trades.

unknown All the other trades.

Fig. 2 TRTH’s most important trades flags

placed with another one. Corrections are the only case when TRTH’s data are modi-
fied at BNP-Paribas before being accessible to users. So, the tick-by-tickmarkets data
we used in this study are the data after all corrections have been taken into account.

2.2 Data Used in This Study

Throughout the article, we only considered trades flagged as ‘normal’ trades. In
particular, we did not consider any block-trade or off-book trade in the following.
We explain here how we selected the perimeter of the data used for the statistics
and lead-lag empirical determination between US and EU equity markets. First, we
wanted to select a few instruments among the most representative of the US and EU
equity markets. To this end, we ranked all equity financial instruments available in
TRTH according to their ADV (Average Daily Volume). Then, we picked the most
liquid ones (3 from US equity markets and 3 from EU equity markets). By doing
so, we ended up with a minimal number of financial instruments that represent the
most liquid instruments of the markets we want to study. This choice is based on the
intuition that market moves are first expressed in the most liquid instruments.
The final financial instruments perimeter is composed of E-mini S&P500, Nas-

daq E-mini and Dow Jones E-mini futures (for US equity markets) and of Eurostoxx,
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DAX and Footsie futures (for European equity markets). Moreover, in order to con-
sider the most liquid instruments, we chose to focus on the futures with the nearest
maturity.
For the basic statistics on occurrences and volumes of trade-throughs (Sect. 2 of

this article), we only considered data of March 2010 (from 16 to 21.30, Paris Time
reference). For the lead-lag study (Sect. 5 of this article), we used data from the
beginning of December 2009 to mid-March 2010 and restricted our data time-frame
to the period of the day when both EU and US equity markets are opened and are
widely trading (from 15.30 to 17.30, Paris Time reference) because we think that
this lead-lag phenomenon is particularly relevant at that moment.

3 Some Statistics on Trade-throughs

Usually, traders scan the limit order book and restrict the size of their orders to the
available liquidity. They split a large order in several orders in order to restrict the
size of their trades to the dynamic quantity available at the best limit. As mentioned
in the introduction, we are interested in the trades that deviates from this usual be-
havior. We will focus on the trades that consume the liquidity available in the order
book in an aggressive way: the trade-throughs.

3.1 Definition of Trade-throughs

We call a x-th limit trade-through any trade that consumes at least one share at the
x-th limit available in the order book. This definition is inclusive in the sense that,
if p is greater than q, any p-th limit trade-through is also part of the q-th limit
trade-throughs. For example, a 2nd-limit trade-through completely consumes the
first limit available and begins to consume the second limit of the order book. In the
following figures, we show an example of such a trade.

3.2 Basic Statistics on Occurrences and Volumes
of Trade-throughs

We present in this section basic statistics on occurrences and volumes of trade-
throughs in order to better measure the significance of this phenomenon on trading.4

4 We recall that those statistics are done excluding the first and last half-hours of the usual trading
session not to be impacted by auction phases. As we’ll see in the section on intraday timestamp
distribution of trade-throughs, those are parts of the day where trade-throughs also occur. So, on
a global daily basis, following statistics are in fact underestimations. However, we do believe that
they help to better understand the links between trade-throughs and both relative tick value of the
asset and liquidity in the order book.
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� price� � � � � � � � � �

�
quantity

��
Bid-Ask Spread

‚ …„ ƒAsk side‚ …„ ƒBid side

Fig. 3 Initial limit order book configuration

� price� � � � � � � � � �

�
quantity

�
2nd-limit trade-through example

Fig. 4 2nd-limit trade-through example

� price� � � � � � � � � �

�
quantity

�

NextBestBid

�

NextBestAsk

Fig. 5 After-trade-through limit order book configuration

We can notice that even if trade-throughs may rarely occur (with a probability
occurrence of less than 5%), they include a non-negligible part of the daily-volume
(up to 20% for the DAX index future).
An important remark should be made at this stage: the smaller the relative tick

value, the more the trade-throughs are present, both in occurrence and volume. This
result seems intuitive as we know that the smaller the relative tick value is on a par-
ticular asset, the more aggressively this asset is traded.
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Financial asset 2nd-limit TT 2nd-limit TT Relative tick value
considered Occurrence (in %) Volume (in %) (indicative, in bp)

E-mini S&P500 – ES@ 1,43 2,66 2,2
Nasdaq E-mini – NQ@ 1,91 5,73 1,3

Dow Jones E-mini – YM@ 3,17 9,65 1,0

Eurostoxx – STXE@ 1,88 7,37 3,5
Footsee – FFI@ 3,30 8,95 0,9
DAX – FDX@ 7,75 19,10 0,8

Fig. 6 Basic statistics on 2nd-limit trade-throughs (estimations based on March 2010 data)

Financial asset 3rd-limit TT 3rd-limit TT Relative tick value
considered Occurrence (in %) Volume (in %) (indicative, in bp)

E-mini S&P500 – ES@ 0,0012 0,0067 2,2
Nasdaq E-mini – NQ@ 0,014 0,26 1,3

Dow Jones E-mini – YM@ 0,062 0,79 1,0

Eurostoxx – STXE@ 0,012 0,31 3,5
Footsie – FFI@ 0,17 1,52 0,9
DAX – FDX@ 0,50 3,28 0,8

Fig. 7 Basic statistics on 3rd-limit trade-throughs (estimations based on March 2010 data)

3.3 Stability of Trade-through’s Definition with the Size
of the Trade

In this section, we want to check that our definition of trade-throughs is stable with
the volume of the trade. In other words, we want to verify that the trades we are fo-
cusing on are not due to little quantity available at the best limit of the order book (in
which case the trader is almost forced to consume several limits in order to obtain
the quantity he’s usually looking for). To do so, we first compute the Mean Trade
Volume of the usual trades (the trades that only consume less than the quantity avail-
able at the first limit of the order book). Then, we will check whether the statistical
set of data we defined as trade-throughs is relatively stable when we add a second
restriction to their definition, which is they have to consume more than the Mean
Trade Volume.
For the US and EU futures, if we look at the 3rd-limit trade-through, there is no

impact (both on occurrence and volume) on the set of trade-throughs if we add the
previous restriction on trade volume. For the 2nd-limit trade-through, global vol-
umes of trade-throughs is not really changed when restricting trade-throughs def-
inition with the additional constraint on volume. But there exists a difference in
occurrences, which reflects that a fraction of 2nd-limt trade-throughs for EU and
US futures corresponds to trades split over the first two limits of the order book
because of an unusual lack of liquidity on the first limit.
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Financial asset 2nd-limit TT 2nd-limit TT Relative tick value
considered Occurrence (in %) Volume (in %) (indicative, in bp)

E-mini S&P500 – ES@ 0,42 2,3 2,2
Nasdaq E-mini – NQ@ 1,19 5,73 1,3

Dow Jones E-mini – YM@ 2,19 8,95 1,0

Eurostoxx – STXE@ 0,80 7,04 3,5
Footsee – FFI@ 1,97 7,94 0,9
DAX – FDX@ 5,53 17,7 0,8

Fig. 8 Basic statistics on 2nd-limit trade-throughs with volumes higher than the Mean Trade Vol-
ume (estimations based on March 2010 data)

Financial asset 3rd-limit TT 3rd-limit TT Relative tick value
considered Occurrence (in %) Volume (in %) (indicative, in bp)

E-mini S&P500 – ES@ 0,0010 0,0065 2,2
Nasdaq E-mini – NQ@ 0,014 0,26 1,3

Dow Jones E-mini – YM@ 0,057 0,78 1,0

Eurostoxx – STXE@ 0,0106 0,305 3,5
Footsie – FFI@ 0,16 1,50 0,9
DAX – FDX@ 0,49 3,27 0,8

Fig. 9 Basic statistics on 3rd-limit trade-throughs with volumes higher than the Mean Trade Vol-
ume (estimations based on March 2010 data)

As a conclusion, our definition of a trade-through as a trade consuming several
limits of the order book is pretty stable with the size of the trades. A trade-through
is generally a trade with an higher volume than usual trades.

3.4 Intraday Timestamp Distribution of Trade-throughs

We present in this paragraph the intraday distributions of timestamps5 for 2nd-limit
and 3rd-limit trade-throughs for the different equity futures of interest. When look-
ing at this distribution for the 2nd-limit trade-throughs, we recognize a U-shape
part, similar to the one of intraday volume distribution. But what strikes here is the
presence of peaks at very precise hours, observed for both US and European equity
futures. If we restrict the study only to the 3rd-limit trade-throughs, the U-shape part
is almost completely removed from the distribution which is now composed only of
those specific peaks.
The precise hours when this important statistical pattern of intraday distribution

of trade-throughs timestamps happens are:

• 07.50: Eurex trading phase beginning (FESX, FDAX).
• 09.00: Euronext trading phase beginning (FTSE).

5 All timestamps presented in this article are referenced in the time-reference of Europe/Paris =
CET = UTC/GMT + 1 h.
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• 14.30: CME open-outcry trading phase beginning (major equity index futures).
• 15.30: NYSE regular trading phase beginning.
• 16.00: US major macro news releases (ISM Manufacturing Index, . . . ).6

• 17.30: End of the calculation of the DAX index using Xetra electronic trading
system.

• 22.00: Eurex trading phase end (FESX, FDAX). Euronext trading phase end
(FTSE).

4 Spread Relaxation

In this section, we want to focus on the behavior of spread after trade-throughs. But
the approach is slightly different fromwhat we previously did. We already know that
trade-throughs are rare and informative events, whereas trades that only consume
less than the quantity available at the best limit are what happens usually in the limit
order book. So, if we consider the limit order book as a complex system, it is natural
to see a trade-through as an excitation of this system.

0
20

40
60

80
10

0

E−mini S&P 500 future − ES@
 2rd limit trades−through timestamps intraday distribution

Hour of the day (Paris Time Reference)

M
ea

n 
nu

m
be

r 
of

 tr
ad

es
−

th
ro

ug
h 

du
rin

g 
a 

5 
m

in
ut

es
 b

in

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
5

10
15

20
25

30

EURO STOXX50 future − STXE@
 2rd limit trades−through timestamps intraday distribution

Hour of the day (Paris Time Reference)

M
ea

n 
nu

m
be

r 
of

 tr
ad

es
−

th
ro

ug
h 

du
rin

g 
a 

5 
m

in
ut

es
 b

in

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

E−mini S&P 500 future − ES@
 3rd limit trades−through timestamps intraday distribution

Hour of the day (Paris Time Reference)

M
ea

n 
nu

m
be

r 
of

 tr
ad

es
−

th
ro

ug
h 

du
rin

g 
a 

5 
m

in
ut

es
 b

in

0.
0

0.
5

1.
0

1.
5

EURO STOXX50 future − STXE@
 3rd limit trades−through timestamps intraday distribution

Hour of the day (Paris Time Reference)

M
ea

n 
nu

m
be

r 
of

 tr
ad

es
−

th
ro

ug
h 

du
rin

g 
a 

5 
m

in
ut

es
 b

in

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fig. 10 Trade-throughs timestamps intraday distributions for US equity indexes futures (E-mini
S&P500, Nasdaq E-mini and Dow Jones E-mini) and European equity indexes futures futures
(Eurostoxx, DAX and Footsie)

6 The possible links between news and major events in stock prices have already been studied, for
example by Joulin [2].
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From an initial state of the limit order book, an incoming trade-through excites
the limit order book and brings it to an excited state. After this excitation, the com-
plex system evolves in time. It may relax to a state close to the initial state, it may
also stay at a state close to the excited one, . . . After that, there are some usual trades
that arrive in the limit order book. And then, a new trade-through occurs and excites
the system again, and so on.
We think that this approach of considering the limit order book as a complex

system and trade-throughs as excitations is particularly relevant to study the spread
after a trade-through. So, we are interested in measuring the spread of the limit order
book in order to know:

• what level of spread is reached at the excited state (after the trade-through)?
• is there a spread relaxation after the trade-through?
• if so, what kind of relaxation is it?

In the following figures, we detailed the behavior of the excess spread of the
French stock BNP-Paribas after trade-throughs. Excess spread is the difference be-
tween the value of the spread after a trade-through and the value of the spread just
before it (here-above called the initial state). The excited value of excess-spread is
approximately one tick which seems reasonable as we know that 2nd-limit trade-
throughs (which increase the spread one tick from the best limit) are the main part
of trade-throughs. Then, we can see that, after a trade-through, there is a power-law
relaxation of the excess spread in physical time (with an exponent close to 0:25).
Remember from the Sect. 2.7.2 where we studied the intraday distribution of

trade-throughs, that there is on average 5 trade-throughs per bin of 5 minutes for
the stock BNP-Paribas during the period of the day we are studying (from 9.30
to 17.00, Paris Time reference). So, on average, there is approximately one trade-
through per minute for this stock which means that the limit order book is excited
every minute and that the excess-spread relaxation we are looking at is statistically
reliable on the first minute after each trade-through (before another trade-through
arrives on average). For delays bigger than the minute, we have significantly less
data to compute our statistics for this stock and we should be very carefull with any
conclusion regarding this part of the graph.
We considered physical time in this section because it seemed to us this was the

good measure to look at the relaxation of our complex system. There seems to be
no such result if we look at the relaxation of the spread in trade-time (sampling
the spread time-series before each trade). Our explanation of this difference is that
when you look at the spread in trade-time, you are not considering any of the spread
changes from the arrival time of the trade-through until the next trade. And this is
precisely where the relaxation of the spread may occur. Basically, you are throwing
away of your statistics the data where the phenomenon you’re studying is the most
relevant.
Lillo [1] studied a similar problem in the relaxation of the spread. They con-

ditioned on a move of the spread and tried to measure a relaxation. Empirically,
they get a power-law behavior of the excess spread in trade time (exponent 0.4 or
0.5). Power-law behavior seems to indicate a very slow relaxation but no specific
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timescale for the spread decay. They have no explanation for this empirical obser-
vation.
Another example is given by Kertesz [3] where they studied relaxations after

large price moves. They filtered large price moves both in ‘absolute’ values (intra-
day price changes larger than 2% of the current price in time windows not longer
than 120 minutes) and in ‘relative’ values (intra-day price changes in time windows
not longer than 120 minutes, exceeding 6 times the normal volatility during that pe-
riod of the day). They obtained a relaxation of the excess bid-ask spread decreasing
in physical time as a power-law of exponent 0.38.
In both cases, the methodologies used are similar but different with respect to

ours as the conditioning are done in spread moves or large price events, and not on
the order-book limit reached by a trade. We all obtain very slow relaxation of the
excess-spread whatever the timescale used, with power-law fits with exponents of
the same order of magnitude.
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Fig. 11 Excess-spread decay after trade-throughs for BNP-Paribas on March-April 2010
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5 Lead-lag Parameter Estimation from Trade-throughs
Time-Series

5.1 Using Trade-throughs to Measure Empirical Distribution
of Lead-lag Parameter

We think that our approach of using trade-throughs to obtain empirical distribution
of lead-lag parameter if well-founded because:

• We are not using all trades to obtain all possible lead-lag between any of those
(which would have no sense) but less data.

• We are using trades that are more informational (cf response function).
• If any lead-lag relation exists, this should reflect on major events occurring in
limit order book.

• The method is empirical and its result is a full distribution of lead-lag parame-
ter, and not only one value of lead-lag parameter that maximizes some contrast
correlation criterium.

5.2 Empirical Measure of Lead-lag Parameter

5.2.1 Lead-lag Parameter: the Estimation Technique

For the sake of simplicity, assume we have two grids representing the timestamps of
trade-throughs for two different assets and we want to get an empirical distribution
of the lead-lag parameter between the two assets.
First, we put in relation every timestamp in one grid with the closest one in

the other grid. So, every trade-through of the first grid has a correspondent trade-
through in the other grid. Sometimes, a few trades in the other grid will not be the
correspondent of any trade in the first grid. At the end of this stage, every trade-
through of asset 1 is linked with the closest trade-through of asset 2. We show in the

� Asset 2� � �� �

� Asset 1��� � � ���

Fig. 12 Initial trade-throughs timestamp grids for assets 1 and 2

� Asset 2� � �� �

� Asset 1��� � � ���

Fig. 13 Trade-throughs of asset 1 are put in relationship with those of asset 2
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following figures how such two different timestamps grids of trade-throughs are put
in relationship one with another.
Then, to obtain the empirical distribution of the lead-lag parameter between those

two assets, we compute the difference of timestamps between any trade-through of
the first grid and the correspondent trade-through of the other grid. We end up with
as many measures of the lead-lag parameter as the number of trade-throughs in the
first grid. Finally, we compute the distribution of those measures of the lead-lag
parameter.
This method may be generalized to any groups of assets by merging in a previous

step the timestamps of trade-throughs in the two groups. For example, in the study
of the lead-lag between EU and US equity markets, we began by obtaining the two
general grids (one for US equity market and one for EU equity market) by merging
together the timestamps of the trade-throughs of E-mini S&P500, Nasdaq E-mini
and Dow Jones E-mini futures (for the US general grid) and of Eurostoxx, DAX
and Footsie futures (for the EU general grid).

5.3 Empirical Results for the Lead-lag Between US and EU Equity
Markets

In the following graphs, we plot two useful statistics: the positive and negative cu-
mulate of the lead-lag parameter between any trade-through occurring in the US
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group and the closest one in the EU group. On the left side of each graph, we have
the part where US leads Europe. On the right side of the graph, it is the contrary:
Europe leads US.
In order to compare the empirical distribution with a zero-correlation framework,

we added the distribution obtained with the same method but where we randomized
the arrival time of every trade-through for every future on any day. In the zero-
correlation framework, the positive and negative cumulate should start from zero at
the zero lag (like any cumulate) and both symmetrically grow and reach the value
of 0.5.
We can notice that the empirical distribution of the lead-lag parameter is higher

than the zero-correlation framework on the side where US lead Europe. And it is the
contrary on the other side of the graph where Europe leads the US. So, if we believe
that our financial products are representative of the global US ad European equity
markets (which is the case because they are the most liquid instruments), then on
average US equity market leads the European equity market.

6 Conclusions

In this paper, we defined particular trades that consume the liquidity in an aggres-
sive way: the trade-throughs. We provide various statistics on trade-throughs: their
liquidity, their intraday distribution and the spread relaxation that follows them. We
studied their arrival timestamps and highlighted an important peak in this distribu-
tion at 4pm (Paris time reference), time of the day when major macro-economic
news are released (ISM Manufacturing Index, . . . ). We also used trade-throughs to
obtain empirical distributions of lead-lag parameter between financial markets.
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Are the Trading Volume and the Number
of Trades Distributions Universal?

Vikram S. Vijayaraghavan and Sitabhra Sinha

Abstract. Analysis of dynamical phenomena in financial markets have revealed the
existence of several features that appear to be invariant with respect to details of the
specific markets being considered. While some of these “stylized facts”, such as the
inverse cubic law distribution of price returns indeed seem to be universal, there is
less consensus about other phenomena. In particular, there has been a long-running
debate in the literature about whether the distributions of trading volume V�t and
the number of trades N�t occurring in a given time interval �t , are universal, and
whether the volume distribution is Levy-stable. In this article, we analyse data from
the National Stock Exchange of India, both daily and high frequency tick-by-tick,
to answer the above questions. We observe that it is difficult to fit the V�t and
N�t distributions for all stocks using the same theoretical curve, e.g., one having
a power-law form. Instead, we use the concept of the stability of a distribution under
temporal aggregation of data to show that both these distributions converge towards
a Gaussian when considered at a time-scale of �t D 10 days. This appears to rule
out the possibility that either of these distributions could be Levy-stable and at least
for the Indian market, the claim for universality of the volume distribution does not
hold.

1 Introduction

A financial market comprising a large number of interacting components, viz.,
agents involved in trading assets whose prices fluctuate with time as a result of
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the constant stream of external news and other information affecting the actions
of the traders, is a paradigmatic example of a complex system. However, despite
such inherent complexity, markets appear to exhibit several statistically regular fea-
tures which make them amenable to a rigorous analysis by techniques based on the
statistical mechanics of physical systems, a discipline that is often referred to as
econophysics [1–3]. Indeed, many of the empirical relations obtained by such anal-
ysis appear to be statistically invariant or universalwith respect to different markets,
periods of observations and the type of assets being considered. These stylized facts
of the market (as they are often referred to in the economic literature) include the
celebrated inverse cubic law for the distribution of price (or index) fluctuations as
measured by their logarithmic returns [4]. First observed in the developed markets
of advanced economies [5], it has later been reported also in emergingmarkets at all
stages of their development [6, 7]. Another robust feature characterizing financial
markets is volatility clustering, i.e., the occurrence of long-range temporal corre-
lations in the magnitude of price fluctuations [8]. Thus, periods marked by large
fluctuations (i.e., high volatility) often tend to be persistent, as is seen across many
different markets.
There have also been claims that other quantifiers of market activity, such as

the distributions for order size q (i.e., the number of shares traded in a particular
transaction), trading volume Vt (i.e., the total number of shares traded in a given
period) and the number of trades Nt over a specific time interval, possess universal
forms [9, 10]. However, the evidence for the invariance of these distributions seems
less unequivocal. Note that the three distributions are not completely independent of
each other, as the volume Vt;�t over a particular time interval Œt; t C�t� is related
to the number of trades Nt;�t and the sizes of each trade qi that takes place in the
interval as

Vt;�t D
Nt;�tX
iD1

qi : (1)

For US markets, the Nt cumulative distribution appears to follow an approximately
“inverse cubic” form, i.e., P.Nt > x/ � x�ˇ with ˇ ' 3:4 [9]. Both the trade
size and volume cumulative distributions have been claimed to be Levy-stable with
exponents �q ' 1:53 (the so-called “inverse half-cubic law”) and �V ' 1:7, respec-
tively [11]. However, not only has the universality of these exponents been chal-
lenged, even the power-law form of the distributions appear to be dependent on
the type of stock and the market being considered. For example, an early study of
the volume distribution of several stocks in the London Stock Exchange (LSE) did
not show any evidence of power-law scaling [12], but it was pointed out later that
this depended on whether one was considering the downstairs or upstairs market in
LSE. As splitting a large order into several smaller parts is regularly practised in the
downstairs market (but rare in the upstairs market) it is probably not surprising that
long tails can only be seen when the trades in the upstairs market are included in
the volume data [13]. A re-analysis of the US stock data complicated the issue fur-
ther by showing that the cumulative distribution of trading volume over 15-minute
intervals has a tail exponent of around 2.2, i.e., outside the Levy-stable regime [14].
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More recent work on emerging markets such as the Korean [15] and Chinese [16]
exchanges have also revealed significant deviations from the Levy-stable power-law
tails of volume distribution reported for the developed markets of US, London and
Paris [17] (see also [18, 19]). There have also been related studies that try to fit the
entire distribution of trading volume rather than focusing only on the tail, e.g., by
using the q-Gamma distribution [20, 21].
The reason that the universality (or otherwise) of the distributions for q, Vt and

Nt is of interest to the econophysics community is because this may provide in-
sights towards understanding the statistical relationship between price returns and
market activity. It is frequently said that it takes volume to move prices, implying
that the dynamics of price fluctuations (measured by the log-returns) can be un-
derstood in terms of the distributions of trade size, number of trades and trading
volume. Indeed, the price impact function, that measures how the volume of shares
traded affects the price movement, tries to quantify such a relation. By assuming
a square-root functional form for the impact (based on empirical analysis of US
markets), Gabaix et al. [22] have developed a theory of market movements where
the long-tailed return distribution arises as a consequence of the long-tailed volume
distribution. The square-root relation between price and volume leads to the result
that the price return distribution exponent (' 3) is twice the volume distribution ex-
ponent (� 1.5), thereby connecting the inverse cubic and half-cubic laws. However,
we have recently shown that the occurrence of power-law tailed distributions for
price and volume with their characteristic exponents do not critically depend on the
assumption of a square-root price impact function [23], nor does the existence of the
inverse cubic law for returns necessarily imply an exponent of around 3=2, or even
a power-law nature, for the distribution of trading volume [24]1.
It is in this context that we report our analysis of the data for market activity

in the National Stock Exchange (NSE) of India in this article. As this market has
already been shown to exhibit the inverse cubic law of returns [6, 7], the absence of
a Levy-stable nature for the volume distribution would appear to argue against the
theoretical work relating the return and volume distribution exponents on the basis
of a square-root form for the price impact function. While our earlier work on the
trade and volume distributions in this market had also shown the absence of a clear
power-law functional form for either [25], here we use an alternative procedure to
show that the two distributions do not have the same behavior as that reported for
the developedmarkets. In particular, we use the concept of stability of a distribution
under temporal aggregation of data to show that both the quantities converge to
a Gaussian distribution at a time-scale of �t D 10 days. This evidence against the
Levy-stable nature of the volume distribution (even though the return distribution
follows the inverse cubic law) suggests that the theoretical framework of [23, 24]
can better explain the market dynamics than arguments based on square-root price
impact function whose predictions about the relations between return and volume is
not matched by the empirical data. It is of course possible that the deviation from the

1 In fact, our numerical results show that even a log-normal distribution of trading volume can
result in a power-law tailed return distribution.
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Levy-stable nature for volume and trade size distributions is a result of the emerging
nature of the market which is yet to evolve into a completely developed form. Just as
the network representing the relations between price movements of different stocks
(measured by the cross-correlation between returns) has been suggested to change
over time from being homogeneous to one having a clustered organization as the
market matures [26], the volume distribution could, in principle, become more and
more heavy tailed as market activity increases, eventually becoming Levy-stable at
a certain stage of market development.

2 The Indian Financial Market

There are 23 different stock markets in India. The largest of these is the National
Stock Exchange (NSE) which accounted for more than half of the entire combined
turnover for all Indian financial markets in 2003–04 [27], although its market cap-
italization was comparable to that of the second largest market, the Bombay Stock
Exchange. The NSE is considerably younger than most other Indianmarkets, having
commenced operations in the capital (equities) market from Nov 1994. However, by
as early as 2004 it had become the world’s third largest stock exchange (after NAS-
DAQ and NYSE) in terms of transactions [27]. It is thus an excellent source of data
for studying the trading frequency and volume statistics in an emerging market.

Description of the data set. The low-frequency data that we analyze consists of
the daily volume and number of trades for the entire NSE market, as well as, for
individual stocks, available from the exchange web-site [28]. The period we have
considered begins at March 1994 (for the entire market) or the date from which
data for a particular stock has been recorded in the NSE database (for individual
stocks) and ends at May 2010. For the market data, this corresponds to 3910working
days. We also consider high-frequency tick-by-tick data containing information of
all transactions carried out in the NSE between Jan 1, 2003 and Mar 31, 2004.
This information includes the date and time of trade, the price of the stock during
transaction and the number of shares traded. This database is available in the form
of CDs published by NSE.

3 Results

To investigate the nature of the volume and number of trades distribution in detail,
we first consider the high-frequency tick-by-tick data. To calculate these quanti-
ties we use a time-interval �t D 5 minutes and normalize the resulting variables
by subtracting the mean and dividing by their standard deviation. The resulting
distributions of normalized trading volume v D Vt;�t�hV ip

hV 2i�hV i2 and number of trades

n D Nt;�t�hN ip
hN 2i�hN i2 , where h: : :i represents time average, for all stocks that are traded
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Fig. 1 Cumulative distribution of (a) normalized trading volume and (b) normalized number of
trades in �t D 5-minute time intervals for all stocks traded in NSE in December 2003. The
cumulative standard normal distribution, i.e., N .0; 1/, is shown for comparison (broken line)

in NSE are shown in Fig. 1. Direct comparison with the standard normal distribu-
tion N .0; 1/ shows that both of these quantities are distributed differently from
a Gaussian.
As the exact nature of the distributions for the entire market is difficult to charac-

terize, we now consider the volume and number of trades data for individual stocks.
Fig. 2 shows the corresponding distributions for a particular stock which appear to
possess tails described by a power-law decay. Using the Clauset-Shalizi-Newman
(CSN) estimator based on maximum likelihood and Kolmogorov-Smirnov statis-
tic [29], we obtain exponents of �2:87 and �3:11 for the volume and number of
trades respectively, both of which lie outside the Levy-stable regime. However, the
values of these exponents differ from stock to stock. More importantly, the power-
law nature of the decay itself is not entirely representative of the ensemble of stocks.
The deviation of the distributions from a power-law is quite apparent visually for
several frequently traded stocks (e.g., the volume distribution of SBI).
As the best-fit distributions for the high-frequency volume and number of trades

statistics of the NSE do not appear to have a form that is common to all stocks, we
cannot readily use this data to decide whether these distributions are Levy-stable
or not. Instead, we shall use an indirect approach based on the idea of the stability
of a distribution under time-aggregation of the corresponding random variables2.
A distribution is said to be stable, when a linear combination of random variables
independently chosen from the distribution has the same distribution, up to a trans-

2 It should be noted here that the convergence to a stable form, which follows from the Central
Limit Theorem, is strictly valid only when the variables being aggregated are statistically indepen-
dent. However, if correlations do exist between the variables, then provided that these correlations
decay sufficiently fast, the theorem still holds and the convergence result can be applied. We have
explicitly verified that the auto-correlation function for trading volume shows an exponential decay
with time-lag.
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Fig. 2 Cumulative distribution of (a) volume and (b) number of trades in �t D 5-minute time
intervals for a particular stock (Colgate) traded at NSE between Jan 2003 and March 2004

lation in the mean and a scale factor in the variance. Thus, a sum of independent,
identically distributed random variables always converge to a stable distribution. In
terms of symbols, if x1 and x2 are random variables chosen from a stable distribu-
tion Pstable.x/, then for any pair of positive constants a; b, the composite variable
a x1 C bx2 has the same distribution, but possibly with a different mean and vari-
ance. If the mean is identical to the original distribution, then it is said to be strictly
stable (or stable in the narrow sense) [30]. This is a generalization of the classical
Central Limit Theorem, according to which, a variable generated by adding a large
number of random numbers from arbitrary distributions having finite variance will
eventually be seen to follow a Gaussian distribution. Removing the restriction of
finite variance results in other possible stable distributions, including the Cauchy
and Levy distributions. In particular, a cumulative probability distribution having
a power-law tail exponent ˛ > �2 has an unbounded second moment. It is, thus,
Levy-stable and will not converge to a Gaussian even if we consider an aggregate
quantity generated by summing together many random variables generated using
such a distribution. Here, we shall use the fact that if the volume or the number of
trades, when aggregated over long time periods, converges to a Gaussian distribu-
tion, then the original distribution of Vt;�t or Nt;�t (respectively) could not have
been Levy-stable.
Fig. 3 shows the time-series of daily trading volume and number of trades for all

stocks traded at NSE. To address the non-stationary nature of the variation in both
the quantities, we calculate the mean (�t ) and standard deviation (�t ) over a moving
window. The data is then de-trended by subtracting the mean and normalized by
dividing by the standard deviation, i.e., xt;daily D .Xt;daily � �t /=�t , where Xt;daily

can represent either the daily volume or number of trades. The window used in
Fig. 3 has a width of 10 days but small variations in the window size do not critically
affect the results. One can also check whether the fluctuations from the mean values
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Fig. 3 The time-series of (a) the total volume of all stocks traded Vt;daily and (b) the total number of
trades in the market Nt;daily (dots), shown for the interval T D 1000–1500 days in the daily NSE
data. The continuous curves represent the moving average(�t ) of the corresponding quantities
calculated over a moving window (having a width of 10 days and shifted in steps of 1 day). The
standard deviation (�t ) calculated over the window is used to show the range of fluctuations (dotted
lines) in the quantities Vt;daily and Nt;daily expected from a Gaussian distribution (i.e., �˙ 3� )

observed in these quantities agree with those expected from a Gaussian distribution
by verifying if most data points lie within the bounds representing three standard
deviations above and below the mean (which account for about 99:7% of all data
points if they are normally distributed). As seen from Fig. 3, this indeed appears to
be the case.
To obtain a more reliable comparison between the empirical and normal distri-

butions, we next use a graphical method, specifically the Quantile-Quantile or Q-Q
plots [31], for comparing the de-trended, normalized volume and number of trades
data with the standard normal distribution. The abscissa and ordinate of any point
in such a Q-Q plot correspond to the quantiles (i.e., points taken at regular intervals
from the cumulative distribution function) of the theoretical and empirical distribu-
tions being compared, respectively. Linearity of the resulting curve implies that the
empirical distribution is indeed similar to the theoretical distribution, in this case,
the standard normal distribution. While the daily data (Fig. 4a,d) shows deviation
from linearity at the ends, the agreement between the two distributions become bet-
ter when the data is aggregated over several days. Indeed, when we consider the
volume and number of trades over a 10-day period, the corresponding distributions
appear to match a normal distribution fairly well as indicated by the linearity of the
Q-Q plots (Fig. 4c,f). This is also shown by direct graphical comparison of the dis-
tributions of these quantities aggregated over 10 days with the normal distribution
shown in Fig. 5.
For a more rigorous determination of the nature of the distributions for the tem-

porally aggregated volume and number of trades data, we turn to statistical tests for
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and number of trades aggregated over 10 days suggest that the quantities converge to a Gaussian
distribution at this level of temporal aggregation
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Fig. 5 Probability distribution of the de-trended and normalized trading volume (a) and number
of trades (b) for all stocks in NSE aggregated over 10 days. For comparison, the standard normal
distribution is shown (broken curve)

normality. Such tests go beyond simple regression-based best-fit of an empirical dis-
tribution by a theoretical curve and provides measures for the goodness of fit of the
theoretical distribution to the data. Here, we use the Lilliefors test and the Anderson–
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Darling test for testing whether the distribution of vt;daily and nt;daily approaches the
Gaussian form as the data aggregation is done over longer and longer time-scales.
For both these tests the null hypothesis (H0) considered is that the empirical data
is described by a Gaussian distribution. The Lilliefors test begins by estimating the
mean and standard deviation of the underlying distribution from the data. It then
calculates the test statistic, which is the maximum deviation of the empirical distri-
bution from a normal distribution with the estimated mean and standard deviation.
The null hypothesis is rejected when the maximum deviation becomes statistically
significant. For all results reported here, we have fixed the level of significance at
5%. The p-value for the test indicates the probability of obtaining the observed
maximum deviation assuming H0 to be true, and a small value indicates that it is
very unlikely that the empirical data follows a Gaussian distribution. The Anderson–
Darling test is a non-parametric method for determining whether the empirical data
is generated by a specific probability distribution and is considered to be one of the
most powerful statistical tests for identifying deviations from normality [32]. It esti-
mates the value of a test statistic, A2, which is then compared with standard critical
values of the theoretical distribution against which the empirical data is being tested.
For example, the null hypothesis that a Gaussian distribution explains the empirical
data can be rejected if the estimated test statistic A2 exceeds 0:751.
The results of both statistical tests for the volume and number of trades data

for the entire market is shown in Table 1. While the daily data clearly does not fit
a Gaussian distribution, when aggregated over 10 days the trading volume does ap-
pear to be normally distributed, as the null hypothesis cannot be rejected for either
of the tests we have used. Similarly, as the temporal aggregation is increased to 10
days for the number of trades data, the resulting distribution does appear to con-
verge to a Gaussian form according to both the tests. As the time-period over which
the daily data has been collected is relatively large (� 16 years) we also checked
whether the convergence to a Gaussian with increasing temporal aggregation also
holds for subsets of the entire data-set. We have verified that even when the data is
split into three approximately equal parts, with each sub-set corresponding to a pe-
riod of about 5 years, the time-aggregated volume and number of trades distributions
approach a Gaussian distribution according to the statistical tests.

Table 1 Normality tests for trading volume and number of trades for the entire NSE market at
different scales of temporal aggregation

Temporal Anderson–Darling test Lilliefors test
Aggregation Reject H0? Statistic (A2) Reject H0? p-value

1 day Y 26.631 Y 0
Volume 5 day Y 2.1738 Y 0.0097

10 day N 0.2110 N 0.7100
1 day Y 28.694 Y 0

Trades 5 day Y 1.4519 Y 0.0050
10 day N 0.3764 N 0.7950
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Thus far we have been considering together all stocks that are traded in the NSE.
In order to verify if the convergence to Gaussian distribution is also seen when
the trading volume data for individual stocks is aggregated over longer periods, we
shall now look at a few representative stocks from different market sectors. The
cumulative distributions of the volume traded over the course of a single day for
two stocks (Colgate and SBIN) are shown in Fig. 6. Both appear approximately
linear in a semi-logarithmic graph, suggesting that the distribution may be fit by
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Fig. 6 Cumulative distribution of the total daily volume for two representative stocks: (a) Colgate
and (b) SBIN, during the period March 1994 to May 2010. Note that the ordinate has a logarithmic
scale. Thus, the linear nature of the distributions suggest that they are approximately exponentially
decaying
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an exponential form. However, when we look at the volume traded over 10 days,
the corresponding de-trended and normalized distributions appear to be reasonably
well-fit by the standard normal distribution (Fig. 7).

Table 2 Lilliefors test for normality of trading volume distribution for representative individual
stocks in NSE

Stock 5-day aggregate 10-day aggregate
Reject H0? p-value Reject H0? p-value

ABANLLOYD Y 0.0 N 0.127
ACC Y 0.0 N 0.727
COLGATE Y 0.0 N 0.508
DABUR Y 0.0 Y 0.002
DRREDDY Y 0.001 N 0.002
GAIL Y 0.0 Y 0.017
GLAXO Y 0.0 Y 0.010
GODREJIND Y 0.0 N 0.636
HCLTECH Y 0.0 Y 0.014
HDFCBANK Y 0.0 N 0.899
ICICIBANK Y 0.0 N 0.558
INFOSYSTCH Y 0.0 Y 0.0
IOC Y 0.0 Y 0.0
RELCAPITAL Y 0.0 Y 0.029
RELIANCE Y 0.0 Y 0.0
SATYAMCOMP Y 0.003 N 0.104
SBIN Y 0.0 N 0.502
TCS Y 0.036 N 0.787

Table 3 Anderson–Darling test for normality of trading volume distribution for representative
individual stocks in NSE

Stock 5-day aggregate 10-day aggregate
RejectH0? Statistic (A2) Reject H0? Statistic (A2)

ABANLLOYD Y 6.696 N 0.546
ACC Y 2.199 N 0.326
COLGATE Y 6.691 N 0.229
DABUR Y 7.013 Y 0.876
DRREDDY Y 2.9960 N 0.389
GAIL Y 4.084 Y 1.212
GLAXO Y 6.833 Y 1.281
GODREJIND Y 4.757 N 0.270
HCLTECH Y 1.891 Y 1.099
HDFCBANK Y 3.954 N 0.298
ICICIBANK Y 3.504 N 0.611
IOC Y 3.585 N 0.491
RELCAPITAL Y 4.135 Y 1.113
RELIANCE Y 7.806 Y 14.07
SATYAMCOMP Y 2.001 N 0.521
SBIN Y 2.537 N 0.339
TCS Y 1.300 N 0.439
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As in the case of the data for the entire market, we have carried out the Lil-
liefors test (Table 2) and the Anderson–Darling test (Table 3) for the volume data
at different levels of aggregation. As is seen from the test results, while the volume
traded over 5 days cannot be described by a Gaussian distribution for any of the
stocks, when we consider the volume traded over 10 days, the Gaussian distribution
appears to be a reasonable fit for many of the stocks considered.
Thus, our results indicate that, at least for the Indian market, the proposed invari-

ant forms for the volume and number of trade distributions that have been observed
in the developed markets of USA, London and Paris [17] do not hold true. In partic-
ular, the trading volume distribution does not follow a Levy-stable form. It has been
suggested that, in the developed markets, the Levy-stability of the Vt distribution is
a consequence of the Levy-stable trade size (q) distribution. Thus, a reason for the
deviation of the volume distribution from Levy-stability could be inferred by look-
ing at Eq. (1). If the distribution of qi is Levy-stable but not that of Nt , the heavier
tail of the former distribution would appear to dominate the nature of the tail of the
Vt distribution. Presumably, this is what is happening in developed markets where
we note that �q and �V are almost same (within error bars) [11]. However, in the
Indian market, the distribution of qi , even though it appears to fit a power-law, is
clearly outside the Levy-stable regime. For instance, the exponent obtained by the
CSN estimator for all trades carried out in December 2003 at NSE is �q ' 2:63
(Fig. 8). Thus, in the Indian financial market, the nature of the distribution for Vt

may be dominated by that of Nt instead of the q distribution. Indeed, our earlier
analysis had shown that there is a strong (almost linear) correlation between Nt and
Vt [25], which would appear to support this hypothesis. It suggests that, for emerg-
ing markets where the trade size distribution has not yet become Levy-stable, the
volume distribution would closely follow the distribution of the number of trades
which is outside the Levy-stable region (as seen also for developed markets).
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ber 2003
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4 Conclusions

In this article, we have examined the statistical properties of the distributions of the
trading volume and the number of trades in the National Stock Exchange, the largest
Indian financial market. Using both low-frequency (daily) and high-frequency (tick-
by-tick) data, we have tried to characterize the nature of these distributions. In par-
ticular, we have sought to establish whether or not the distributions are Levy-stable
by examining their stability under temporal aggregation. Our results show that al-
though from the tick-by-tick or daily data it is difficult to exactly characterize the
nature of the distribution of volume and number of trades, when we consider these
quantities aggregated over a period of several days (e.g., 10 days), the resulting dis-
tribution approaches a Gaussian form. This has been verified both graphically using
Q-Q plots and plots of the probability distribution functions, as well as, with statisti-
cal tests of normality, such as the Lilliefors test and the Anderson–Darling test. This
suggests that the distributions of volume and number of trades are not Levy-stable,
as otherwise they could not have converged to a Gaussian distribution when aggre-
gated over a long period. Our results are significant in the context of the ongoing
debate about the universality of the nature of the volume and number of trades dis-
tributions. Unlike the Levy-stable nature of the volume and trade size distributions
seen in developed markets, the emerging financial market of India appears to show
a very different form for these distributions, thereby undermining the claim for their
universality.
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Subpenny Trading in US Equity Markets

Romain Delassus and Stéphane Tyč

Abstract. We study sub-penny trading in the US equity markets.

1 Equity Market Structure – Introduction

1.1 SEC Concept Release

In January 2010, the Securities and Exchange Commission (SEC) issued a concept
release1 seeking public comments on various issues concerning the U.S. equity mar-
kets structure. This concept release is mainly based on the observation that the U.S
equity markets have undergone significant changes in recent years, most of which
were due to technological innovations. Markets now rely on advanced computer
technology, trading speed has accelerated to microseconds, and trading centers now
offer a large variety of order types and other trading services.
The concept release seeks public comment on such issues as high frequency trad-

ing, co-location trading terminals, markets that do not publicly display price quo-
tation, and more generally on any matter related to market structure. To date, some
200 comments have been received by the Commission [4]. Submissions come from
individual equity investors, investment firms, banks, broker-dealers . . . and com-
ments therefore reflect a complete range of opinions on the subject. Reading those
comments, one issue kept coming back, brought up by individual equities investors
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École Polytechnique – BNP Paribas, Paris,
e-mail: romain.delassus@polytechnique.org
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as well as investment firms. This issue is well summarized in one of Bright Trading
comments [7]:

Underlying Problem: Undisplayed Trading Center Compromising
the NBBO through Sub-Penny Trading

1.2 Minimum Price Variation

A crucial feature of the market structure is the minimum price variation (MPV), also
called tick size. For stocks priced over $ 1, the one penny minimum price variation
was chosen in 2002 as a conclusion of a series of studies and comments. The main
idea was to balance the positive effects of a reduction of the tick size, which was
then defined as a fraction (usually 1

16 ) of a dollar, (reduction of spreads, greater
opportunities for price improvement . . . ) against the negative effects of a too small
MPV (flickering quotations, market depth reduction . . . ). The rule however, didn’t
apply to all trading venues, and in August 2003, NASDAQ submitted a proposed
rule change to adopt an MPV of $ 0.001 for Nasdaq-listed securities in order to
remain competitive with Electronic Communication Networks (ECNs).
In February 2004, the Commission proposed new Rule 612 that would create

a consistent monetary increment for all trading venues. The sub-penny rule (Rule
612 of regulation NMS) indeed:

prohibits market participants from displaying, ranking, or accepting quota-
tions, orders, or indications of interest in any NMS stock priced in an incre-
ment smaller than $ 0.01 if the quotation, order, or indication of interest is
priced equal to or greater than $ 1.00 per share.2

However, this rule concerned only order and quote submission and did not prohibit
sub-penny trading.
The problem raised in today’s concept release comments concerning sub-penny

trading is closely linked to SEC’s questions on undisplayed liquidity. Indeed, each
of these comments (we counted over 50 of them) points out the fact that this rule
applies neither for broker-dealers internalization, nor for dark-pools. Some say this
leads to a beneficial price-improvement for the client (which seemed to be SEC’s
purpose at the time this exemption was decided), but others declare that this practice
has become much too important, and now compromises the NBBO by discouraging
liquidity providers.
The comments submitted can be divided in two groups which, in turn, can be

schematically mapped on the position of the submitting firms in the equity trading
landscape. It will help guide the understanding to draw an oversimplified caricature
of these actors.

2 Extracted from SEC’s Responses to Frequently Asked Questions Concerning Rule 612 of Regu-
lation NMS [6].
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1.3 Two Different Points of View

In a very simplified way, one could describe two different actors in the U.S. equity
market by the following graph:
The broker-dealers execute their clients orders on and off the market, and the

high frequency traders interact directly with the market.
Of course, frontiers are not always that clear, and we do not pretend to categorize

anyone in such or such category. Indeed, many firms interact with equity markets
in both capacities. However, we do believe this schematic representation helps un-
derstanding the different points of view reflected by the comments. The main idea
is that the different actors are distinguished according to their role in the equity
trading ecosystems. In this oversimplified view, we separate actors trying to provide
best execution to their clients (the broker-dealers) from actors trying to maximize
the gains from their strategies (High Frequency traders) and who portray themselves
as liquidity providers.

1.3.1 Broker-dealers

We pool in this category the different actors serving as intermediaries for investors.
In general, this type of actor receives client order flow, can interact with it at risk,
tries to pre match the flow and provides best execution in the public venues.
Most actors in this category believe that a well-diversified offer serves the inter-

ests of long term investors. For example, they are often in favor of keeping some
level of opacity in the market, in order to control market impact. This argument es-
pecially holds for large trades. On the subject of sub-penny trading, they often reject
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the proposal to reduce the minimum quoting increment, arguing that it would only
exacerbate the problem of trading ahead of their orders by high-frequency traders.
Those actors also reject the concept of a trade-at rule, which would introduce

some kind of time priority on the NBBO. The key aspect is that today, at a given
price point, all venues are considered equal. However, not all executions at the same
price are equal, since the structure of fees varies, depending on the market. They
argue that a trade-at rule would reduce competition between exchanges, ATSs and
OTC market makers and would most likely lead to an increase in long-term in-
vestors’ costs.

1.3.2 High Frequency Traders

This term is simply to be understood as a category of actors whose holding pe-
riod is short. They interact directly with the market, often acting as market makers.
Their time horizon can vary from a few seconds (or even less) for the fastest ones,
to a few days. This group is much more heterogenous than the previous one, but
a certain number of characteristics stand out, the main one being that they use open
competition and technological innovation to narrow spreads.
Almost all comments from this category criticize the use of sub-penny trading.

The problem lies in the fact that only a minority of actors is allowed to use such
a strategy, which automatically leads to the formation of a “ two tiers market”. Their
main argument is that in today’s quote-driven markets, there is an intensive compe-
tition between market-makers that has conducted to a substantial reduction of costs
for long-term investors. Their view point is supported by the comment of one major
equity investor. The Vanguard Group [2] indeed estimates that “transaction costs
have declined 50 bps, or 100 bps round trip”.
As a result of this reduction,

if an average actively managed equity mutual fund with a 100% turnover ratio
would currently provide an annual return of 9%, the same fund would have
returned 8% per year without the reduction in transaction costs over the past
decade.

In view of this estimation, high frequency traders conclude that transparency and
competition are always beneficial, and urge the SEC to take action against sub-
penny trading. To support this argument, they argue that today:

[. . . ] almost every single market order placed in these retail brokerage ac-
counts, is checked by the broker-dealer’s OTC market maker to decide if they
can make money by trading against their customer.3

The conclusion is therefore that the only NBBO orders that are filled are those that
are most likely “toxic” in the short-term. This can only lead to a widening of spreads,
and a reduction of depth in the market.

3 Extracted from Bright Trading’s comment.
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This issue of sub-penny trading raises a certain number of regulatory questions.
The idea is to determine whether the argument of price improvement holds against
the negative impact that this strategy has on liquidity providers. Should sub-penny
trading simply be banned? Would a regulatory change in the minimum quoting in-
crement be beneficial in some specific cases?

2 Empirical Study

2.1 Methodology and Data

In order to study the usage of sub-penny trading, we should first evaluate its im-
portance. In a comment submitted to the SEC, Knight Capital Group wrote that, in
2009, it “provided over $ 63 million in price improvement on 26.3 billion shares”.
This figure translates into a price improvement of 0.24 cent per share. On the con-
trary, the many Bright Trading comments show the usage of sub-penny trading in
order to step in front of the NBBOwith a price improvement so little as 0.01 cent per
share. In order to confront those 2 points of vue, we conducted a simple statistical
review of sub-penny trading in U.S. equity stocks.
The data used to obtain the following results all come from Thomson Reuters

tick-by-tick historical data (see [3] for more information). We used Reuters Indice
Codes (RIC) that provided us directly with the consolidated trade tape, mainly on
stocks listed on NASDAQ Capital Market. Our main problem was then to calculate
the price improvement.As we had very few information on each trade (essentially its
price and quantity, and eventually the NBBO at the time of the trade), we simplified
this problem by considering that for each trade, the price improvement was equal
to the difference between the real price and the price approximated to the closest
cent value. For example, when we saw a trade price of $ 24.9899, we implicitely
supposed that the best national ask at the time was of $ 24.99 and therefore that the
price improvement per share of the trade was $ 0.0001.
Another important aspect is that we sometimes find trade prices with a precision

superior to 1/100th of a cent. It seems unlikely that those were the true prices of
the trades, and in order to get around this problem, we chose to round all prices to
a precision of 1/100th of a cent (corresponding to a price improvement of 1 cent per
lot). A price of 493.149994 is therefore not considered as a sub-penny trade in our
study.

Table 1 Extract from Tomson Reuters data for WPO.II on the 12th Apr. 2010

Timestamp Last LastQ Ask Bid

34786.946 493.149994 100 493.3 468.52
34786.965 493.299988 100 493.3 468.52
35950.657 492.5 100 493 490.51
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2.2 Results

2.2.1 Price Improvement Distribution

Our first result concerns the distribution of the price improvement for sub-penny
trades on NASDAQ100 stocks. We calculated this distribution by analyzing a one
week long data set of all trades on stocks listed in the NASDAQ100 index. The graph
should be read as follows: for example, the first bar states that 0.9% of the total
traded volume (counted in stocks) that took place on those stocks during the third
week of March 2009 was traded with a sub-penny increment comprised between
$ 0.0001 and $ 0.0004. The volume traded in sub-penny represents 7.38% of the
total traded volume for the sample week in 2009, and 10.62% for the week chosen
in 2010.
Two main features can be seen in these distributions:

• We first observe a significantly higher frequency for trades with half a cent in
price improvement. This can be explained by the fact that some trades are priced
at the NBBO midprice, a method that sometimes leads to a price with a half cent.
This kind of trades actually supports the view put forward by “broker dealers” in
our classification.

• Another interesting point is that the percentages are distributed symmetrically
around the half a cent price improvement. This comforts us in the method we
used to calculate the price improvement. We also observe the decreasing rela-
tionship between the volume traded and the price improvement (from 0.0001 to
0.0049), with a maximum clearly located at the first bar. This observation seems
to confirm Bright Trading’s opinion on sub-penny trading, a simple strategy used
to step ahead of protected limit orders.

2.2.2 Correlation with the Stock’s Price

Our next result about the importance of sub-penny trading concerns the understand-
ing of the characteristics of the stocks on which this strategy concentrates. As we
have seen in the previous paragraph, sub-penny trading is a reality. However, the
previous graph showed average figures on all NASDAQ100 index stocks. We here
want to show that the previous distribution is actually strongly correlated with the
stock’s value.
In order to do so, we present on the next page a graph showing a similar distribu-

tion as the one shown before, but calculated on a list of more than 440 stocks quoted
on the NASDAQ and priced between 1 $ and 5 $. We can observe that the first and
last bars of the distribution have a relative weight much more important for those
stocks than for the NASDAQ100 stocks.
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2.2.3 On the Importance of Queue Jumping

In order to assert the validity of the price-improvement argument, we wanted to
quantify this improvement in a more detailed way than the aggregate number given
by Knight Capital Group. The previous results on the price improvement distribution
seem to support both views. There are however two kinds of sub-penny trading. The
first one results from a crossing at the midprice, but the second one is a simple
strategy to step ahead. Indeed, in stocks priced under 5 $, where spreads often are
narrowed to one tick (the minimum for high frequency traders), we observed that
more that 6% of the traded volume is traded with a price-improvement of less than
1/20th of a cent (first and last bars). In the following of this paper, we call “queue
jumping” the usage of those prices (such as 9.9999$ or 10.0001$). In such cases,
the rebate given to the client is of 1 to 4 cents per lot, which most certainly doesn’t
justify the loss of opportunity for the liquidity provider.
The previous distributions seemed to show a negative relation between the queue

jumping percentage and the value of the stock. In order to illustrate this fact, we
calculated for more than 1800 NASDAQ stocks the average effective spread4 and the
percentage of the volume traded in queue jumping for the 11th week of 2010. The
result is given in the following graph, with the effective spread given in a percentage
of the stock’s value. The red line represents a 1 tick effective spread, and the yellow
squares the mean of the queue jumping percentage.
The main result is given by the queue jumping percentage mean. For stock val-

ues over 5 $, the yellow square of abscisse x gives the mean for all the stocks priced
between x and xC 1 dollars, whereas for stock values under 5 $, the mean is calcu-
lated for stocks priced between x and x C 0:5 dollars. We observe that, as the stock
value decreases and the relative spread increases, the percentage of queue jumping
becomes more and more important. An intuitive interpretation of this result is that
the the lower the stock value is, the higher the relative spread and therefore the more
profitable queue jumping becomes.

2.2.4 Sub-penny Trading Provides Price Improvement

The previous paragraph highlighted the correlation between the queue jumping per-
centage and the stock value, showing that sub-penny trading strategies that only
provide a negligible price improvement (the so called “queue jumping”) are actually
very important for low priced stocks. In a more general way however, the justifica-
tion of sub-penny trading by the price-improvement argument holds, as we show on
the following graph.
On this graph, we calculated for each stock the total price improvement in dollars

(i.e. for each trade the price improvement, as defined in the methodology, multiplied
by the volume) as well as the effective spread multiplied by the number of stocks

4 The effective spread is here defined as twice the absolute difference between the trade price and
the NBBO midprice. The average is done on all trades of the week.
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Fig. 4 Effective spread and queue jumping versus stock value for 1800 NASDAQ stocks

traded with a sub-penny price improvement. The main idea is that market makers
essentially make money by “earning the spread”. On average, high frequency traders
gains can be estimated by x�Spread�Volume traded, where x is a certain discount
factor to take the various costs as well as adverse selection into account (from our
definition of the effective spread, we have x < 0:5). The effective spread multiplied
by the sub-penny volume (and multiplied by x) therefore represents an approxima-
tion of the high frequency traders’ loss to broker-dealers due to sub-penny trading.
On the other hand, the total price improvement represents the money paid back by
the broker-dealers to their customers.
The graph on Fig. 4 shows that on average, broker-dealers pay each final investor

some 20% of the spread in sub-penny increments. This corresponds to a reduction of
the effective spread of 40% for the trades executed in sub-pennies, and increments
add up to $ 5 million on 2 billion shares over the week. We find the same ratio
that was announced by Knight Capital Group. However, this figure is not equally
distributed between midprice and queue jumping.
The graph on Fig. 5 is equivalent to the one on Fig. 4, but we only took into

account non-midprice trades. On this type of trades, broker-dealers only pay 10%
of the spread to final investors. Once again, these graphs point out the fact that sub-
penny trades are separated into 2 different categories:

• Midprice crossings: those trades are not intermediated at risk, since they gener-
ally are due to the crossing of the order flow before sending it to the exchange. In
this case, the gains (compared to a normal trade) are entirely paid to the clients
(half a spread each).
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• Non-midprice crossings: generally, a market maker needs to support the risk and
trade on his own account. In this case, 10% of the spread is economically trans-
ferred to each final investors.

The fact that the gains for final investors are inferior in the second case is entirely
justifiable. The market maker supports a risk, and is paid in order to do so. It is
however, the increasing proportion of this kind of trades that is much criticized in
the SEC concept release comments. Since some market makers are able to reduce
the spread by some 20%, why not encourage competition and authorize this practice
to a larger proportion of actors? The Sub-penny rule in 2007 imposed a minimum
tick of 1 cent for stocks over 1 $. The reason at the time was that a further reduction
of the tick would have caused too many problems compared to the beneficial reduc-
tion of the spread. The rule however was kept flexible enough to allow that a small
propotion of trades could still take place with a sub-penny increment. The next sec-
tion will show that this proportion has actually tripled since (increasing from 4% to
nearly 12% of the total traded volume) and cannot be concidered now as marginal.

2.3 Historical Evolution

2.3.1 Evolution of the Importance of Sub-penny Trading

We now concentrate on studying the historical evolution of the different results pre-
sented earlier. Our first graphic shows the evolution, since 2003, of the height of
different bars of the price improvement distribution. Total subpenny represents the
sum of all bars, 0.005 $ improvement represents the volume traded with a half a cent
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increment, and 0.0001 $ improvement refers to the queue jumping trades. We also
added a curve named 0.001 $ improvement which adds up the third and the next to
last bars.
The percentage drop from nearly 13% to less than 5% at the end of 2005 can be

explained by the compliance date for the rule 612 (Minimum pricing increment).
Since 2006 and the adoption of Rule 612, we can observe a general increasing ten-
dency for the total, half a cent, and queue jumping curves. An interesting point to
notice is that the curve named 0.001 $ improvement seems stable or even slightly
decreasing. This would tend to confirm the high frequency traders’ viewpoint on the
abusive useage of the queue jumping strategy. In order to confirm this fact, we study
in the next paragraph the historical evolution of the price improvement distribu-
tion.

2.3.2 Evolution of the Price Improvement Distribution

This second graphic shows the evolution of the relative height of the first, third and
mid bars. The figures are simply obtained by dividing the volume of each bars with
the total volume traded in sub-penny.
What can be concluded from the linear regressions is that the relative growth

of the queue jumping volume has been superior to the one of the total sub-penny
volume. The global tendency of the evolution of the price improvement distribution
can therefore be resumed by two stylized facts:
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• An increase of the relative weight of the central bar (midprice crossing).
• A concentration of the rest of the weight on the first and last bars (queue jump-
ing).

This tendency is illustrated in the next figure, where we compare two price improve-
ment distributions, one from 2004 and the other one from 2010. Whereas in 2004,
queue jumping was made with a 0.1 cent of price improvement, it is now done with
a 0.01 cent improvement.

3 Discussion

3.1 Minimum Price Variation

As empirical results show, sub-penny trading today is essentially used for midprice
crossing and queue jumping. Queue jumping appears to be a strategy used to buy
price priority at a negligible cost (1% of the tick).We have observed that this strategy
decreases with the stock’s price, and becomes very important (6% to 10 % of the
total volume) for stocks between 1 $ and 5 $. The problem seems to come essentially
from the fact that for these stocks, the MPV is an important barrier that artificially
increases the relative effective spread.
Intuitively, there is a strong incentive to use queue jumping strategies when the

relative effective spread becomes large enough. For stocks valued under 5 $, mar-
ket making strategies are very profitable: there is an important competition between
market makers, but since the spread is already reduced to the minimum price varia-
tion, this competition focuses on order priority and not on price improvement. The
fact that not all actors are able to provide price improvement discourages some
market makers (liquidity providers) and therefore diminishes the quality of the open
order book. This is clearly explained in many comments received by the SEC, where
the fact that sub-penny trading creates a “two-tier market” and discourages liquidity
providers is pointed out and criticized.
The tick size is therefore at the center of the problem. It is a strong impediment

for the “high frequency traders” of our classification, and an important advantage for
the “broker-dealers” that are allowed to provide sub-penny price improvement. Two
radical solutions have been put forward in the comments in order to improve the
price formation process: either ban sub-penny for everyone (that could be achieved
by implementing the “trade-at” rule proposed by the SEC, or by only allowing cross-
ing at midpoint) or allow it for all actors (by, for example, reducing the MPV for
stocks under $ 10).
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3.2 Sub-penny for Everyone

The idea to reduce the minimum price variation for low priced stocks sounds espe-
cially appealing considering the graph shown in Fig. 3. As described in the previous
paragraph, the competition between market makers is, in a way, saturated for low
priced stocks. A reduction of the tick size could therefore foster competition on
price improvement rather than on price priority.
This intuition is highlighted by the graph on Fig. 9. This graph was constructed

in the same way as the one shown on Fig. 3, using the same data. The yellow squares
are the exact same points as the ones on Fig. 3. They correspond to the mean of the
queue jumping percentage. The triangles named “Mid crossing %” correspond to
the percentage of the traded volume that was traded with a half a cent increment
(which means prices from *.**495 to *.**505 due to our rounding procedure), and
the squares named “Subpenny %” correspond to the total percentage of the volume
traded in sub-penny.
This graph shows that for stocks over $ 10, sub-penny trading is mostly used for

midpoint crossing. This type of trades have a true economical interest since both
parties gains, the gains being equally distributed between the buyer and the seller.
Only some 2 or 3 percent of the volume is traded with a price improvement under
1/20th of a cent, and if we consider this percentage to be acceptable, subpenny trad-
ing isn’t an important issue for these stocks. The figures however are very different
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for low priced stocks. Queue jumping becomes an important phenomena, whereas
midprice crossing becomes negligible. We therefore observe a change of strategies:

• The relative weight of midprice crossing strategies decreases whereas the one of
queue jumping strategies increases, accentuating the asymmetry of the distribu-
tion of the gains from the trade.

• Subpenny strategies become much more important.

The observation that the percentage of the volume traded in sub-penny increment
increases when the stock value decreases highlights the fact that a one cent MPV
is a constraining barrier for low priced stocks. This fact was experimentally tested
in 2002 by Bidisha Chakrabarty and Kee H. Chung [1]. They compared spreads
between six Electronic Communications Network (ECNs), three that allowed sub-
penny quotes (group S) and three that did not (group P).Their conclusion was that

[. . . ] for a sample of stocks that trade on all six of these ECNs [. . . ] group
S ECNs have narrower spreads than group P ECNs, especially for low-price
stocks. Even after correcting for left-truncation and price discreteness [. . . ]
spreads for the same stocks are tighter on group S ECNs, suggesting that
a smaller tick size fosters greater price competition [. . . ] The one penny tick
is frequently a binding constraint on the inside spread and the relaxation of
the binding constraint would result in a 0.7 cent (16%) reduction in the inside
spread.

One solution could therefore be to reduce this MPV for stocks priced under $ 10.
The idea is simply to recreate the same conditions as for higher priced stocks, where
open competition is enough to control sub-penny trading. For example, a 1/10th of
a cent MPV for stocks under $ 10 would intuitively put those stocks in the same
trading conditions as the ones priced between $ 10 and $ 100. Midprice crossing
should benefit from this regulation change and queue jumping strategies become
less important.

3.3 Banning Queue Jumping

The diminution of the MPV for low priced stocks does not come without problems,
and could exacerbate arbitrage between exchanges with different fee models. For
example, decreasing the MPV lower than twice the liquidity rebate given to liq-
uidity providers by some exchanges would compromise the NBBO. An ask price
inferior to the bid could indeed be observed without any possibility for those or-
ders to be rerouted. The problem comes from the fact that today, exchanges fees are
calculated proportionally to the traded volume. This could however be resolved sim-
ply by switching to rebates proportional to the traded volume price, or by making
exchange fees proportional to the MPV.
Another solution could also be to only allow crossing to be done at midprice.

The problem is that this would limit the possibilities of price improvement. For our
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15/03/2010 to 20/03/2010 : 1 800 NASDAQ stocks
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Fig. 10 Queue jumping and midprice crossing versus stock value

1 800 NASDAQ stock list, the price improvement due to non-midprice increment
weights $ 2.8 million (whereas midprice crossing permitted a gain of $ 2.1 million).
It is however difficult to quantify the loss due to the practice of queue jumping. The
many actors that responded to the SEC’s concept release evoked that queue jumping
had a negative impact on the spread. It makes liquidity providing strategies less
profitable, discouraging liquidity providers which automatically widens the spread.
Banning this kind of practice would therefore have a positive impact of the spread,
that could compensate the loss in price improvement.

4 Conclusions

Our historical results have shown a growing importance of the practice of sub-penny
trading since January 2005 and the MPV rule compliance date. An even more dis-
turbing fact is highlighted by the study of the evolution of the price improvement
distribution: the growth of the relative weight of midprice crossing came along with
a similar growth for queue jumping. Even if on average, the total price improve-
ment has been increasing, the correlation between sub-penny volumes and stock
value underlines the fact that the legal minimum price variation is a critical issue in
this problem.
Our recommendation is therefore to lower theMPV for low priced stocks in order

to let open competition reduce the problem of queue jumping. We suggest an MPV
of 0.1 cent for stocks priced between $ 1 and $ 10.
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We also are making available the complete data set5 of the various statistics we
used in this study.Weekly statistics on the traded volume and the price improvement,
as well as the effective spread and the average trade price, are given for every stock
appearing in the composition of the NASDAQ100 index since 2003. All formulas
and explanations are given in the explanation sheet6.
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“Market Making” in an Order Book Model
and Its Impact on the Spread

Ioane Muni Toke

Abstract. It has been suggested that marked point processes might be good can-
didates for the modelling of financial high-frequency data. A special class of point
processes, Hawkes processes, has been the subject of various investigations in the
financial community. In this paper, we propose to enhance a basic zero-intelligence
order book simulator with arrival times of limit and market orders following mutu-
ally (asymmetrically) exciting Hawkes processes. Modelling is based on empirical
observations on time intervals between orders that we verify on several markets (eq-
uity, bond futures, index futures). We show that this simple feature enables a much
more realistic treatment of the bid-ask spread of the simulated order book.

1 Introduction

Arrival Times of Orders: Event Time Is Not Enough

As of today, the study of arrival times of orders in an order book has not been a pri-
mary focus in order book modelling. Many toy models leave this dimension aside
when trying to understand the complex dynamics of an order book. In most order
driven market models such as [1, 8, 18], and in some order book models as well
(e.g. [21]), a time step in the model is an arbitrary unit of time during which many
events may happen. We may call that clock aggregated time. In most order book
models such as [7, 9, 19], one order is simulated per time step with given prob-
abilities, i.e. these models use the clock known as event time. In the simple case
where these probabilities are constant and independent of the state of the model,
such a time treatment is equivalent to the assumption that order flows are homoge-
neous Poisson processes. A probable reason for the use of non-physical time in order
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book modelling – leaving aside the fact that models can be sufficiently complicated
without adding another dimension – is that many puzzling empirical observations
(see e.g. [6] for a review of some of the well-known “stylized facts”) can (also) be
done in event time (e.g. autocorrelation of the signs of limit and market orders) or
in aggregated time (e.g. volatility clustering).
However, it is clear that physical (calendar) time has to be taken into account for

the modelling of a realistic order book model. For example, market activity varies
widely, and intraday seasonality is often observed as a well knownU-shaped pattern.
Even for a short time scale model – a few minutes, a few hours – durations of orders
(i.e. time intervals between orders) are very broadly distributed. Hence, the Poisson
assumption and its exponential distribution of arrival times have to be discarded,
and models must take into account the way these irregular flows of orders affect the
empirical properties studied on order books.
Let us give one illustration. On Fig. 1, we plot examples of the empirical density

function of the observed spread in event time (i.e. spread is measured each time an
event happens in the order book), and in physical (calendar) time (i.e. measures are
weighted by the time interval during which the order book is idle). It appears that
density of the most probable values of the time-weighted distribution is higher than
in the event time case. Symmetrically, the density of the least probable event is even
smaller when physical time is taken into account. This tells us a few things about
the dynamics of the order book, which could be summarized as follows: the wider
the spread, the faster its tightening. We can get another insight of this empirical
property by measuring on our data the average waiting time before the next event,
conditionally on the spread size. When computed on the lower one-third-quantile
(small spread), the average waiting time is 320 milliseconds. When computed on
the upper one-third-quantile (large spread), this average waiting time is 200 mil-
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liseconds. These observations complement some of the ones that can be found in
the early paper [4].

Counting Processes with Dynamic Intensity

There is a trend in the econometrics literature advocating for the use of (marked)
point processes for the modelling of financial time series. One may find a possible
source of this interest in [10, 11], which introduce autoregressive conditional du-
ration (ACD) and autoregressive conditional intensity (ACI) models. [12] fit that
type of models on the arrival times of limit, market and cancellation orders in an
Australian stock market order book.
A particular class of point processes, known as the Hawkes processes, is of spe-

cial interest for us, because of its simplicity of parametrization. A univariate linear
self-exciting Hawkes process .Nt /t>0, as introduced by [14, 15], is a point process
with intensity:

�.t/ D �0 C
tZ
0

�.t � s/dNs; (1)

where the kernel � is usually parametrized as �.t/ D ˛e�ˇt or in a more general
way �.t/ D Pp

kD1 ˛kt
ke�ˇt . Statistics of this process are fairly well-known and

results for a maximum likelihood estimation can be found in [20]. In a multivariate
setting, mutual excitation is introduced. A bivariate model can thus be written:8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�1.t/ D �10 C
tZ
0

�11.t � s/dN 1
s C

tZ
0

�12.t � s/dN 2
s

�2.t/ D �20 C
tZ
0

�21.t � s/dN 1
s C

tZ
0

�22.t � s/dN 2
s :

(2)

The use of these processes in financial modelling is growing. We refer the reader
to [3] for a review and [13] for a textbook treatment. In [5], a bivariate (generalized)
Hawkes process is fitted to the time series of trades and mid-quotes events, using
trading data of the General Motors stock traded on the New York stock Exchange.
In [17] a ten-variate Hawkes process is fitted to the Barclay’s order book on the
London Stock Exchange, sorting orders according to their type and aggressiveness.
It is found that the largest measured effect is the exciting effect of market orders
on markets orders. [16] fits a bivariate Hawkes model to the time series of buy and
sell trades on the EUR/PLN (Euro/Polish Zlotych) FX market. Using the simplest
parametrization of Hawkes processes and some (very) constraining assumptions,
some analytical results of trade impact may be derived. [2] fits a bivariate Hawkes
process to the trade time series of two different but highly correlated markets, the
“Bund” and the “Bobl” (Eurex futures on mid- and long-term interest rates).
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Organization of This Paper

In this paper, we propose to enhance a basic order book simulator with arrival times
of limit and market orders following mutually (asymmetrically) exciting Hawkes
processes. Modelling is based on empirical observations, verified on several markets
(equities, futures on index, futures on bonds), and detailed in Sect. 2. More specif-
ically, we observe evidence of some sort of “market making” in the studied order
books: after a market order, a limit order is likely to be submitted more quickly than
it would have been without the market order. In other words, there is a clear reac-
tion that seems to happen: once liquidity has been removed from the order book,
a limit order is triggered to replace it. We also show that the reciprocal effect is not
observed on the studied markets. These features lead to the use of unsymmetrical
Hawkes processes for the design of an agent-based order book simulator described
in Sect. 3. We show in Sect. 4 that this simple feature enables a much more realistic
treatment of the bid-ask spread of the simulated order book.

2 Empirical Evidence of “Market Making”

2.1 Data and Observation Setup

We use order book data for several types of financial assets:

• BNP Paribas (RIC1: BNPP.PA): 7th component of the CAC40 during the studied
period.

• Peugeot (RIC: PEUP.PA): 38th component of the CAC40 during the studied pe-
riod.

• Lagardère SCA (RIC: LAGA.PA): 33th component of the CAC40 during the
studied period.

• Dec.2009 futures on the 3-month Euribor (RIC: FEIZ9).
• Dec.2009 futures on the Footsie index (RIC: FFIZ9).

We use Reuters RDTH tick-by-tick data from September 10th, 2009 to Septem-
ber 30th, 2009 (i.e. 15 days of trading). For each trading day, we use only 4 hours
of data, precisely from 9:30 am to 1:30 pm. As we are studying European markets,
this time frame is convenient because it avoids the opening of American markets
and the consequent increase of activity.
Our data is composed of snapshots of the first five limits of the order books (ten

for the BNPP.PA stock). These snapshots are timestamped to the millisecond and
taken at each change of any of the limits or at each transaction. The data analysis is
performed as follows for a given snapshot:

1. if the transaction fields are not empty, then we record a market order, with given
price and volume;

1 Reuters Identification Code.
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2. if the quantity offered at a given price has increased, then we record a limit order
at that price, with a volume equal to the difference of the quantities observed;

3. if the quantity offered at a given price has decreased without any transaction
being recorded, then we record a cancellation order at that price, with a volume
equal to the difference of the quantities observed;

4. finally, if two orders of the same type are recorded at the same time stamp,
we record only one order with a volume equal to the sum of the two measured
volumes.

Therefore, market orders are well observed since transactions are explicitly
recorded, but it is important to note that our measure of the limit orders and can-
cellation orders is not direct. In Table 1, we give for each studied order book the
number of market and limit orders detected on our 15 4-hour samples. On the stud-
ied period, market activity ranges from 2.7 trades per minute on the least liquid stock
(LAGA.PA) to 14.2 trades per minute on the most traded asset (Footsie futures).

Table 1 Number of limit and markets orders recorded on 15 samples of four hours (Sep 10th to
Sep 30th, 2009; 9:30am to 1:30pm) for 5 different assets (stocks, index futures, bond futures)

Code Number of limit orders Number of market orders

BNPP.PA 321,412 48,171
PEUP.PA 228,422 23,888
LAGA.PA 196,539 9,834
FEIZ9 110,300 10,401
FFIZ9 799,858 51,020

2.2 Empirical Evidence of “Market Making”

Our idea for an enhanced model of order streams is based on the following observa-
tion: once a market order has been placed, the next limit order is likely to take place
faster than usual. To illustrate this, we compute for all our studied assets:

• The empirical probability density function (pdf) of the time intervals of the count-
ing process of all orders (limit orders and market orders mixed), i.e. the time step
between any order book event (other than cancellation).

• The empirical density function of the time intervals between a market order and
the immediately following limit order.

If an independent Poisson assumption held, then these empirical distributions should
be identical. However, we observe a very high peak for short time intervals in the
second case. The first moment of these empirical distributions is significant: one
the studied assets, we find that the average time between a market order and the
following limit order is 1.3 (BNPP.PA) to 2.6 (LAGA.PA) times shorter than the
average time between two random consecutive events.
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On the graphs shown in Fig. 2, we plot the full empirical distributions for four
of the five studied assets2. We observe their broad distribution and the sharp peak
for the shorter times: on the Footsie future market for example, 40% of the mea-
sured time steps between consecutive events are less that 50 milliseconds; this figure
jumps to nearly 70% when considering only market orders and their following limit
orders. This observation is an evidence for some sort of market-making behaviour
of some participants on those markets. It appears that the submission of market or-
ders is monitored and triggers automatic limit orders that add volumes in the order
book (and not far from the best quotes, since we only monitor the five best limits).
In order to confirm this finding, we perform non-parametric statistical test on the

measured data. For all four studied markets, omnibus Kolmogorov–Smirnov and
Cramer–vonMises tests performed on random samples establish that the considered
distributions are statistically different. If assuming a common shape, a Wilcoxon–
Mann–Withney U test clearly states that the distribution of time intervals between
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Fig. 2 Empirical density function of the distribution of the time intervals between two consecutive
orders (any type, market or limit) and empirical density function of the distribution of the time
intervals between a market order and the immediately following limit order. x-axis is scaled in
seconds. In insets, same data using a log-log scale. Studied assets: BNPP.PA (top left), LAGA.PA
(top right), FEIZ9 (bottom left), FFIZ9 (bottom right)

2 Observations are identical on all the studied assets.
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a market orders and the following limit order is clearly shifted to the left compared to
the distributions of time intervals between any orders, i.e. the average “limit follow-
ing market” reaction time is shorter than the average time interval between random
consecutive orders.
Note that there is no link with the sign of the market order and the sign of the fol-

lowing limit order. For example for the BNP Paribas (resp. Peugeot and Lagardere)
stock, they have the same sign in 48.8% (resp. 51.9% and 50.7%) of the observa-
tions. Andmore interestingly, the “limit followingmarket” property holds regardless
of the side on which the following limit order is submitted. On Fig. 3, we plot the
empirical distributions of time intervals between a market order and the following
limit order, conditionally on the side of the limit order: the same side as the market
order or the opposite one. It appears for all studied assets that both distributions are
roughly identical. In other words, we cannot distinguish on the data if liquidity is
added where the market order has been submitted or on the opposite side. Therefore,
we do not infer any empirical property of placement: when a market order is sub-
mitted, the intensity of the limit order process increases on both sides of the order
book.
This effect we have thus identified is a phenomenon of liquidity replenishment

of an order book after the execution of a trade. The fact that it is a bilateral effect
makes its consequences similar to “market making”, event though there is obviously
no market maker involved on the studied markets.

2.3 A Reciprocal “Market Following Limit” Effect?

We now check if a similar or opposite distortion is to be found on market orders
when they follow limit orders. To investigate this, we compute for all our studied
assets the “reciprocal” measures:
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• The empirical probability density function (pdf) of the time intervals of the count-
ing process of all orders (limit orders and market orders mixed), i.e. the time step
between any order book event (other than cancellation).

• The empirical density function of the time step between a market order and the
previous limit order.

As previously, if an independent Poisson assumption held, then these empirical dis-
tribution should be identical. Results for four assets are shown on Fig. 4. Contrary
to previous case, no effect is very easily interpreted. For the three stocks (BNPP.PA,
LAGA.PA and PEUP.PA (not shown)), it seems that the empirical distribution is
less peaked for small time intervals, but difference is much less important than in
the previous case. As for the FEI and FFI markets, the two distributions are even
much closer. Non-parametric tests confirms these observations.
Performed on data from the three equity markets, Kolmogorov tests indicate dif-

ferent distributions and Wilcoxon tests enforce the observation that time intervals
between a limit order and a following market order are stochastically larger than
time intervals between unidentified orders. As for the future markets on Footsie
(FFI) and 3-month Euribor (FEI), Kolmogorov tests does not indicate differences in
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Fig. 4 Empirical density function of the distribution of the time intervals between two consecutive
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the two observed distributions, and the result is confirmed by a Wilcoxon test that
concludes at the equality of the means.

3 Order Book Models with Mutually Exciting Order Flows

Following these previous observations, we enhance a basic agent-based order book
simulator with dependence between the flows of limit and market orders.

3.1 The Basic Poisson Model

We use as base model a standard zero-intelligence agent-based market simulator
built as follows. One agent is a liquidity provider. This agent submits limit orders
in the order books, orders which he can cancel at any time. This agent is simply
characterized by a few random distributions:

1. submission times of new limit orders are distributed according to a homoge-
neous Poisson process NL with intensity �L;

2. submission times of cancellation of orders are distributed according to homoge-
neous Poisson process NC with intensity �C ;

3. placement of new limit orders is centred around the same side best quote and
follows a Student’s distribution with degrees of freedom �P

1 , shift parameterm
P
1

and scale parameter sP
1 ;

4. new limit orders’ volume is randomly distributed according to an exponential
law with mean mV

1 ;
5. in case of a cancellation, the agent deletes his own orders with probability ı.

The second agent in the basic model is a noise trader. This agent only submits
market order (it is sometimes referred to as the liquidity taker). Characterization of
this agent is even simpler:

6. submission times of new market orders are distributed according to a homoge-
neous Poisson process NM with intensity �;

7. market orders’ volume is randomly distributed according to an exponential law
with mean mV

2 .

For all the experiments, agents submit orders on the bid or the ask side with prob-
ability 0.5. This basic model will be henceforth referred to as “HP” (Homogeneous
Poisson).
Assumptions 1, 2 and 6 (Poisson) will be replaced in our enhanced model. As-

sumption 3 (Student) is in line with empirical observations in [19]. Assumptions 4
and 7 are in line with empirical observations in [6] as far as the main body of the
distribution is concerned, but fail to represent the broad distribution observed in em-
pirical studies. All the parameters except ı, which we kept exogenous, can be more
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or less roughly estimated on our data. In fact ı is the parameter of the less realistic
feature of this simple model, and is thus difficult to calibrate. It can be used as a free
parameter to fit the realized volatility.

3.2 Adding Dependence Between Order Flows

We have found in Sect. 2.2 that market data shows that the flow of limit orders
strongly depends on the flow of market order. We thus propose that in our experi-
ment, the flow of limit and market orders are modelled by Hawkes processes NL

and NM , with stochastic intensities respectively �L and � defined as:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�.t/ D �0 C
tZ
0

˛MM e�ˇMM .t�s/dNM
s

�L.t/ D �L
0 C

tZ
0

˛LM e�ˇLM .t�s/dNM
s C

tZ
0

˛LLe�ˇLL.t�s/dNL
s :

(3)

Three mechanisms can be used here. The first two are self-exciting ones, “MM”
and “LL”. They are a way to translate into the model the observed clustering of
arrival of market and limit orders and the broad distributions of their durations. In
the empirical study [17], it is found that the measured excitationMM is important. In
our simulated model, we will show (see 4.2) that this allows a simulator to provide
realistic distributions of the durations of trades.
The third mechanism, “LM”, is the direct translation of the empirical property

we have presented in Sect. 2.2. When a market order is submitted, the intensity
of the limit order process NL increases, enforcing the probability that a “market
making” behaviourwill be the next event.We do no implement the reciprocalmutual
excitation “ML”, since we do not observe that kind of influence on our data, as
explained in Sect. 2.3.
Rest of the model is unchanged. Turning these features successively on and off

gives us several models to test – namely HP (Homogeneous Poisson processes),
LM, MM, MM+LM, MM+LL, MM+LL+LM – to try to understand the influence of
each effect.

4 Numerical Results on the Order Book

4.1 Fitting and Simulation

We fit these processes by computing the maximum likelihood estimators of the pa-
rameters of the different models on our data. As expected, estimated values varies
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with the market activity on the day of the sample. However, it appears that estima-
tion of the parameters of stochastic intensity for the MM and LM effect are quite
robust. We find an average relaxation parameter ǑMM D 6, i.e. roughly 170 mil-
liseconds as a characteristic time for the MM effect, and ǑLM D 1:8, i.e. roughly
550 milliseconds characteristic time for the LM effect. Estimation of models in-
cluding the LL effect are much more troublesome on our data. In the simulations
that follows, we assume that the self-exciting parameters are similar (˛MM D ˛LL,
ˇMM D ˇLL) and ensure that the number of market orders and limit orders in the
different simulations is roughly equivalent (i.e. approximately 145000 limit orders
and 19000 market orders for 24 hours of continuous trading). Table 2 summarizes
the numerical values used for simulation. Fitted parameters are in agreement with
an assumption of asymptotic stationarity.

Table 2 Estimated values of parameters used for simulations

Model �0 ˛MM ˇMM �L
0 ˛LM ˇLM ˛LL ˇLL

HP 0.22 – – 1.69 – – – –
LM 0.22 – – 0.79 5.8 1.8 – –
MM 0.09 1.7 6.0 1.69 – – – –
MM LL 0.09 1.7 6.0 0.60 – – 1.7 6.0
MM LM 0.12 1.7 6.0 0.82 5.8 1.8 – –
MM LL LM 0.12 1.7 5.8 0.02 5.8 1.8 1.7 6.0

Common parameters: mP
1 D 2:7; �P

1 D 2:0; sP
1 D 0:9

V
1 D 275; mV

2 D 380

�C D 1:35; ı D 0:015

We compute long runs of simulations with our enhanced model, simulating each
time 24 hours of continuous trading. Note that using the chosen parameters, we
never face the case of an empty order book. We observe several statistics on the
results, which we discuss in the following sections.

4.2 Impact on Arrival Times

We can easily check that introducing self- and mutually exciting processes into the
order book simulator helps producing more realistic arrival times. Fig. 5 shows the
distributions of the durations of market orders (left) and limit orders (right). As ex-
pected, we check that the Poisson assumption has to be discarded, while the Hawkes
processes help getting more weight for very short time intervals.
We also verify that models with only self-exciting processes MM and LL are

not able to reproduce the “liquidity replenishment” feature described in Sect. 2.2.
Distribution of time intervals between a market order and the next limit order are
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Fig. 5 Empirical density function of the distribution of the durations of market orders (left) and
limit orders (right) for three simulations, namely HP, MM, LL, compared to empirical measures.
In inset, same data using a semi-log scale
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Fig. 6 Empirical density function of the distribution of the time intervals between a market order
and the following limit order for three simulations, namely HP, MM+LL, MM+LL+LM, compared
to empirical measures. In inset, same data using a semi-log scale

plotted on Fig. 6. As expected, no peak for short times is observed if the LM effect
is not in the model. But when the LM effect is included, the simulated distribution
of time intervals between a market order and the following limit order is very close
to the empirical one.

4.3 Impact on the Bid-ask Spread

Besides a better simulation of the arrival times of orders, we argue that the LM
effect also helps simulating a more realistic behaviour of the bid-ask spread of the
order book. On Fig. 7, we compare the distributions of the spread for three models –
HP, MM, MM+LM – in regard to the empirical measures. We first observe that
the model with homogeneous Poisson processes produces a fairly good shape for
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Fig. 7 Empirical density function of the distribution of the bid-ask spread for three simulations,
namely HP, MM, MM+LM, compared to empirical measures. In inset, same data using a semi-log
scale. x-axis is scaled in euro (1 tick is 0.01 euro)

the spread distribution, but slightly shifted to the right. Small spread values are
largely underestimated. When adding the MM effect in order to get a better grasp at
market orders’ arrival times, it appears that we flatten the spread distribution. One
interpretation could be that when the processNM is excited, markets orders tend to
arrive in cluster and to hit the first limits of the order book, widening the spread and
thus giving more weight to large spread values. But since the number of orders is
roughly constant in our simulations, there has to be periods of lesser market activity
where limit orders reduce the spread. Hence a flatter distribution.
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Here, the MM+LMmodel produces a spread distribution much closer to the em-
pirical shape. It appears from Fig. 7 that the LM effect reduces the spread: the “mar-
ket making” behaviour, i.e. limit orders triggered by market orders, helps giving
less weight to larger spread values (see the tail of the distribution) and to sharpen
the peak of the distribution for small spread values. Thus, it seems that simulations
confirm the empirical properties of a “market making” behaviour on electronic order
books.
We show on Fig. 8 that the same effect is observed in an even clearer way with

the MM+LL and MM+LL+LM models. Actually, the spread distribution produced
by the MM+LL model is the flattest one. This is in line with our previous argument.
When using two independent self exciting Hawkes processes for arrival of orders,
periods of high market orders’ intensity gives more weight to large spread values,
while periods of high limit orders’ intensity gives more weight to small spread val-
ues. Adding the cross-term LM to the processes implements a coupling effect that
helps reproducing the empirical shape of the spread distribution. The MM+LL+LM
simulated spread is the closest to the empirical one.

4.4 A Remark on Price Returns in the Model

It is somewhat remarkable to observe that these variations of the spread distributions
are obtained with little or no change in the distributions of the variations of the
mid-price. As shown on Fig. 9, the distributions of the variations of the mid-price
sampled every 30 seconds are nearly identical for all the simulated models (and
much tighter than the empirical one). This is due to the fact that the simulated order
books are much more furnished than the empirical one, hence the smaller standard
deviation of the mid price variations. One solution to get thinner order books and
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Fig. 9 Empirical density function of the distribution of the 30-second variations of the mid-price
for five simulations, namely HP, MM, MM+LM, MM+LL, MM+LL+LM, using a semi-log scale.
x-axis is scaled in euro (1 tick is 0.01 euro)
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hence more realistic values of the variations of the mid-price would be to increase
our exogenous parameter ı. But in that case, mechanisms for the replenishment of
an empty order book should be carefully studied, which is still to be done.

5 Conclusions

We have shown the the use of Hawkes processes may help producing a realistic
shape of the spread distribution in an agent-based order book simulator. We em-
phasize on the role of the excitation of the limit order process by the market order
process. This coupling of the processes, similar to a “market making” behaviour, is
empirically observed on several markets, and simulations confirms it is a key com-
ponent for realistic order book models.
Future work should investigate if other processes or other kernels (�LM in our

notation) might better fit the observed orders flows. In particular, we observe very
short characteristic times, which should lead us to question the use of the exponen-
tial decay. Furthermore, as pointed out in the paper, many other mechanisms are to
be investigated: excitation of markets orders, link with volumes, replenishment of
an empty order book, etc.
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Price-Time Priority and Pro Rata Matching
in an Order Book Model of Financial Markets

Tobias Preis

Abstract. Using our recently introduced order book model of financial markets we
analyzed two different matching principles for order allocation – price-time priority
and pro rata matching. Price-time priority uses the submission timestamp which pri-
oritizes orders in the book with the same price. The order which was entered earliest
at a given price limit gets executed first. Pro rata matching is used for products with
low intraday volatility of best bid and best ask price. Pro rata matching ensures con-
stant access for orders of all sizes. We demonstrate how a multiagent-based model
of financial market can be used to study microscopic aspects of order books.

1 Introduction

In recent years, econophysicists started to investigate and understand the price for-
mation process in detail on a microscopic level. In this context, a statistical model
of the continuous double auction [1, 2] was developed. Based on this model, we
proposed an multiagent-based order book model recently. These Monte Carlo based
simulations of financial markets’ order books were introduced in [3] and studied in
detail in [4]. Here we will provide simulation based evidence for two different order
matching principles which can be found in order books of real exchanges1.
The definition of the order book model and its main results are provided in

Sect. 2. Sect. 3 will focus on Monte Carlo based simulations of the order book
model using both price-time priority and pro rata matching. Sect. 4 summarizes our
findings.
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2 Continuous Double Auction and the Definition
of the Order Book Model

The order book model [3, 4] is based on microscopic structures which one can find
at electronic financial markets. The function of an exchange based order book is to
store buy orders and sell orders of all market participants. In our simulations, only
one order book is used, in which one individual asset – e.g. a stock – is traded. There
are various types of orders in financial markets’ exchange systems. In our order book
model, only the two most important types are implemented, namely limit orders and
market orders. Limit orders are executed only at a specific price or a price, which is
better for the trader, who placed this limit order in the book, whereas market orders
are executed immediately against the best available limit order stored in the order
book. Limit orders are added chronologically, which realizes a price time priority
based matching algorithm. Thus, at a given price level with more than one limit
order, the limit order, which was inserted first, has execution priority.
Limit and market orders are performed by agents in the model, in which we

also distinguish between two types of market participants – liquidity providers and
liquidity takers. These two groups of agents differ in the types of orders they are
permitted to submit. On the one hand, NA liquidity providers transmit only limit
orders. In the case of a limit sell order, a liquidity provider offers an asset for sale at
a set limit price or a higher price. Analogously, a limit buy order indicates a demand
for buying an asset and the order is executed at a set limit price or any better price
for the liquidity provider.
Let pa be the best ask price, which is the lowest price level of all limit sell prices

in the order book, and analogouslypb the best bid price, being the highest price level
for which at least one limit buy order is stored in the order book. In the order book
model, limit orders are placed around the midpoint pm D paCpb

2 with a rate ˛, i.e.,
˛ � NA new limit orders are submitted per time step. Let qprovider be the probability
with which a limit order is a limit buy order. Thus, with probability 1 � qprovider, the
limit order to be placed is a limit sell order. The liquidity provider, which can be
identified as market maker, supplies liquidity to the market in order to exploit the
spread s D pa � pb: such market participants intend, e.g., to sell an asset at price
pa or higher and then to buy it back at price pb or lower. Thus, they have earned at
least the spread s. As seen in this example, short sales are allowed, i.e., it is allowed
for agents to sell assets even if they do not possess them.
On the other hand, there areNA liquidity takers, who transmit onlymarket orders.

These market orders are submitted with rate�, i.e.,��NA market orders are inserted
per time step into the order book. A market order will be immediately executed
after arrival. A market sell order is executed at price level pb , a market buy order
at price level pa. A market order of a liquidity taker is a market buy order with
probability qtaker and a market sell order with probability 1 � qtaker. In this basic
version of the order book model, the simple case qprovider D qtaker D 1

2 is applied.
Thus, all orders will be produced symmetrically around the midpoint. In practice,
it is possible, that the limit price of a limit sell order is lower than the current best
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bid price and the limit price of a limit buy order is higher than the current best ask
price. Such “crossing” limit orders degenerate to market orders and thus, they are
executed immediately. In our order book model, only pure limit orders will be used.
Limit orders, which are stored in the order book, can also expire or can be deleted.

In the model, this canceling process is realized in the way that each stored order is
deleted with probability ı per time unit. As there are overall 2NA agents in the
multiagent system, each Monte Carlo step (MCS) consists of 2NA moves. In each
move, one agent is randomly selected and can perform one action according to the
probability rates. If the chosen agent is a liquidity provider, then a limit order with
probability ˛ is submitted by the chosen agent. On the other hand, if the selected
agent is a liquidity taker, then a market order with probability � is placed in the
order book which will be immediately executed. Orders in our model have the con-
stant order volume 1. Thus, it is possible only to buy or sell one asset unit with an
individual order.
Based on this simple rules, first an unrealistic independent identically distributed

order placement depth can be applied. This is realized in the way that limit buy
orders are entered on each price level in the interval of Œpa � 1 � pintIpa � 1� with
the same probability, and accordingly, limit sell orders are transmitted uniformly
distributed in the interval of Œpb C 1Ipb C 1C pint�. Already with this definition of
the order book model, profits and losses of the agents can be analyzed. Using this
setup, the averaged wealth value of liquidity takers and liquidity providers drifts
apart linearly in time [3]. Comparing these results with real financial markets, it has
to be stated that liquidity takers are systematically disadvantaged in comparison to
liquidity providers. The distinction in our model between the two groups of market
participants reflects the two types of orders. In general, market participants are not
restricted to one order type in reality.
In the next step, a more realistic order placement depth will be integrated in the

order book model. The order book depth of real financial markets can be described
by a log-normal distribution [5]. And, to take this into account the independent iden-
tically distributed limit order placement is replaced by an exponentially distributed
order placement depth. Thus, for placing a limit order, the limit price pl is deter-
mined for a limit buy order through

pl D pa � 1 � 	 (1)

and for a limit sell order according to

pl D pb C 1C 	 (2)

whereby 	 is an exponentially distributed integer random number created by 	 D
b��0 � ln.x/c with x being a uniformly distributed random number in the interval
Œ0I 1/ and bzc denoting the integer part of z. With this construction, the submission
process of limit orders has the tendency to reduce the gap between best bid price
and best ask price. Also, crossing limit orders are avoided, as the price of a limit
buy order cannot be equal or larger than the best ask price and the price of a limit
sell order cannot be equal or lower than the best bid price.
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As result of applying the exponential order placement rule, a log-normally dis-
tributed order book depth profile is obtained [3, 4]. This basic version is used in
order to study both order matching algorithms. This simple variant is also able
to reproduce the results of [1, 2]. The price time series of this basic version pos-
sesses an antipersistent price behavior on short time scales which is due to the order
book structure. On medium and long time scales the Hurst exponent converges to-
wards a diffusive regime. The price change distributions exhibit an almost Gaussian
shape. The model, which is characterized by a symmetry created by identical buy
and sell probabilities, describes a stationary market. However, when one addition-
ally introduces a symmetry disturbance, the order book model is displaced from its
stationary state. This extension is implemented by a temporal modulation of the buy
probability qtaker of the liquidity takers or the buy probability qprovider of the liquid-
ity providers [3]. Qualitatively identical results are achieved, if both probabilities
are modulated independently of each other. Employing a feedback random walk to
introduce micro market trends into the market, one additionally obtains a persis-
tent price behavior on medium time scales. However, no fat tails can be reproduced
with such a symmetry-breaking extension of the order book model. When one fur-
thermore couples the characteristic order placement depth to the prevailing market
trend, widened price change distributions are achieved, with so-called fat tails. Thus,
with these extensions of our order bookmodel, we could demonstrate that the gener-
ation of a nontrivial Hurst exponent is independent of the generation of fat tails [4].
This disproves the implication which can be often found in the literature that a per-
sistent price behavior corresponds to non-Gaussian price changes. Furthermore, we
are able to support the statement in [6,7] thatH > 1=2 implies not necessarily long
time correlations.

3 Matching Principles

When orders are entered into the electronic order book, they are sorted by type,
price, and submission time. Market orders are always given the highest priority for
matching purposes. Orders at a given price level are aggregated, although the num-
ber of orders remains unknown. Market participants only see the specific details of
their own limit orders2. Most exchange traded products – e.g. equity index deriva-
tives at the European Exchange (EUREX) in Germany – follow the matching prin-
ciple which is known as price-time priority. This is not the case for money market
products which show typically smaller intraday fluctuations. These products follow
pro rata matching.
Price-time priority can be described as follows. When an order is entered into

the order book, it is assigned a timestamp with a resolution of milliseconds. This
timestamp is used to prioritize orders in the book with the same price. The order
which was entered earliest at a given price limit gets executed first.

2 More information can be found, e.g., on www.eurexchange.com.
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Pro rata matching is used for products with low intraday volatility of best bid
or best ask price. Pro rata matching ensures constant access for orders of all sizes.
Otherwise, using price-time priority a large order may prevent smaller orders from
participating in the order matching process. When matching existing orders in the
electronic order book against an incoming order, the pro rata matching algorithm
takes into account every book order at best bid or best ask price according to its per-
centage of the overall volume bid or offered at the price. Its timestamp is neglected.
Thus, pro rata principles avoid conflicts in priority between orders with small and
large volumes [8].
In this section, we study the consequences of both matching algorithms using our

order book model. The price-time priority based matching algorithm was already
implemented in the basic version of the order book model [3, 4]. Without loss of
generality, we study in both versions the simple case that the order volume is set to
1 – for the price-time priority and for the pro rata matching. However, in this case it
is not possible to observe the situation that a large order prevent smaller orders from
participating in the matching process. Thus, one can not distinguish orders based on
volume. Additionally, pro rata matching ignores timestamps. In our framework with
constant order volume thematching process can be realized by executing a randomly
chosen limit order at the best available price (best bid or best ask) if there are more
than one limit orders at this price level.
Before we compare both order matching algorithms, we have to think about an

appropriate macroscopic variable for that purpose. As the change of matching algo-
rithms does not effect the times and sales records, it is not useful to analyze the price
time series. Only variables referring to execution times of individual orders are use-
ful to study. Thus, we will analyze the time-to-fill distributions of limit orders. The
time-to-fill quantity Ti of an individual limit order i is given by the time interval
which starts with the submission of the limit order to the central order book at time
t li and which ends with its execution at time t

e
i . The time-to-fill Ti is given by

Ti D tei � t li : (3)

As the order volume is set to 1 one has not to handle the special cases of partial
executions. Deleted limit orders do not contribute to the time-to-fill distributions. In
order to measure the time-to-fill distributions, we have to store for each limit order
in the order book the submission timestamp t li . Thus, we can determine the time
difference Ti . Please note that also market orders are neglected for the calculation
of this distribution as they have an execution time interval of 0 MCS by definition –
of course, this is not true if the order book is empty.
We choose the same parameters for the simulation of the order book model as

used in [3, 4]: ˛ D 0; 15, � D 0; 025, ı D 0; 025, � D 100, and NA D 250. In
Fig. 1a, the time-to-fill distribution of limit orders is shown for this parameter set
for both order allocation methods. The calculation of the time-to-fill distributions is
based on simulations lasting 105 MCS. Results are averaged over 10 runs. In Fig. 1a,
one can clearly see that the price-time priority matching algorithm has a larger prob-
ability in comparison to the pro rata based allocation only for T 2 Œ10I 50�. This
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Fig. 1 Time-to-fill distributions of a price-time priority and pro rata based order matching for
(a) ˛ D 0; 15, (b) ˛ D 0; 20, (c) ˛ D 0; 25, (d) ˛ D 0; 30, (e) ˛ D 0; 35, (f) ˛ D 0; 40

effect will be analyzed in more detail when we start to “freeze” the order book step-
wise, i.e., when we reduce the volatility of best bid and best ask price.
Based on the results which were obtained by the parameter space analysis [4],

freezing can be realized increasing the limit order rate ˛. If the market order rate �
is constant and we increase the limit order rate, then more and more limit orders are
placed around around the midpoint. In the end of this process, ˛ is so large that the
number of market orders per time unit is too less in order to change the best bid price
and the best ask price. Thus, the last traded price is jumping from the constant best
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Fig. 2 Freezing of the price time series: Subsets comprising 8 � 104 MCS for (a) ˛ D 0; 15,
(b) ˛ D 0; 20, (c) ˛ D 0; 25, (d) ˛ D 0; 30, (e) ˛ D 0; 35, (f) ˛ D 0; 40

bid price to the constant best ask price and vice versa. Fig. 2 shows such a stepwise
freezing of the price time series for various values of ˛. The corresponding time-to-
fill distributions are shown in Fig. 1. The larger ˛ the larger is the qualitative change
of the distribution shape. Using a pro rata allocation method, we find in all cases
a strictly monotonic decreasing distribution. However, if we apply a price-time pri-
ority allocation method in our order book, we end up with a distribution which has
a distinct maximum located at T > 1. This supports in an impressive way why ex-
change operators are using pro rata matching algorithms for low volatility products
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as it guarantees more fairness. On the other hand, the question arises whether price-
time priority should be replaced by pro rata matching in general as the time-to-fill
profile is not changing when we use the pro rata approach. This result supports the
tendency in the USA in recent years. There, a larger number of products obeys pro
rata matching.
In case of a completely frozen order book and price-time priority (see Fig. 1f

and Fig. 2f), a limit buy or limit sell order has to pass the whole queue at best
bid or best ask before it can be matched with an arriving market order. If we use
pro rata matching the limit orders are randomly selected. Thus, strictly monotonic
decreasing shape of the distribution persists also for a frozen order book.

4 Conclusions

Based on our recently introduced order book model of financial markets [3, 4] we
analyzed two different matching principles for order allocation – price-time prior-
ity and pro rata matching. Price-time priority uses the submission timestamp which
prioritizes orders in the book with the same price. The order which was entered ear-
liest at a given price limit gets executed first. Pro rata matching is used for products
with low intraday volatility of best bid and best ask price. Pro rata matching en-
sures constant access for orders of all sizes. The results obtained from simulations
of the order book model show that the larger the limit order rate the larger is the
qualitative change of the time-to-fill distribution shape. Using a pro rata allocation
method, we find in all cases a strictly monotonic decreasing distribution. However,
if we apply a price-time priority allocation method in our order book, we end up
with a distribution which has a distinct maximum located at T > 1.
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High-Frequency Simulations of an Order Book:
a Two-scale Approach

Charles-Albert Lehalle, Olivier Guéant and Julien Razafinimanana

1 Introduction

Models of market microstructure at the order book scale can be split into two fami-
lies:

• First, the agent-based models [5] aiming at simulating a large number of agents,
each of them having its utility function or feedback rule. The philosophy of this
kind of modelling is similar to Minsky’s paradigm in artificial intelligence in the
eighties: build each agent so that if you stealthily replace, one by one, each real
person interacting in the market with such a virtual ersatz, you will finally obtain
a full synthetic replica of a real market. The actual limits faced by this research
programme are: first, the difficulty to rationalise and quantify the utility func-
tion of real persons, and then the computational capabilities of today’s comput-
ers. Last but not least, the lack of analytical results of this fully non-parametric
approach is also a problem for a lot of applications. It is, for instance, usually
difficult to know how to choose the parameters of such models to reach a given
intra-day volatility, given sizes of jumps, average bid-ask spread, etc.

• Second, the “zero intelligence” models [9] aiming at reproducing stylised facts
(Epps effect on correlations, signature plot of volatility, order book shapes, etc.)
using random number generators for time between orders, order sizes, prices, etc.
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This approach is more oriented to “knowledge extraction” from existing record-
ings than the agent-based one. Its focus on stylized facts and our capability to
emulate them using as simple as possible generators is close to the usual defini-
tion of “knowledge” (following for instance Kolmogorov or Shannon in terms of
complexity reduction). It succeeds in identifying features like short-term mem-
ory, Epps effect on correlations, signature plots for high-frequency volatility es-
timates, dominance of power laws [25], and the general profile of market im-
pact [11], among others, that are now part of the usual benchmarks to validate
any microscopic market model. The limits of this approach are: first, the usual
stationarity assumptions that are made, and the difficulty of linking the micro-
scopic characteristics with macroscopic ones, for instance linking characteristics
of the underlying probability distributions to market volatility (even if recent
advances have been made in this direction using Hawkes models [2] or usual
distributions [7]). The search for such links is motivated by the fact that as
they are probability-based, their diffusive limits (or equivalent) should behave
similarly to usual quantitative models on a large scale (for instance Levy pro-
cesses [24]).

In this paper we present an approach that endeavours to take the best aspects of
the two previous ones proposing a “zero-intelligence” microscopic model “pegged”
at an agent-based one. We use new approaches to answer to the classical drawbacks
described earlier:

• The computational need and the lack of closed form formula is solved via the
use of the recent advances in the Mean Field Games (MFG) mathematical the-
ory [18]. This enables a continuum of agents to be considered without the need
to simulate each of them, but “simply” solving (stochastic) Partial Differential
Equations (PDEs): one forward PDE (for the transport of the mass of the agents
and of their views) and backward Hamilton-Jacobi-Bellman PDEs (to determine
optimal strategies according to the agents’ utility functions).

• The usual stationarity assumptions of the zero-intelligence models is here re-
placed with a conditioning of the probability distributions used (for order sizes,
prices, arrival rates, etc.) by characteristics of the distance between agents’ views
and the realised microscopic order books.

Before few comments on the layout of this paper, let’s just underline two aspects
of the work presented here: the motivations behind the development of such a new
model and a real life illustration of it.

Motivations of Such a Two-layered Model
As this research is mainly funded by Crédit Agricole Cheuvreux (the broker arm
of Crédit Agricole’s investment bank), it has been guided by a practical need that
other approaches do not answer. The main practical use of the models obtained
inside this new framework is to test trading algorithms. As electronic brokerage
execution and proprietary high-frequency trading are used more extensively month
after month [16], the usual drawbacks of zero intelligence and agent-based models
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prevent their wide use in testing such trading strategies. To expose the needs for
such testing, here is a brief summary of the essence of trading algorithms. Such an
algorithm lives in a state space made up of three kinds of variables:

• The instantaneous market data Xt : this is usually the state of the Limit Order
Book (LOB) on several trading venues, trades when they occur, news, etc.

• With the increase in high-frequency trading activity (around 250 updates per sec-
ond of the LOB on liquid European stocks, an increase in the usual size of iceberg
orders of 30% in the last three years, mirrored orders, etc.) a trading algorithm
has to filter the instantaneous market dataXt to build its view on the state of the
market: Yt . It will include some real-time analytics as estimates of the instanta-
neous volatility, usual betas (or covariance of the stocks against synthetic market
axes), estimates of liquidity imbalances (between buyers and sellers), etc. The
internal view on the market Yt takes the market data into account via an updating
ruleH	 :

Yt D H	 .Yt�ıt ; Xt /

where 
 is a set of static parameters of the algorithm (like its risk aversion, win-
dow sizes, etc.). The functionalH	 is clearly part of the strategy of the algorithm.
The behaviour of such views as stochastic processes obtained by an updating rule
can be studied theoretically thanks to the theory of stochastic algorithms (see [21]
for a detailed application on “Dark Liquidity seeking”).

• And the internal state of the algorithmZt containing for instance its inventory,
its pending orders in the books, its risk constraints, etc.

The trading algorithm has to make decisions based on available information (i.e.
its view and its state):

Dt D F	 .Yt ; Zt /:

This decision-making process can embed computations like the one of the reserva-
tion price for market making algorithms [1], or optimal liquidation trajectories [3].
Trading between t D 0 and t D T , an algorithm tries to maximise the expecta-

tion of a functional of its trajectory and terminal state:

VT .H; F; 
/ D E

0@ TZ
tD0

g.Zt / dt CG.ZT /

1A
choosing at least the best value for 
 , but also choosing the proper class for func-
tionalsH (view on market) and F (decision process).
This type of maximisation is common in quantitative finance, especially in

derivative pricing [22], and we know that the “greeks” of VT .H; F; 
/ with respect
to some market characteristics are needed to understand the obtained optimal tra-
jectories. They measure the sensitivity of VT to changes in state variables of the
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market. For derivatives pricing, they are usually the Delta (sensitivity to the under-
lying price), Vega (sensitivity to volatility), Theta (sensitivity to time to maturity)
and Gamma (sensitivity of the Delta to the underlying price). For algorithmic trad-
ing, we propose to use at least the following:

• Vega – sensitivity to intra-day volatility:

V D @VT .H; F; 
/

@�
:

• Psi – sensitivity to bid-ask spread:

� D @VT .H; F; 
/

@.bid-ask spread/
:

• Phi – sensitivity to trading frequency:

˚ D @VT .H; F; 
/

@.trading frequency/
:

• Iota – sensitivity to imbalance between sell and buy orders:

� D @VT .H; F; 
/

@.sell vs buy imbalance/
:

To obtain such greeks, one has to be able to calibrate the market model to obtain
a given volatility, spread, or trading frequency, which is not that easy for classic
zero-intelligence or agent-based models.
The model proposed here can consequently be used at order one (i.e. to obtain

back-tests: estimates of VT ) but also for higher order estimates that are needed for
stress tests or sensitivity analyses.

A Real-life Equivalent of This Model
As this is a project on-going research, the model presented in Sect. 1 and 2 below
is an application of our two-layer framework (a zero-intelligence model pegged at a
MFG agent-based one) to a stylised real-life situation: a market in which access to
order books is provided by only one pure agency broker. In such a market, the
portfolio managers, the proprietary traders and all other investors make decisions
using information on the value of quoted assets they all share. The state space of
their decisions will be named the market of the views (or viewed market) and the
consolidation of all their interests will be called the order book of the views (or
viewed order book). Each investor will consequently adjust continuously his view
according to the feedback he has from the consolidation of the whole market via the
order book of the views. In the proposed framework, the order book of the views is
continuous in prices, quantities and time. The real market and real market order
book are discrete in prices (tick size), quantities and time (event based). The dy-
namics of the views will be modelled by a mean field model, as presented in Sect. 1.
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To implement their views on the real market, investors will continuously mandate
a pure agency broker that will buy or sell stocks on the real market order book
in order to comply with its clients’ views. The behaviour of the pure agency broker
is here modelled by a zero intelligence model whose probability distributions are
conditioned by the distance between the real market order book and the order book
of the views. From a qualitative real-life perspective, the broker will act optimally
from a best execution point of view, as described by the actual European or US reg-
ulators [20]. Since there is only one broker in the example described in Sect. 2, the
latter will act with respect to the distance between the real order book and the order
book of all the views.
This paper follows the description of the two layers: Sect. 1 presents the macro-

scopic agent-based MFG layer. It outlines how the MFG framework can deduce
(stochastic) PDEs from a setting with a continuum of agents: one forward PDE
describing the transport of the mass of the agents in their state space (the market
of the views) and backward equations implementing the real-time optimisation of
the utility functions of the agents. In the specific example presented in this pa-
per, the agents are of three kinds: mean reverters, trend followers and noise
traders. Since in the specific case presented here each agent is anticipating of the
future value of the stock with respect to his style of investing (i.e. a continuation of
the price move for the trend followers, an alternation around its moving average for
the mean reverters, and an unexpected one for the noise traders), there will be no
backward induction to determine the views and hence no Hamilton-Jacobi-Bellman
PDEs. The remaining forward PDE therefore fully describes the behaviour of agents
within their state space. Once the dynamics of the views of the investors are defined,
Sect. 2 describes how the zero-intelligence layer is conditioned by the distance be-
tween the order book of the views and the real order book. This section is illustrated
by analyses of real datasets to support some of the assumptions made. As the de-
velopment of this two-layer framework is on-going research, the conclusion gives
some guidelines on our future work and main directions.

2 The Macroscopic Scale: a Mean Field Game Model
of Agents’ Views

The macroscopic scale of the model is based on a price formation model developed
by Jean-Michel Lasry and Pierre-Louis Lions in [18]. This price formation model
was built at the margin of a new framework in economic modelling associated with
mean field games. Mean field games enable modelling of economic situations in
which a large number of agents interact with one another and have strategic be-
haviours. Here, the interactions occur in the order book and the number of agents
is arguably large enough for the mean field game framework to be applied. How-
ever, as in the model presented in [18] and in the papers following this seminal
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one, we are not going to use, in this specific paper1, the optimisation dimension of
mean field games, remaining therefore in line with the classic mean field approach
of econophysicists.
In what follows, we are first going to present the mean field model as it appears

in [18] and as it has been studied in [12, 13, 19]. Then, we will propose a dynamic
and random version of the model that allows us to model limit order book dynamics.

2.1 Presentation of the Theoretical Framework

Limit order books are made up of buy and sell orders, and we adopt a continuous
version of each side of the limit order book. Namely, we introduce two functions that
we assume to be smooth, .t; p/ 7! mB.t; p/ and .t; p/ 7! mA.t; p/, representing,
at time t , the density (number) of buy (resp. sell) orders at price p.
These densities represent the willingness of buyers and sellers to exchange the

stock under consideration, and we will denote p�.t/ the agreement price2. We sup-
pose that agents modelled by the two densities are subject to signals that make them
move their orders in the limit order book. These signals are not going to be modelled
per se. Rather, we suppose, in relation to what may be inferred from real data3, that
orders evolve according to a seemingly random process.
Hence, execution will take place when buy orders meet sell orders (both of them

being moved by the random process), that is whenmB and mA intersect.
In the initial model (see [18]), the authors introduced a trading cost a and assume

that each buyer (resp. seller) reintroduces a sell (resp. buy) order at price p�.t/C a
(resp. p�.t/ � a).
In this context, limit order books are modelled by a coupled system of free-

boundary evolution PDEs:

@tmB .t; p/ � "2

2
@2ppmB.t; p/ D �.t/ıpDp�.t/�a

@tmA .t; p/ � "2

2
@2ppmA.t; p/ D �.t/ıpDp�.t/Ca

with

mB.t; p/ > 0;8p < p�.t/ mB.t; p/ D 0;8p � p�.t/
mA.t; p/ > 0;8p > p�.t/ mA.t; p/ D 0;8p � p�.t/

1 Although our generic framework is aimed at using the whole MFG framework.
2 p�.t/ will be defined more precisely hereafter.
3 We know from our dataset that a very large proportion of limit order book modifications are not
due to trades but are rather due to cancel orders, insert orders or order updates. For instance, there
were 934,763 changes in the first five limits of the order books for Total SA on May 5th 2010 and
only 36,310 of these were actually due to a trade. Similarly, for France Telecom, the respective
figures are 386,896 changes in limit order books for 21546 trades.
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where " stands for the standard deviation of the random process that moves the
orders and where �.t/ is the flow of sell orders that meet buy orders. This flow is

�.t/ D �"
2

2
@pmB

�
t; p�.t/

� D "2

2
@pmA

�
t; p�.t/

�
:

The last equation represents the supply/demand equilibrium condition in written
form. Since the slopes of mB and mA are the same (up to the sign), we introduce
a regular functionm defined as:

m.t; p/ D
(
mB.t; p/ ; if p � p�.t/
�mA.t; p/ ; if p > p�.t/

m satisfies a unique parabolic equation:

@tm.t; p/� "
2

2
@2ppm.t; p/ D �"

2

2
@pm

�
t; p�.t/

� �
ıpDp�.t/�a � ıpDp�.t/Ca

�
(1)

and the limit conditions are m.0; �/ given on the domain Œpmin; pmax� and, for in-
stance, Neumann conditions at pmin and pmax.
This equation has been studied in [12,13,18,19] and the main results (under very

light and natural assumptions or slight modifications of the problem) are that the
problem is well formulated, that the solutions globally exists and there is a single
solution.
In what follows, we will modify this price formation equation to model the dy-

namics of limit order books.

2.2 Modelling Limit Order Books and Price Dynamics

Although the preceding model was continuous and there was no bid/ask spread, we
see it as a good macroscopic model for limit order books. The reason for that lies in
the dynamics of the free-boundary.
Since the equilibrium price p�.t/ is implicitly defined by m.t; p�.t// D 0, the
dynamics of p�.t/ are characterised by:

dp�.t/
dt

D � @tm.t; p
�.t//

@pm.t; p�.t//
D �"

2

2

@2ppm.t; p
�.t//

@pm.t; p�.t//
:

This equation says that the dynamics of the price are given by the shape of the
limit order book modelled by m in a way that is in accordance with practitioners’
experience. In spite of this feature, the model is far too smooth to be able to model
properly the fast dynamics of limit order books and to replicate price volatility.
In order to replicate real limit order books, we will modify the model in several
directions.
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First, we will no longer consider that orders are reinserted in the limit order book
according to a transaction cost rule. Instead, we will consider that each executed
order corresponds to an agent that can either be, as explained above, a noise trader,
a trend follower or a mean reverter, depending on the past dynamics of the price. In
other words we have:

@tm.t; p/� "2

2
@2ppm.t; p/ D �"

2

2
@pm

�
t; p�.t/

�
Œsource.t; p/� (2)

where the source term is complex and depends on fp�.s/=s < tg.
As mentioned in the introduction, we have three types of agents:

• Trend-followers who buy when the price has increased and sell if the price
has decreased. These agents thus compare the price at time t and the price
T seconds ago (that is p�.t � T /). These agents reinsert orders symmetri-
cally: for instance, if the price has increased, we believe that a trend follower
bought a stock and reinserted it in the ask part of the limit order book at price
p�.t/C Œp�.t/ � p�.t � T /�.

• Mean-reverters who buy when, on average, the price has moved down and,
similarly, sell when, on average, the price has moved up. These agents thus com-
pare the price at time t and the average price during the last T seconds4 (that is
NpT .t/ D 1

T

R t

t�T
p�.s/ds). As above, reinsertion of orders is made symmetri-

cally to the reference price NpT .t/.
• Noise traders that reinsert orders according to the current distribution of orders.

In this context, the partial differential equation has a stationary solution5:

m.p/ D � 


pmax � pmin sin
�




pmax � pmin .p � p
�/
�

with p� D pminCpmax
2 .

This stationary solution will be used as the initial solution of the problem after
our secondmodification which consists of inserting noise on the limit order book. To
model the insertion of new orders and the cancellation of existing ones, we indeed
add noise and we end up with the following (stochastic) equation:

dm D "2

2
@2ppm.t; p/dt �

"2

2
@pm

�
t; p�.t/

�
Œsource.t; p/� dt C �g.p; p�.t//dW p

t

with m.0; p/ D � 

pmax�pmin

sin
�



pmax�pmin

.p � pminCpmax
2 /

�
and Neumann condi-

tions at the frontier.

4 Time horizons for both the trend-followers and the mean-reverters are distributed according to
a Gamma distribution to emulate agents with different time horizons.
5 We choose the stationary solution with mass 1 on each side of the order book.
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� is here the intensity of the noise and g.p; p�/ is a smooth function6 with
g.p�; p�/ D g.pmin; p

�/ D g.pmax; p
�/ D 0 and chosen so thatm does not vanish

or change sign without any economic reason (in practice the noise under considera-
tion is bounded in addition to the above hypothesis and the bound takes the form of
an absolute cap at ' � jm.t; p/j0:4m0.p/0:6 wherem0 is the uniform distribution on
Œpmin; pmax�).

2.3 Calibration and Confrontation to Reality

To calibrate the model, that is seen as a model to describe the views on the order
book, we need to choose the domain Œpmin; pmax� and the values of the parameters
", � and '. In this text, we are going to focus on the two parameters " and ' that are
the most important two in the calibration.
Our model provides a dynamic description for both the views and the price.

Hence, our goal will be to reproduce the actual volatility of prices �p and the dy-
namics of the limit order book around the equilibrium price p�.t/. For this second
purpose, we recall the (still valid) formula dp�.t/

dt D � "2

2 @p ln
��@pm.t; p

�.t//
�

that invites us to introduce the “slope” `.t/ D �@pm.t; p
�.t//. The “volatility” of

`.t/, denoted �`, will serve as a proxy for the dynamics of the limit order books.
The calibration process is therefore aimed at targeting real couples .�p; �`/ while

varying the values of " and '. Intuitively, this may be possible7 since the roles played
by " and ' are the same as far as the price is concerned although an increase in "
smooths8 m whereas an increase in ' does the contrary.
These variations can be summed up in the following table:

" '

�p."; '/ " "
�`."; '/ # "

To calibrate the model we need to “invert”9 the function ."; '/ 7! .�p; �`/ in the
domain of couples .�p; �`/ characterising the real markets.

6 In practice we took

g.p; p�/D 1

p�2:5„ƒ‚…
normalization

�pjp �p�j„ ƒ‚ …
no noise at p�

� .p � pmin/.pmax � p/„ ƒ‚ …
no noise at the boundaries

:

7 It’s very important to be able to drive the model with a chosen volatility to be able to carry out
a sensitivity analysis as described in the introduction.
8 This is a classic regularisation result.
9 This is not a proper inversion since the dynamic is stochastic. We could have carried out Monte-
Carlo simulations but we decided to focus on couples ."; '/ inducing low variance in the resulting
volatility couples.
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Fig. 1 Calibration

We calculated the values of .�p; �`/ for the 40 stocks in the CAC 40 index during
May and June 2010 using the first five limits of order books and we simulated around
700 “stable” simulations10. The result is displayed below:
Although it is difficult to replicate some points11, a wide range of couples12 can

be obtained using the right choices of " and '.
Hence, if one wants to (re-)play a day characterised by a given couple .�p ; �`/

then one has to choose13 a couple ."; '/ whose stability will guarantee a result close
to the targeted value .�p ; �`/. The corresponding simulation will provide series of
prices, sampled at any frequency, along with series of continuous limit order books.
These time series, and more exactly the times series .p�.t/; `.t//, will serve as

a target time series to generate orders at the microscopic scale (see below).
To illustrate the price obtained at the macroscopic scale, we provide the follow-

ing plot where the average five-minute Garman-Klass volatility is around 25% (in
annualised terms) and where the excess kurtosis (for 1-minute return) is just below 5
(Fig. 2).

10 We dropped the less stable couples ."; '/.
11 At least by a sufficiently “stable” couple ."; '/.
12 The most dense part of the “real” data set is well replicated.
13 The inversion procedure is not detailed here and can be a tabulation or a linearised inversion.
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3 The Microscopic Scale: a Conditioned Zero-intelligence Model

3.1 Main Principles

Three elements are needed to implement a model of the characteristics of orders
sent to a limit order book (LOB) based on conditional distributions:

• a conditioning variable C ;
• a marginal lawL	 , where 
 are the parameters of the law;
• a relationship between the parameters and the conditioning variable:


 D g.C /: (3)

The considered characteristics of an order are:

• the time between two consecutive orders;
• the type of each order, i.e. either market (liquidity consuming order), cancel or

limit (liquidity providing order, or resting order) and buy (i.e. ask) or sell (i.e.
bid);

• and the size and price of each sent order.
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Conditioning Variables
In the example of one broker taking the routing decisions for all investors’ orders
with respect to its clients’ views, it is natural to condition the characteristics of
the orders to distance measurements between the execution conditions (i.e. the in-
vestors’ views) and the real state of the market. In our model it will be read as the
distance between the order book of the views and the real order book.
Thanks to the macroscopic layer, the continuous order book of the views is

known via the density m.t; p/ of aggregated views at price p (i.e. the signed rel-
ative mass of investors having interests at price p). The state of the real order book
is discrete in price (because of the tick size ıp) and in volume (i.e. a number of
shares is an integer). The notation Qm.t; p/ will be used for the interests of investors
as disclosed on the real order book. If the two order books (the one of the views
and the real one) are perfectly aligned, the following stationary master equation is
verified (b�c is the rounding function):

Qm.t; p/ D

66664 pCıp=2Z
p�ıp=2

m.t; p/ dp

77775 (4)

Qp�t will be used for the instantaneous equilibrium price of the real order book,
while p�t is the instantaneous equilibrium price of the views as defined by the MFG
layer.
In the microscopic model presented here, the characteristics of orders sent to the

real market by the broker will mainly be conditioned by the values of Qp�t and p�t
(first order condition) and of the slopes of Qmt andmt around Qp�t and p�t respectively
(second order condition). To justify these choices, let’s noteQ.pI Qp�; p�; Qm;m/ the
probability for a resting order at price p to be executed given Qp�, p�, Qm, and m.

Assumption 1 (First order assumption) When the price p of a resting order is
higher (respectively lower) than the current market price Qp� (i.e. it is a sell or-
der, resp. a buy order), then its probability to be executed Q.p/ decreases (resp.
increases) with the signed distance Qp� � p� (when p� moves):

.p � Qp�/ � @Q.pI Qp
�; p�; Qm;m/

@. Qp� � p�/ � 0: (5)

Assumption 2 (Second order assumption) When the price p of a resting order is
close to the current market price Qp� and when the price of the viwes p� is close
to Qp�, then its probability to be executed Q.p/ increases with the signed distance
Q̀. Qp�/� `.p�/, where `.p/ is the slope of the order book of the views at price p and
Q̀.p/ its counterpart in the real order book:

@Q.pI Qp�; p�; Qm;m/
@. Q̀. Qp�/ � `.p�// � 0: (6)
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This last assumption comes from a more obvious one:

.p � Qp�/ � @Q.pI Qp
�; p�; Qm;m/

@. Qm.p/ �m.p// � 0

and the Taylor expansion of Qm.p/ � m.p/ around Qp� and p� with the assumption
that Qp� is close to p�.

Marginal Laws
As stated before, parametrised probability distributions will be needed for the time
between two consecutive orders, the type of orders and the size and price of the
sent order. Taking our assumptions into account, the parameters of these laws will
be functionals of the instantaneous distance between the equilibrium prices�p�t D
Qp�t � p�t and between the slopes at these prices �`t D Q̀. Qp�/ � `.p�/.
The choice of specific distributions for these characteristics will be illustrated

later in this paper using some real data and exploratory simulations.

Time between consecutive orders – It is natural to take a Poisson law d�t.ıt/ with
intensity �.�p�t ; �`t / to model ıt , the time between two consecutive orders.

Type of order – For the type of the next order, the choice between events eT;s where
T is in fM;L;C g (i.e. Market, Limit, Cancel) and s in fB;Ag (for Bid and Ask)
can be made through a multinomial law of parameters .rT;s.�p

�
t ; �`t //T;s (i.e.

rT;s D P.eT;s/) such that: X
T2fM;L;C g;s2fB;Ag

rT;s.�p
�
t ; �`t/ D 1: (7)

Size and price of an order – Each type of order (i.e. each event eT;s) has different
properties: market orders have only a quantity qT;s while limit and cancel orders
have a quantity qT;s and a price pT;s. The mass of the interests present in the
real order book has to be conserved, a master equation (that can be considered
as the microscopic counterpart of Eq. (2): the macroscopic MFG EDP) needs
to be satisfied in expectation: the mass of the inserted order on one side (Limit
Bid or Limit Ask) must be equal to the removed one (Cancel Bid plus Market
Ask or Cancel Ask plus Market Bid):

E ..I1TDL;sDB � .I1TDC;sDB C I1TDM;sDA// qT;s/ D 0
E ..I1TDL;sDA � .I1TDC;sDA C I1TDM;sDB// qT;s/ D 0:

From point process to diffusions
Prior to a precise description of the application of our framework to a one-agency-
broker model presented here, let’s just look at a simplification of the microscopic
layer of the generic framework. At a given time t , the state of the first limits of the
limit order book (prices pask, pbid and quantities qask, qbid) confronted to the char-
acteristics of the next order gives the probability for the mid-price pmid to change
from t to the next event in t C ıt :
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P.pmidtCıt > p
mid
t jıt/ D P.eC;A.t C ıt/; pC;A.t C ıt/ D paskt ; qC;A.t C ıt/Dqaskt /

C P.eM;B.t C ıt/; qM;B.t C ıt/ � qaskt /

C P.eL;B.t C ıt/; pL;B.t C ıt/ > pbidt /

P.pmidtCıt < p
mid
t jıt/ D P.eC;B.t C ıt/; pC;B.t C ıt/ D pbidt ; qC;B.t C ıt/Dqbidt /

C P.eM;A.t C ıt/; qM;A.t C ıt/ � qbidt /

C P.eL;A.t C ıt/; pL;A.t C ıt/ < paskt /

P.pmidtCıt D pmidt jıt/ D 1 � .P.pmidtCıt > p
mid
t jıt/C P.pmidtCıt < p

mid
t jıt//:

Since all the events and random variables of upper equalities are conditioned by
�Mt (the instantaneous distance between the real market and the viewed market),
the probability that the mid price moves up, down or stays as it is can be modelled
by a point process of stochastic intensity �t that is conditioned by the �Mt�� for
all � < t .
It is worth noting that any model of the mid price as a point process with path-

dependent stochastic intensity as Hawkes processes (see for instance [17] or [15])
can be seen as an aggregation of this macroscopic one.
Moreover, as the limit of a rescaled compensated Poisson process with intensity

� is a Brownian motion with volatility
p
2� (see [23]), and as a Brownian motion

is the solution of the heat equation @tm.t; p/ D
p
�=2 � @ppm.t; p/, close to our

macro Eq. (1), we have a qualitative explanation of how a “zoom out” (i.e. rescaling)
of our microscopic layer could be close to the PDEs of our macroscopic layer.

3.2 Choice of Distributions for the Characteristics of Orders

Returning to a specific application of our model to the case of a market with many
different investors and only one agency broker, here are the details of our condi-
tioned models.

Dataset for Explorations, Illustrations and Fitting
Crédit Agricole Cheuvreux maintains an order-by-order database going back to
2007 on a large scope of European stocks (around 500 stocks). This order-by-order
database is updated at every change on the first five limits of the order book on the
primary market or on any multilateral trading facility with more than 1% market
share on the stock.
In the context of this study, this database has been de-stripped to translate

changes within the first five limits and trades into events: a side (bid or ask), a type
(market, limit or cancel), a quantity and a price.
All the explorations, illustrations and figures used here come from this de-

stripped flow. For that, we made the assumption that the future of the real market
can be considered as the viewed market. This comes from the fact that the real mar-
ket can be seen as continuously tracking its own future and sending orders to make
this future happen.
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Fig. 3 Probability for the next event eT;s to have .T; s/ in S� rather than in SC with respect
to�p�

Arrival Rate of Orders
As stated in previous sections, we will use a Poisson arrival rate of orders to obtain
ıt , the time to the next order. In this we will follow Cohen et al. [6], Foucault,
Kadan and Kandel [10] and Daniels et al. [8]. Our empirical data enabled us to
identify a dependence between the time to the next order and �p�t D Qp�t � p�t , so
we use for the intensity �.�p�t /:

�.�p�t / D �0 C �1 �
�
�p�t

�2
: (8)

The intensity of the Poisson distribution increases with the square of the distance
between the real price and the viewed price. This uses our first order assumption.

Qualitatively, this means that the further away the price of the real market is from
the price of the aggregated views, the faster orders are sent to the real market.
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Type of Order
We use a model in two steps:

• Determination of the type of the order between: Cancel Bid, Insert Ask and Mar-
ket Bid on the one hand and Cancel Ask, Insert Bid and Market Ask on the other
hand. The orders in the first set increase the mass of the Ask side relatively to
the mass of the Bid side, and orders of the latter subset have the opposite effect.
Fig. 3 plots the empirical probability for the next event eT;s to have .T; s/ in
S � D f.C;B/; .L;A/; .M;A/g rather than in SC D f.C;A/; .L;B/; .M;B/g
with respect to �p�t . The empirical (not conditioned) proportion to be in S C
rather than to be inS � is close to 50%, and the linear regression corresponding
to the line of the figure has a R2 of around 40% (real data for one typical day
of trading of France Telecom, a French stock on the local main index). The first
step to determine the type of order is therefore modelled, using our first order
assumption and a binomial distribution betweenS C andS � with:

P.eT;s; .T; x/ 2 S �/ D 1

2
C r0 ��p�t : (9)

• Then the discrimination has to be made between the three elements of each set.
Here we use our second order assumption and model this using�`t .

Qualitatively, this means that the higher the price of the real market is compared
to the price of the aggregated views, the higher the ratio between the size of the
bid side of the real order book and the ask side. Moreover, the difference between
the slopes of the order books (real vs. viewed) influences the type of orders (Limit,
Cancel or Market).

Size of the Next Order
Next we define the distribution of size of the order to be sent, given its type (Mar-
ket, Limit or Cancel). After explorations of our empirical data, we decided to use
Gamma distributions. In [4] Bouchaud, Mezard and Potters already observed that
the available volumes at the bid and ask of the order book look like Gammas on the
french stocks, as in [14], other authors observe that this property of the order book
for Chinese stocks is best modelled using log-normal laws.
In Fig. 4, we see the comparison of a fitted Gamma and the empirical repar-

tition of order sizes for Limit orders for France Telecom during one trading day.
The data had to be regularised because the size of the orders is highly discrete,
probably because some agents uses round numbers or multiples of estimates of the
average trade size computed on previous days. The regularisation process used here
is simply a blurring noise. The chosen Gamma distributions are independent of�p�t
and �`t .

Qualitatively, this means that the impact of the distance between the real market
and the viewed one changes the shape of the order books through the number and
the type of sent orders rather than via their size.

Price of the Next Order (When Needed)
The price of an order to be sent is only needed for Limit or Cancel orders, as Market
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size of Limit orders on France Telecom share on the 19 May 2010 (large cap on the French index)
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orders consume the liquidity available in the books at any price. The distribution of
the price of the order expressed in multiples of the current bid-ask spread 2 t and
relative to the “best opposite” (pbidt for a Sell order and paskt for a Buy one) seems to
be more stable than other measures of the price according to our empirical data. In
this illustration of our two-layer framework, a Gamma distribution conditioned by
�p�t is taken, for u D .p � pask=bid

t /= :

d�
�
u
ˇ̌
eT;B=A; T 2 fL;C g

� D � .uI˛.�p�t /; ˇ.�p�t // du
with ˛ and ˇ, the parameters of the Gamma law, are functionals of �p�t so that the
variance is constant and the mean depends linearly on �p�t , using our first order
assumption.

Qualitatively, this means that the price of inserted or cancelled orders is relative
to the best opposite, can be expressed in bid-ask spreads, and increases with the
distance between the real market and the viewed one.

3.3 Overall Simulations

Finally, we obtain a full simulation of the order book dynamics using the conjunc-
tion of our two layers: the macroscopic one, based on a Mean Field Game (MFG)
framework, modelling the aggregated views of the investing agents (living in a con-
tinuous state space) and the microscopic one, sending orders according to zero-
intelligence-like models of distributions of orders to send to the real (discretised)
market, given the distance between the viewed order book and the real one.
Fig. 5 shows an example of 20 minutes of simulations: the smooth grey curve is

the trajectory of p�t following the macroscopic MFG layer, the black stepped curve
is the trajectory of Qp�t following the microscopic layer pegged to the MFG one.
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Fig. 5 An example for 20 minutes of simulations: the smooth grey curve is the trajectory of p�t
following the macroscopic MFG layer, the black stepped curve is the trajectory of Qp�t following
the microscopic layer pegged to the MFG one
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4 Conclusions

The model of the market microstructure at the order book level presented here en-
deavours to answer the practical need for a tool to conduct back-tests, stress tests
and sensitivity analysis of the payoff of a trading algorithm.
It is structured similarly to real markets with investors making decisions accord-

ing to their views on the future prices in the market (i.e. macroscopic layer) and
using brokers to access the order books (microscopic layer). The views of the in-
vestors are modelled via a Mean Field Game (MFG) and orders are sent to the
market according to a zero-intelligence-type model pegged to the instantaneous
distance between the views and the state of the order books.
This paper describes an application of this framework to a market with three

kinds of investors (mean reverters, trend followers and noise traders) and only one
pure agency broker, and provides illustrations of the outcomes of this model as well
as some analyses of real data at the order book scale.
As this is an on-going research project for Crédit Agricole Cheuvreux’s research

team, a more generic study of this framework is currently being conducted where
any configuration of market access (i.e. not only through one pure agency broker)
and any type of investors (implementing stochastic control to solve their explicit
utility functions) is available. Plans for future research include studying the effect
of investors taking into account not only their views on the future of the market,
but also the current market price (i.e. using intra-day marked-to-market valuation
of their positions in their utility functions). A natural extension of this work is also
to consider the PDEs obtained thanks to the MFG layer as the diffusive limit of the
Markovian zero-intelligence one.

Acknowledgements The authors wish to thank Adrian Iuga for producing some useful real order
book data analyses during his internship at Crédit Agricole Cheuvreux.
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A Mathematical Approach to Order Book
Modelling

Frédéric Abergel and Aymen Jedidi

Abstract. We present a mathematical study of the order book as a multidimen-
sional continuous-time Markov chain where the order flow is modelled by inde-
pendent Poisson processes. Our aim is to bridge the gap between the microscopic
description of price formation (agent-basedmodelling), and the Stochastic Differen-
tial Equations approach used classically to describe price evolution in macroscopic
time scales. To do this we rely on the theory of infinitesimal generators. We moti-
vate our approach using an elementary example where the spread is kept constant
(“perfect market making”). Then we compute the infinitesimal generator associated
with the order book in a general setting, and link the price dynamics to the instan-
taneous state of the order book. In the last section, we prove the stationarity of the
order book and give some hints about the behaviour of the price process in long time
scales.

1 Introduction and Background

The emergence of electronic trading as a major means of trading financial assets
makes the study of the order book central to the understanding of the mechanism
of price formation. In order driven markets, buy and sell orders are matched contin-
uously subject to price and time priority. The order book is the list of all buy and
sell limit orders, with their corresponding price and size, at a given instant of time.
Essentially, three types of orders can be submitted:

• Limit order: Specify a price (also called “quote”) at which one is willing to buy
or sell a certain number of shares.

• Market order: Immediately buy or sell a certain number of shares at the best
available opposite quote.

• Cancellation order: Cancel an existing limit order.
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In the econophysics literature, “agents” who submit exclusively limit orders are
referred to as liquidity providers. Those who submit market orders are referred to as
liquidity takers.
Limit orders are stored in the order book till they are either executed against an

incoming market order or cancelled. The ask price P A is the price of the best (i.e.
lowest) limit sell order. The bid price P B is the price of the best (i.e. highest) limit
buy order. The gap between the bid and the ask

S WD PA � P B;
is always positive and is called the spread. Prices are not continuous, but rather have
a discrete resolution �P , the tick, which represent the smallest quantity by which
they can change. We define the mid-price as the average between the bid and the ask

P WD PA C P B
2

:

The price dynamics is the result of the interplay between the incoming order flow
and the order book. Fig. 1 is a schematic illustration of this process. Note that we
chose to represent quantities in the bid side of the book by negative numbers.
Although in reality orders can have any size, we shall assume throughout this

note that all orders are of unit size � . This assumption is convenient to carry out our
analysis and is, for now, of secondary importance to the problem we are interested
in.

2 An Elementary Approximation: Perfect Market Making

We start with the simplest agent-based market model:

• The order book starts in a full state: All limits above PA0 and below P
B
0 are filled

with one limit order of unit size. The spread starts equal to 1 tick.
• The flow of market orders is modelled by two independent Poisson processes
MC

t (buy orders) andM�
t (sell orders) with constant arrival rates (or intensities)

�C and ��.
• There is one liquidity provider, who reacts immediately after a market order ar-
rives so as to maintain the spread constantly equal to 1. He places a limit order in
the same side of the market order (i.e. a limit buy order after a market buy order
and vice versa) with probability q and in the opposite side with probability 1�q.

The mid-price dynamics can be written under the following form

dPt D �P

2
.dMC

t � dM�
t /Z

WD �.dMC
t � dM�

t /Z (1)
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where � WD �P
2 (1=2 of a tick) and Z is a Bernoulli-type random variable(

Z D 0 with probability .1 � q/;
Z D 1 with probability q: (2)

The infinitesimal generator associated to this dynamics is

Lf .P / D q
�
�C.f .P C�/� f /C ��.f .P ��/� f /� : (3)

It is well known that a continuous limit obtains with suitable assumptions on the
intensity and tick size. Noting that (3) can be rewritten as

Lf .P / D 1

2
q.�C C ��/�2f .P C�/� 2f C f .P ��/

�2

C q.�C � ��/�P f .P C�/ � f .P ��/
2�

; (4)

and under the following assumptions(
q.�C C ��/�2�!�2 as�! 0;

q.�C � ��/��!� as�! 0;
(5)

the generator converges to the classical diffusion operator

�2

2

@2f

@P 2
C �@f

@P
; (6)

corresponding to a Brownian motion with drift. This simple case is worked out as
an example of the type of limit theorems that we will be interested in in the sequel.
One should also note that a more classical approach using the Functional Central
limit Theorem (FCLT) as in [1] yields similar results: For given fixed values of �C,
�� and �, the rescaled, centred price process

p
ı
P t

ı
� �

ı
t

�
(7)

converges as ı ! 0, to a standard Brownian motion Bt where(
� D �

p
.�C C ��/q;

� D �.�C � ��/q: (8)

Let us mention that one can easily achieve more complex diffusive limits such as
a local volatility model by imposing that the limit is a function of P and t(

q.�C C ��/�2 ! �2.P; t/;

q.�C � ��/�! �.P; t/;
(9)
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always a possibility if the original intensities are functions of P and t themselves.
The case of stochastic volatilities is also encompassed by diffusive limits of these
models. For instance consider the following pure-jump model for P and the inten-
sities �C, �� 8̂̂̂̂

<̂̂
ˆ̂̂̂:

dPt D �.dMC
t � dM�

t /Z

d�Ct
�Ct

D .JCC � 1/dN volC
t C .JC� � 1/dN vol�

t ;

d��t
��t

D .J�C � 1/dN volC
t C .J�� � 1/dN vol�

t :

(10)

Its infinitesimal generator is given by the following operator

Lf .P; �C; ��/ D q
�
�C.f .P C�P/� f /C ��.f .P ��P/� f /�

C �C �f .JCC�C; J�C��/ � f �
C �� �f .JC��C; J�C��/ � f � ; (11)

where �C, �� are the intensities of �Ct , and ��t respectively.
In a more general fashion, we will use the expression generalized Bachelier mar-

ket to designate a market model where the best bid and ask prices, or equivalently
the mid-price and the spread, obey the following type of dynamics

dPt D �

QX
iD1

Zi
t dM

i
t ; (12)

where the M i
t are independent Poisson processes and the marks Zi are random

variables with finite means and variances. The same standard results on martingale
convergence as the one used above show that the rescaled, centred price process

p
ı
�
P t

ı
� E

h
P t

ı

i�
(13)

converges to a Gaussian process with a diffusion coefficient determined by the vari-
ance of the marks and the intensities of the Poisson processes. This extension of the
Bachelier market will come in handy in Sect. 6, where we study the stationary order
book in a more general setting.

3 Order Book Dynamics

3.1 Model Setup

We now consider the dynamics of a general order book under a Poisson type as-
sumption for the arrival of new market orders, limit orders and cancellations. We
shall assume that the whole order book is fully described by a fixed number of lim-
its N , ranging at each time from 1 to N ticks away from the best available opposite
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quote. By doing so, we adopt the representation described e.g. in [2] or [3], but de-
part slightly from it by adopting a finite moving frame, as we think it more realistic
and also, more convenient when scaling in tick size will be addressed. Let us now
recall the type of events that may happen:

• arrival of a new market order;
• arrival of a new limit order;
• cancellation of an already existing limit order.

These events are described by independent Poisson processes:

• Mṫ : arrival of new market order; with intensity �Ṁ ;
• L˙i

t : arrival of a limit order i ticks away from the best opposite quote; with
intensity �i

L̇ ;
• C˙i

t : cancellation of a limit order i ticks away from the best opposite quote; with

intensity �iC
C

ai

�
, �i�

C

bi

�
;

where, as usual, �P is the tick size, � the size of any new incoming order, and
the superscript “C” (respectively “�”) refers to the ask (respectively bid) side of
the book. The intensity of the cancellation process at level i is proportional to the
available quantity at that level.
We impose constant boundary conditions outside the moving frame of size 2N :

Every time the moving frame leaves a price level, the number of shares at that level
is set to a1 (or b1 depending on the side of the book). Note that this makes the
model Markovian as we do not keep track of the price levels that have been visited
(then left) by the moving frame at some prior time.

3.2 Evolution of the Order Book

Denoting by at D
�
a1t ; : : : ; a

N
t

�
the vector of available quantities of sell limit orders

(the ask side), and similarly bt D
�
b1t ; : : : ; b

N
t

�
the bid side of the order book, we

can write the following coupled SDEs:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

dai
t D �

 
� �

i�1X
kD1

ak

!
C
dMC

t C �dLiC
t � �dC iC

t

C .J b
M .a/� a/idM

�
t C

NX
iD1

.J�Li
.a/� a/idL

i�
t C

NX
iD1

.J�Ci
.a/ � a/idC

i�
t ;

dbi
t D �

 
� �

i�1X
kD1

bk

!
C
dM�

t C �dLi�
t � �dC i�

t

C .J a
M .b/ � b/idMC

t C
NX

iD1
.JCLi

.b/� b/idLiC
t C

NX
iD1

.JCCi
.b/ � b/idC iC

t ;

(14)
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where the J ’s are shift operators corresponding to the number of ticks by which the
best bid (respectively ask) moves following an event on the ask side (respectively
bid side) of the book. For instance the shift operator corresponding to the arrival of
a sell market order of size � is

J b
M .a/ D

0@0; 0; : : : ; 0„ ƒ‚ …
ktimes

; a1; a2; : : : ; aN�k

1A ; (15)

with

k D inffp W
pX

jD1
bj > �g � inffp W bp > 0g: (16)

Similar expressions can be derived for the other set of events affecting the order
book. Also one should note that the last two summations in (14) are in fact taken
only on the range of indexes smaller than or equal to the spread (in ticks).
In the next sections, we will study some general properties of such models, start-

ing with the generator associated to this 2N�dimensional continuous-timeMarkov
chain.

4 Infinitesimal Generator

Let us now work out the infinitesimal generator associated to the jump process de-
scribed above. One can derive the following result:

Lf .aIb/ D �CM
�
f
�
.ai � .� � Ai�1/C/CIJ a

M .b/
� � f �

C
NX

iD1
�iC

L .f
�
ai C � IJ iC

L .b/
� � f /

C
NX

iD1
�iC

C

ai

�
.f
�
ai � � IJ iC

C .b/
� � f /

C ��M
�
f
�
J b

M .a/I .bi � .� � B i�1/C/C
�
� f

�
C

NX
iD1

�i�
L .f

�
J i�

L .a/I bi C �� � f /
C

NX
iD1

�i�
C

bi

�
.f
�
J i�

C .a/I bi � �� � f /; (17)

where, to ease the notations, we note f .ai Ib/ instead of f .a1; : : : ; ai ; : : : ; aN Ib/
etc. The operator above, although cumbersome to put in writing, is simple to de-
cipher: a series of standard difference operators corresponding to the “deposition-
evaporation” process of orders at each limit, combined with the shift operators ex-
pressing the moves in the best limits and therefore, in the origins of the frames for
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the two sides of the order book. Clearly, the interesting part lies in the coupling of
the two sides of the book: the shifts on the a’s depend on the b’s, and vice versa.
More precisely the shifts depend on the profile of the order book on the other side,
namely the cumulative number of orders8̂̂̂̂

<̂̂
ˆ̂̂̂:
Ai D

iX
kD1

ak ;

Bi D
iX

kD1
bk

(18)

and the generalized inverse functions thereof8̂̂̂̂
<̂̂
ˆ̂̂̂:
A�1.�/ D inffp W

pX
jD1

aj > �g;

B�1.�/ D inffp W
pX

jD1
bj > �g:

(19)

Note that the index corresponding to the best opposite quote equals the spread S in
ticks, that is 8̂̂̂̂

<̂̂
ˆ̂̂̂:
iA D A�1.0/ D inffp W

pX
jD1

aj > 0g D S

�P
D iS ;

iB D B�1.0/ D inffp W
pX

jD1
bj > 0g D S

�P
D iS :

(20)

5 Price Dynamics

Let us focus on the dynamics of the best ask and bid price, denoted by PAt and P
B
t .

One can easily see that they satisfy the following SDE:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

dPAt D �P

�
.A�1.�/ �A�1.0//dMC

t �
NX

iD1
.A�1.0/� i/CdLiC

t

C .A�1.�/ � A�1.0//dC iAC
t

	
dP Bt D ��P

�
.B�1.�/ � B�1.0//dM�

t �
NX

iD1
.B�1.0/� i/CdLi�

t

C .B�1.�/ � B�1.0//dC iB�
t

	
(21)
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which describes the various events that affect them: change due to market order,
change due to new limit orders inside the spread, and change due to the cancellation
of limit orders at the best price. One can summarize these two equations in order
to highlight, in a more traditional fashion, the respective dynamics of the mid-price
and the spread:

dPt D �P

2

h
.A�1.�/ �A�1.0//dMC

t � .B�1.�/ � B�1.0//dM�
t

�
NX

iD1
.A�1.0/� i/CdLiC

t C
NX

iD1
.B�1.0/� i/CdLi�

t

C .A�1.�/� A�1.0//dC iAC
t � .B�1.�/ � B�1.0//dC iB�

t

i
: (22)

dSt D �P
h
.A�1.�/ � A�1.0//dMC

t C .B�1.�/ � B�1.0//dM�
t

�
NX

iD1
.A�1.0/� i/CdLi�

t �
NX

iD1
.B�1.0/� i/CdLiC

t

C .A�1.�/ �A�1.0//dC iAC
t C .B�1.�/ � B�1.0//dC iB�

t

i
: (23)

The set of equations above are interesting in that they relate in an explicit way
the profile of the order book with the size of an elementary jump of the mid-price or
the spread, therefore linking the volatility dynamics with order arrival. For instance
the “infinitesimal” drifts of the mid-price and of the spread, conditional on the shape
of the order book at time t , are given by

E ŒdPt j.at Ibt/� D �P

2

h
.A�1.�/ �A�1.0//�CM � .B�1.�/ � B�1.0//��M

�
NX

iD1
.A�1.0/� i/C�iC

L C
NX

iD1
.B�1.0/� i/C�i�

L

C .A�1.�/� A�1.0//�iAC
C � .B�1.�/ � B�1.0//�iB�

C

i
dt; (24)

and

E ŒdSt j.at Ibt /� D �P
h
.A�1.�/ � A�1.0//�CM C .B�1.�/ � B�1.0//��M

�
NX

iD1
.A�1.0/� i/C�iC

L �
NX

iD1
.A�1.0/� i/C�i�

L

C .A�1.�/� A�1.0//�iAC
C C .B�1.�/ � B�1.0//�iB�

C

i
dt: (25)
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6 Stationary State and Diffusive Limit

6.1 Ergodicity of the Order Book

Of the utmost interest is the behaviour of the order book in a stationary state. We
have the following result1:

Proposition 1 If �C D min1�i�N f�˙i
C g > 0, then X t D .at Ibt / is an ergodic

Markov process. In particular X t has a stationary distribution.

Proof. This is an application of the stochastic Lyapunov ergodicity criterion (Ap-
pendix A). Let '.aIb/ DPN

iD1 ai CPN
iD1 jbi j be the total number of shares in the

book. Using the expression of the infinitesimal generator (17) we have

L'.aIb/ �
NX

iD1
.�iC

L C �i�
L /� � .�CM C ��M /� �

NX
iD1
.�iC

C ai C �i�
C jbi j/

C
NX

iD1
�i�

L .iS � i/Ca1 C
NX

iD1
�iC

L .iS � i/Cjb1j (26)

� N.�CL C ��L/� � .�CM C ��M /� � �Cf .aIb/
CN.N C 1/.��La1 C �CL jb1j/ (27)

where �L̇ D max1�i�N f�i
L̇ g and �C D min1�i�N f�i

Ċ g > 0.
The first three terms in the r.h.s. of inequality (26) correspond respectively to

the arrival of a limit, market, or cancellation order—ignoring the effect of the shift
operators. The last two terms are due to shifts occurring after the arrival of a limit
order within the spread. The terms due to shifts occurring after market or cancella-
tion orders (which we do not put in the r.h.s) are negative, hence the inequality. To
obtain inequality (27), we used the fact that the spread iS (and hence .iS � i/C) is
bounded by N C 1—a consequence of the boundary conditions we impose.
Let � be a positive constant andK a constant such that

K>maxf�; � CN.�
C
L C ��L/� CN.N C 1/.��La1 C �CL jb1j/� .�CM C ��M /�

�C

g:

We have:

• if '.aIb/ > K then
L'.aIb/ � �� I

1 A similar result, albeit in a slightly different model, was proved in [3]. We still sketch our proof
because it follows a different route.
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• the random variables supf'.X t / W t � 1g and
R 1
0 jL'.X t /jdt are integrables;

• the set F D f.aIb/ W '.aIb/ � Kg is finite.
By Proposition 8.14 in [4] (Appendix A), we conclude that the Markov process
X t D .at Ibt / is ergodic. �

Remark 1 As a corollary of Proposition 1, the spread S D A�1.0/ has a well-
defined stationary distribution (this is expected as by construction the spread is
bounded by N C 1).

6.2 Large Scale Limit of the Price

The stationarity of the order book is essential for the study of the long term be-
haviour of the price. We recall Eq. (22) giving the mid-price increments

dPt D �P

2



.A�1t .�/ �A�1t .0//dMC

t � .B�1t .�/ � B�1t .0//dM�
t

�
NX

iD1
.A�1t .0/� i/CdLiC

t C
NX

iD1
.B�1t .0/� i/CdLi�

t

C .A�1t .�/� A�1t .0//dC iAC
t � .B�1t .�/ � B�1t .0//dC iB�

t

i
: (28)

In order to clarify the dependence of the price process on the order book dynamics,
let us introduce the following deterministic functions:

• ˚ W NN ! f0; : : : ; N gI ˚.a/ D A�1.�/�A�1.0/. ˚ is the virtual price impact
in ticks of a market order of size � (or of a cancellation order at the best price);

• � W NN ! f1; : : : ; N C 1gI �.a/ D A�1.0/. � gives the value of the spread in
ticks.

Eq. (28) can now be rewritten as

dPt D �P

2

�
˚.at /.dMC

t C dC
.at /C
t /� ˚.jbt j/.dM�

t C dC
.jbt j/�
t /

�
NX

iD1
.�.at / � i/CdLiC

t C
NX

iD1
.�.jbt j/� i/CdLi�

t

	
: (29)

Should the order book be in its stationary state, then the price increments are sta-
tionary, and the model is recast under the form described in Sect. 2

dPt D �

QX
iD1

Zi
t dN

i
t :
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We are interested in the existence of a stochastic process limit eP t after proper scal-
ing2 eP t D lim

n!1
Pnt � E.Pnt /p

n
: (30)

In order to apply a generalized version of the Functional Centrale Limit Theorem,
one needs to measure the dependence of price increments dPt . The analytical study
of the dependence structure (mainly the autocovariance of price increments) is not
obvious and we shall investigate it in a future work [5], but numerical simulation
(see Figs. 5–6) suggests that the large scale limit process ePt is a Brownian motion
with a volatility determined by the variance of the marks Zi and the intensities of
the Poisson processes.

7 Conclusions

This note provides a simple Markovian framework for order book modelling, in
which elementary changes in the price and spread processes are explicitly linked to
the instantaneous shape of the order book and the order flow parameters. Two basic
properties were investigated: the stationarity of the order book and the large scale
limit of the price process. The first property, to which we answered positively, is
desirable in that it assures the stability of the order book in the long run. The scaling
limit of the price process is more subtle to establish and one can ask if, within our
framework, stochastic volatility effects can arise. Of course, more realistic stylized
facts of the price process (in particular fat tails and long memory) can be added if
we allow more complex assumptions on the order flow (e.g. feedback effects [6]).
Further properties of this model and its extensions will be discussed in detail in
future work.
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10. J.P. Bouchaud, M. Mézard, and M. Potters. Statistical properties of stock order books: empir-
ical results and models. Quantitative Finance, 2002

11. S. Ethier and T. Kurtz. Markov Processes: Characterization and Convergence. Wiley, 1986
12. J. Gatheral and R. Oomen. Zero-intelligence realized variance estimation. Finance and

Stochastics, 2007
13. F. Klebaner. Introduction to Stochastic Calculus with Applications. Imperial College Press,

2005
14. L.C.G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales. Cambridge

University Press, 2000

Appendix A. Lyapunov Stochastic Stability Criterion

Let .Xt / be an irreducible Markov jump process on the countable state space S ,
and L its infinitesimal generator. If there exists a function f W S ! RC and
constantsK; � > 0 such that:

• if f .x/ > K then Lf .x/ � �� I
• the random variables supff .Xt / W t � 1g and

R 1
0 jLf .Xt /jdt are integrables;

• the set F D fx W f .x/ � Kg is finite,

then .Xt / is ergodic.

Appendix B. Figures

We provide below some representative figures obtained by numerical simulation of
the order book (Figs. 2–6).
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Fig. 1 Order book schematic illustration: A market buy order arrives and removes liquidity from
the ask side, then limit sell orders are submitted and liquidity is restored [7]
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Fig. 6 Variance in event time. The dashed line is a linear fit





Reconstructing Agents’ Strategies
from Price Behavior

Valentina Alfi, Matthieu Cristelli, Luciano Pietronero and Andrea Zaccaria

1 Introduction

In the past years several Agents Based Models (ABMs) have been introduced to re-
produce and interpret the main features of financial markets [7, 14]. The ABMs go
beyond simple differential equations with the aim of being able to address the com-
plex phenomenology of a dynamics. This phenomenology is usually interpreted in
terms of the Stylized Facts (SF) which correspond to complex correlations beyond
the simple Random Walk (RW). The ABMs give the possibility to describe the in-
trinsic heterogeneity of the market which seems to be responsible for many of these
SF [6,12]. The main SF are the fat tails for the fluctuations of price-returns, the arbi-
trage condition, which implies no correlations in the price returns, and the volatility
clustering which implies long memory correlations for volatility.
Many of the existing ABMs are able to reproduce these SF, however, often these

models contain a large number of parameters and variables and also introduce spe-
cific ad hoc assumptions. In this situation an analysis of the quality of these models
is rather difficult. In addition, given the mentioned problems, it is difficult to point
out which features of the model lead to some specific properties.
An important common element of most models is the competition between dif-

ferent agents’ strategies. For example in the Lux-Marchesi (LM) [10, 11] model
fundamentalist agents have a fixed reference price and bet that the real price will
converge towards this value. These agents therefore induce a stabilizing tendency.
Chartist agents instead tend to follow a price trend and to amplify it, so they have
a destabilizing effect. Other important elements of many models are the herding
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phenomenon and the role of price behavior with respect to the agents strategies.
A long standing mystery of the LM model has been the fact that the interesting
behavior of the SF is recovered only for a very particular, intermediate number of
agents. In both limits of many and few agents the SF disappear. In addition this
model is so complicated that it has not been possible to develop a systematic study
of its properties.
Starting from these observations and considering the basic ingredients of the LM

model, we have tried to build a minimal model which is still able to reproduce the
main SF [2–5]. This “workable” model has permitted to clarify all the puzzling
properties mentioned before and to consider a number of new questions in a sys-
tematic way. The main result is that indeed the SF correspond to a finite number of
effective agents and this number is fixed by the market dynamics with a mechanism
of self-organization. In this perspective the SF correspond to finite size effects and
should not lead to genuine critical exponents. This is a basic result with important
implications both conceptual and practical. Also the dynamics and fluctuations of
the effective number of agents represents a new important element.
The simplicity of our model permits a systematic development of the field in var-

ious directions. In the present paper we show an example by considering the inverse
problem, namely the reconstruction of the agents’ strategies from the properties of
the price time-series. This question is very relevant from both a conceptual and ap-
plied point of view and we use the model as a suitable playground to develop the
appropriate methods. The reduced number of parameters permits in fact a recon-
struction of these parameters from the price behavior. We study in detail the signal
to noise ratio and show that, with a suitable data set, the reconstruction is indeed
possible. Key elements in this respect are the size of the sliding window and the
memory parameter of the chartists’ strategies. There is a trade-off between the ac-
curacy of the results and the speed to adjust to a change of strategy. We also show
a first example of analysis of real data.
In Sect. 2 we summarize briefly the main elements of our model. In Sect. 3 we

identify the criteria for the reconstruction method. In Sect. 4.1 we show the signal
to noise ratio with respect to the various parameters of the analysis and discuss
some specific examples. In Sect. 5 we present an analysis of an experimental price
time series. In Sect. 6 we discuss the possible developments and applications of this
method.

2 The Minimal Model

We consider two classes of agents: fundamentalists and chartists. Fundamentalist
agents believe that a fundamental price pf exists and they try to drive the actual
price p.t/ towards the fundamental price which we can consider as a constant in
the following without any loss of generality. The action of fundamentalists is then
to buy if the actual price is under the pf and to sell otherwise so they try to stabilize
the market. We introduce also a positive parameter � to quantify the strength of
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fundamentalists’ actions. In formula, at a certain time step t , the action of a single
fundamentalist agent on the next price increment is:

Af D �.pf � p.t//: (1)

The chartists instead are noise traders who analyze the price time series in order to
detect trends and gain profit from them. The trend detection is based on the evalu-
ation of the distance between the actual price and a smoothed profile of it. In our
model the smoothed profile of the price is simply the moving average pM .t/ of the
price p.t/ performed on the previousM time steps:

pM .t/ D 1

M

M�1X
kD0

p.t � k/: (2)

Chartist agents buy if the price p.t/ is above the moving average p.t/ and sell
otherwise, so they can create bubbles and crashes which destabilize the market.
Similarly to Eq. 1 the action of the chartists’ can be written as:

Ac D b

M � 1 .p.t/ � pM .t// (3)

where the parameter b .0 � b < 2/ tunes the strength of the signal and the factor
M � 1 is needed to make the chartists’ action independent on the choice of the
parameterM [13, 15].
Considering a population of N agents divided in Nf fundamentalists and Nc

chartists, the collective signal is given by the sum of all agents’ actions plus an
endogenous source of noise:

p.tC1/� p.t/D 1

N

"
NcX
iD1

bi

Mi�1 .p.t/�pMi
.t//C

NfX
iDNcC1

�i .pf �p.t//
#
C ��: (4)

In general we can consider an heterogeneous group of agents where any agent has
a different characterizing parameter. We make a simplification by endowing any
agent with the same parameter, but in the following we will comment also on the
more general situation with heterogeneous agents. With this simplification Eq. 4 can
be rewritten as:

p.t C 1/� p.t/ D Nc

N

b

M � 1 .p.t/ � pM .t//C Nf

N
�.pf � p.t//C ��: (5)

This mechanism for the price formationmakes the model very simple and workable.
For example it is interesting to stress that Eq. 5 can be solved analytically in the two
limits cases where agents are all fundamentalists or all chartists. It also interesting to
notice that here we have only two classes of agents (fundamentalists and chartists)
while other models, for example the LM one, need 3 classes of agents to obtain
a realistic dynamics.
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Now we give the agents the possibility to decide to switch their strategy from
fundamentalist to chartist and vice-versa. So we define two transition rates, which
contain two terms. The former one is an herding term which encourages agents to
switch strategy if the majority of the other agents have a different behavior. The
latter term considers the possibility that one agent changes strategy following her
own considerations about the market, simply by looking to the market signal she
perceives.
Here we consider for the sake of simplicity the case where this second term is

constant leading to the transition rates:

Pfc D B.1 � ı/.K C Nc

N
/ (6)

Pcf D B.1C ı/.K C Nf

N
/ (7)

where Pfc is the probability to switch from fundamentalists to chartists and Pcf

the opposite one. The parameter K rules the probability to change strategy inde-
pendently on the other agents. The parameter ı introduces an asymmetry between
the strategies. We can notice that in the limit ı D 0 we recover the Kirman’s Ants
Model [8] for the dynamics of agents’ strategies. More details about the model and
its capability to reproduce the SF can be found in [3–5].

3 The Reconstruction Method

In this section we introduce a method to analyze the output of the model described
in Sect. 2 in order to reconstruct the agents’ strategies. We consider our model as
a black-box generating a price series and we try to detect a posteriori the different
regimes of the dynamics, i.e. when the system is dominated by fundamentalists or
chartists. This could be very useful in view of an analysis of experimental data from
real markets [1, 13, 15].
Before describing the method we notice that, while the moving average pM can

be always estimated from data, this is not the case for the fundamental price pf . So
one has to consider two different situations, one in which the fundamental price pf

is known (for example from economic considerations) and the other in which pf is
unknown. In this last case one can approximate it with the moving average pM .t/.
It is worth noticing that this approximation is a priori valid only in the limit of very
largeM but, as we will show later, we can obtain good results also for intermediate
values ofM . In the following we indicate the strength of the fundamentalist agents
with sf D � , the one of chartists with sc D b=.M � 1/ and with x the fraction of
chartists Nc=N . With this notation Eq. 5 becomes:

p.t C 1/� p.t/ D scx.p.t/ � pM .t// � sf .1 � x/.p.t/ � pf /C ��: (8)

The price return p.tC1/�p.t/ is a function of the two variables p.t/�pM .t/ and
p.t/ � pf and so it can be seen as a plane whose slopes depend on the parameters
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Fig. 1 The method we are describing consists in reconstructing the agents’ strategies by consid-
ering the linear relation between the 1-step price increment and the distance between the price
and its moving average. By fitting this linear relation one can recover the sign and strength of the
model’s parameters. In this picture we show three different situations corresponding to three dif-
ferent slopes. A positive slope indicates a destabilizing tendency and vice-versa. The results of the
reconstruction are given by the dots while the straight lines represent the expected values known
from the model’s parameters

of the model (b;M; � ) and on the chartist fraction x. In particular the gradient of
this plane is positive in the p.t/ � pM .t/ direction and negative in the other one.
One can calculate the quantity p.t C 1/ � p.t/ as a function of p.t/ � pM .t/ and
p.t/ � pf from a given data-set, that in this case is the output of the model, and
then obtain an estimation of the gradients scx and �sf .1 � x/ by simply plotting
these quantities and performing two linear regressions.
Approximatingpf with pM we obtain a simplification of the procedure because

p.t C 1/ � p.t/ becomes a function of one variable. So, approximating pf with
a suitable pM .t/, Eq. 5 becomes:

p.t C 1/� p.t/ �
h
scx � sf .1 � x/

i
.p.t/ � pM .t//C ��: (9)

In this way the plane described by Eq. 8 becomes a straight line with slope given
by:

s D scx � sf .1 � x/ D .sc C sf /x � sf (10)

and Eq. 9 can be compactly written as

p.t C 1/� p.t/ � s.p.t/ � pM .t//C ��: (11)
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We will plot p.t C 1/� p.t/ as a function of p.t/� pM .t/ and with a linear fitting
procedure we can estimate the slope s. Due to the noise term, we need to consider
reasonably long intervals to extract a precise value of s. Given the slope s and the
values of the parameters b;M and � , we can recover the fraction of chartists x

x D s � sf
sc C sf : (12)

Even if the model’s parameters are not known, being the slope s proportional to the
fraction of chartists x, the estimation of s gives an idea of the “sentiment” of the
market, i.e. if it is in a stable regime s < 0 or in an unstable one s > 0. From Eq. 10
we can observe that, if the fundamentalists’ parameter sf D � is strong enough,
one can obtain a stable market also with a larger number of chartists and, on the
contrary, if the parameter sc is larger than sf one can obtain an unstable market
even if fundamentalists are more than chartists.
In Fig. 1 we show an example of three straight lines obtained plotting p.t C 1/�

p.t/ as a function of p.t/ � pM .t/. We have considered three different situations
where we have run our model keeping fixed the fraction of chartist agents x. The
parameters of the simulation are b D 1,M D 100 and � D 0:005 and we plot the
results for the cases x D 0, x D 1 and x D 1=2. We can observe that the resulting
slope s is indeed proportional to the fraction of chartists x.

4 Reconstruction for the Agent Model

4.1 Window Size Dependence

The noise term in Eq. 11 introduces some fluctuations in the estimate of the slope
s. If the parameters to be estimated remain constant, a larger dataset will give more
accurate results. On the other hand the shorter is the interval on which the analysis
is performed the more reactive will be the response to a change in market sentiment,
so we need a trade-off between these two competing effects.
In order to look for the minimal interval for the analysis, we consider the limit

case in which there are only chartist agents. In this case s D sc D b=.M � 1/
and so, generating time series of different length, we can check the dependence
of the estimation of the slope sc on the size of the dataset. We have considered
a long dataset with parameters b D 1 and M D 50 and we have divided it into
windows of size T , then we have performed the estimation of the parameter b inside
each window. Varying T we can observe that for small windows, as expected, the
fluctuations are very large and the results are inconclusive. In Fig. 2 we show the
results for five different window sizes and we can observe that for small values of T
the fluctuations are too large and the estimation of the parameter could be sometimes
misleading. In Fig. 3 we show the dependence of the accuracy of the estimations of
b on the window size. We can observe that for window sizes smaller than T D 1000
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Fig. 2 Signal to noise ratio. Analysis of a simulation of the model with only chartist agents with
parameter b D 1 and M D 50. We plot the estimation of the parameter b D sc.M � 1/ for
different sizes of the sliding window. The fluctuations in the estimation of b become larger for
small values of T
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Fig. 3 We consider a population of only chartists with parameters b D 1 and M D 50. We show
the reconstructed values of the parameter b and its relative fluctuations for different values of T .
We observe that a window of at least 1000 points is needed to perform an efficient analysis. In the
inset we report the estimation of b as a function of the window size
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the relative fluctuations are very large .ıb=b > 1/ and also the average value of the
parameter b is precise, as one can see in the inset of Fig. 3. For the next analysis we
will use windows of size T � 1000 in order to have a good compromise between
accuracy and sensitivity in parameters’ changes.

4.2 Dependence on the Length of the Moving Average

Then we check the method for the case of all fundamentalists. In this case pf is
approximated by the moving average of the price pM . In order to estimate the pa-
rameter � one should plot the increments p.tC1/�p.t/ as a function of p.t/�pf .
In Fig. 4 we have plotted the estimation of the parameter sf D � for different val-
ues of the number of steps used to perform the moving average pM . We can see that
even for small values ofM (M D 10) the absolute value of the parameter � is well
detected and one can obtain a good fit for values ofM starting from 50.
Before analyzing the output of the model we test the dependence of the analysis

on the choice of the parameter M which is the number of time steps used for the
computation of the moving average pM .t/.
We have analyzed the two limit cases of populations consisting in only funda-

mentalist agents or only chartist agents (x D 0 and x D 1 respectively). In the
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Fig. 4 Here we show a test of the approximation pf � pM .t/. We have run a simulation with
only fundamentalists with sf D � D 0:5 and, in performing the backward analysis, we have
approximated the fundamental price with a moving average of different lengths. For comparison
we also show the analysis performed with the true pf (dashed line). We can see that the estimation
of � improves for increasing values ofM but the result is reasonable already forM D 10
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case x D 0 we estimate the parameter sf D � by considering the approximation
of pf � pM .t/. In this case the price p.t/ describes a diffusive process only on
very short time scales but on longer time scales the process is no more diffusive and
the variance tends to a constant value [4]. So we expect the fluctuations ısf of the
parameter sf D � to be proportional to the fluctuations of p.t/� pM .t/ and hence
to the variance of the underlying process. In Fig. 5 we plot the quantity ısf =sf as
a function of the moving average length M and, as expected, the fluctuations in-
crease for short time scales .M < 1000/ and become almost constant for longer
time scales. In the inset we have plotted an average value of the parameter sf as
a function ofM which, as already noted in Fig. 4, is converges to the correct value
asM increases.
The situation is different in the opposite limit x D 1 in which the process is

superdiffusive (with respect to a simple RW) for short time scales and recovers
a normal diffusion for longer time scales. Considering the scaling properties of the
process, the fluctuations ıb increase with M as M ˛ with 1=2 � ˛ < 1 and so,
being sc D b=.M � 1/ and ısc D ıb=.M � 1/, one obtain that ısc decreases for
increasing values ofM while ısc=sc D ıb=b has the opposite behavior.
In the case x D 1 the value ofM appears both in the basic model dynamics and

in the reconstruction method. The value ofM of the model is in principle not known
in the reconstruction analysis. Here we start by using the same value ofM for both
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Fig. 5 Fluctuations of the parameters’ estimation as a function of the value of M used in the
backward analysis. The case shown corresponds to x D 0 (only fundamentalists). In this case
the dynamics is diffusive only on very small time scales and becomes non diffusive for longer
times. The relative fluctuations ısf =sf increase for small values of M and then converge to
a constant value (main figure) while the estimation of the parameter sf is more and more precise
for increasing values ofM
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cases while in the following we will consider the more realistic case in which the
real value ofM used by the chartists is unknown.
In Fig. 6 we have plotted the quantities ısc=sc and ısc (in the inset) as func-

tions of M . We can observe that the first quantity is an increasing function of M
while the second one decreases. If the parameter M (that we indicate with Mtrue)
of the chartist strategy is unknown one must perform the backward analysis by fix-
ing a parameterM which will not be in general the correct one. In Fig. 7 we show
a simulation with only chartists .x D 1/ and with parameters b D 1 andMtrue D 50
and then we perform the backward analysis with different values of the parameter
M ranging from 10 to 500. We also plot the values of the parameters estimation
with the right value of M . The result is that, apart from values of M smaller than
Mtrue, the backward analysis is able to produce a good estimation of the parameter
b for any value ofM > Mtrue.
We have seen in Fig. 6 that the fluctuations in the estimation of the parameter

b increase with M . When the value ofM used for the backward analysis is differ-
ent from the simulation of the dynamics (except for the case ofM D 50), the situ-
ation is slightly different. In fact, while the fluctuations ıb=b increase with
largeM (like in Fig. 6) whenM > Mtrue, they exhibit a minimum forM D Mtrue,
so the backward analysis is able to identify the value of M used to simulate the
dynamics.
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Fig. 6 Fluctuations of the parameters’ estimation as a function of the value of M used in the
backward analysis for the case x D 1 (only chartists). We consider various simulations with
different values ofM and then performed the reconstruction analysis with the correspondingM . If
there are only chartists the dynamics is diffusive and so the relative fluctuations ısc=sc increase for
increasing values ofM (main figure) while the standard deviation ısc D ıb=.M � 1/ decreases
withM due to theM � 1 factor (inset)
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Fig. 7 Here we test the situation in which the parameter M used for the backward analysis is
different from the one of the model’s simulation. We consider a population of chartists (x D 1)
with parameters b D 1 and Mtrue D 50. Then we perform the reconstruction method for different
values ofM (light gray line). For comparison we also show a reconstruction made using the correct
valueMtrue D 50 (dark gray line). As we can see from themain picture the method underestimates
the parameter b when M < Mtrue but the reconstruction is good for values M > Mtrue. In Fig. 6
we have seen that ıb=b is an increasing function of M but in this case we have an anomalous
behavior whenM < Mtrue. In fact ıb=b decreases up to a minimum whenM DMtrue disclosing
the “ability” of the model to recognize the right value of M D Mtrue used for the dynamics

4.3 Backward Analysis on the Agent Model

Now we are going to check the sensitivity of the method developed in the previ-
ous sections to detect the changes in agents’ strategies of the ABM described in
Sect. 2. We start from the simple 1-agent case in which the agent switches from
chartist to fundamentalist and vice versa with a constant probability BK . We have
run a 1-agent simulation with parameters b D 1, � D 0:1 and M D 50. There-
fore the fraction of chartists x can assume only two values, i.e. “0” and “1”, and
consequently the total slope s is alternatively equal to �sf or sc .
In Fig. 8 we plot the time evolution of the agent’s strategy and the corresponding

backward analysis of the total slope s defined in Eq. 10. We have chosen a window
size of 5000 points in order to have a rather reactive analysis. In fact we can observe
that the estimation of the total slope s is precise and sensitive.
Before analyzing the general multi-agents model, let us consider that the total

slope s depends on the fraction of chartists x in the way described by Eq. 10. To
check this relation with the backward analysis we have performed several simula-
tions keeping x fixed and then we have measured the corresponding slope.
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Fig. 8 Analysis of the 1-agent case with parameters b D 1, M D 50 and � D 0:02 and sliding
window size T D 5000. In the main picture we show the model dynamics (light gray line) which
corresponds to x D 1 if the agent is chartist and x D 0 if fundamentalist. The dark gray line is
the a posteriori reconstruction which corresponds ideally to sc or �sf respectively. In the inset
we report a magnification of a period in which the agent switches from fundamentalist to chartist.
We can see that the method is reasonably reactive with respect to the change of strategy
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Fig. 9 Test of the linear relation between the total slope s and the fraction of chartists x. We
consider a population of N D 100 agents with parameters b D 1, M D 50 and � D 0:5. We
observe a good agreement between the simulations and the prediction given by Eq. 10



Reconstructing Agents’ Strategies from Price Behavior 121

0 2e+05 4e+05 6e+05 8e+05 1e+06
t

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8
s

Fraction of chartists
total slope

Fig. 10 Strong chartist situation. Reconstruction analysis for N D 100 agents with parameters
b D 1, M D 50 and � D 0:5 and asymmetry parameter ı D 0. We plot the fraction of chartists
(light gray line) as a function of time and the total slope s (dark gray line) obtained by the recon-
struction method

An analysis of the slope as a function of the number of chartists for a 100-agents
simulation with parameters b D 1, � D 0:5 and M D 50 is shown if Fig. 9. In
this case the fundamentalists’ parameter sf is larger than the chartists’ one sc of
about a factor 25. Consequently the total slope s can be negative even if the chartists
are the majority. In the case of Fig. 9 we have an example of this situation because
the slope s become positive only when the fraction of chartists x is greater than
the quantity sf =.sc C sf / that in this case is about 0:96. In the symmetric case
with sf D sc we recover the situation where the sign of the slope s indicate the
predominant strategy.
We now consider the model with 100 agents with a symmetric dynamics (ı D 0).

The parameters are the same used in the previous analysis. We perform a sliding
linear regression and we reconstruct the time-dependent values of the total slope s.
In Fig. 11 we show a comparison between the time estimation of the parameter

s and the dynamics of the fraction of chartists x. We can observe that we obtain an
accurate reconstruction of the model’s dynamics. In this symmetric case the states
x ' 0 and x ' 1 are equally probable, so one can observe a complete inversion of
population from one strategy to the other.
In the asymmetric case ı ¤ 0 the situation is slightly different because there is

a preferred state (the fundamental one in our case) and, depending on the asymme-
try’s strength, it may be not possible to observe a complete inversion of population.
In this asymmetric situation the system is almost locked in the fundamentalists state
with small and short (with respect to the time window size) bursts of chartists, so
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Fig. 11 Weak chartists situation. Reconstruction analysis of a N D 100 agents with parameters
b D 1, M D 50 and � D 0:5 and asymmetry parameter ı > 0. We plot the fraction of chartists
(light gray line) as a function of time and the total slope s (dark gray line) obtained by the recon-
struction method. In this asymmetric case where the system does not undergo to complete inversion
of population and the signal is rather weak, the reconstruction analysis is less efficient

our backward analysis is much more difficult to be carried out. In Fig. 11 we show
the asymmetric dynamics ı ¤ 0 of the fraction of chartists x and the slopes s re-
constructed from the analysis. If the bursts of chartists are too small in amplitude
.x < 0:3/ the signal can not be distinguished from the noise. The duration of the
bursts is an important aspect too, because we have to consider very small windows
to detect a short signal and the shorter is the window, the noisier is the result.

5 Analysis on Experimental Data

Now we are going to consider a first example of an analysis of real data. In this
case we do not know the fundamental price pf so our analysis is similar to the
one of [1, 13, 15, 16]. However, in our scheme there are several combinations of
parameters which can lead to the same observed slope. The knowledge of pf (from
fundamental analysis or other sources) would permit to remove at least partially this
degeneracy and to use all the information the method can give.
In Fig. 12 we have plotted the tick-by-tick time series of the [rice of the stock

General Electrics for a period of three months. Then we have performed the back-
ward analysis with sliding windows of size T D 5000 to estimate the total slope
s. We can observe that the values of the slope are almost always negative indicat-
ing a stable market. In view of the results shown in Fig. 9 a negative slope can
be due both to a larger number of fundamentalists or to a stronger strength of the
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Fig. 12 Tick-by-tick price time series of the stock General Electrics for a period of about three
months (upper panel). In the lower panel we plot the results of the reconstruction method per-
formed with windows of size T D 5000. We can see that the total slope s is almost always neg-
ative and then the resulting dynamics can be interpreted as dominated by a stabilizing tendency.
This can be due both to a dominance of fundamentalists or to the presence of a small number of
fundamentalists but with a very strong weight on the market

fundamentalists independently on their number. In this paper we show this prelimi-
nary result as a simple test and we will consider a more detailed analysis on larger
data-sets in future works. It should be mentioned that recently the reconstruction of
agents’ strategies have been performed from inventory variations [9]. It would be
interesting to compare the various methods on the same time series.

6 Conclusions and Perspectives

In this paper we have developed a method for reconstructing the agents’ strategies
from the price time series. The method is based on a new agent based model we
recently introduced [3–5].
In this work we used it as a black-box to develop and test a method to reconstruct

the agents’ strategies from price behavior. Having very few parameters and vari-
ables we can easily reconstruct the strategies because of their direct relation with
the parameters. In principle an optimal reconstruction would imply the knowledge
or the estimation of the value of pf . This would lead to a more complex situation
with respect to the one discussed in the present paper. In future we are going to
consider also this possibility. For the moment the value of pf is approximated by
a suitable moving average and in the present scheme its knowledge would add some
information on the optimal combination of parameters corresponding to price dy-
namics. The reconstruction method is essentially based on a backward analysis of
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the model’s dynamics. A basic ingredient is the size of the sliding window consid-
ered. We study in detail the signal to noise ratio corresponding to the size of the
window. We also consider the response to a change in agents’ strategies. We have
found that there is a necessity of a trade-off between large windows, which lead
to accurate results, and small windows which give a quick response to a change.
In future works we intend to explore the optimization of this trade-off in real data.
We also intend to generalize the presented method in order to achieve the maxi-
mum information in the case in which the value of pf is known from fundamental
analysis.
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Market Influence and Order Book Strategies

François Ghoulmié

Abstract. I review in this paper1 my findings on order driven market modeling.
Following my previous works on robust agents based modeling in finance [1–3, 5],
I study specific characteristics of order book markets. By controlling the descriptive
time scale of the dynamics involved, I show howmarket impact, linear by definition,
and trading strategies lead to precise pictures for clarifying order book dynamics,
consistent with what is observed empirically. I then discuss more specifically the
role of market impact in the created dynamics and structure of the book and the
economic implications of my studies.
The article is organized as follows. In Sect. 1, I describe financial market dynam-

ics in an agent-based market model that clarifies the role of volatility in character-
istics observed on a wide range of descriptive time scales. I define in Sect. 2 the
limit order book model, agents’ strategies, and link liquidity provision to volatility
estimates. I focus the analysis on the dynamics and structures of the book in Sect. 3.
I discuss the economic implications of the results and draw conclusions in the last
sections.

1 Properties of the Single Asset Market Model

The model describes a market where a single asset is traded by n agents and I recall
its main properties for pedagogical purposes [1–3]. Trading takes place at discrete
time steps t . Provided the parameters of the model are chosen in a certain range,
these periods may be interpreted as “trading days”. At each time period, every agent
receives public news about the asset’s performance. If the news is judged to be sig-
nificant the agent places for a unit of asset a buy or sell order, depending on whether
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the news received is pessimistic or optimistic. Prices then move up or down accord-
ing to excess demand. The model produces stochastic heterogeneity and sustains it
through the updating of agents’ strategies. Let us recall in a mathematical way the
ingredients of the single asset model. At each time period:

• All the agents receive a common signal �t generated by a Gaussian distribution
with 0 mean and standard deviationD, namely N.0;D2/.

• Each agent i compares the signal to its threshold 
i .t/.
• If j�t j > 
i .t/ the agent considers the signal as significant and generates an order
�i .t/ according to

�i.t/ D 1�t >	i
� 1�t <�	i

; (1)

where �i .t/ > 0 is a buy order, �i .t/ < 0 is a sell order and �i .t/ D 0 is an
order to remain inactive.

• The market price pt is affected by the excess demand and moves according to

rt D ln
�
pt

pt�1

�
D g

�P
i �i .t/

n

�
; (2)

where rt are the returns at time t and g is the price impact function.
• Each agent updates, with probability s, her threshold to jrt j.
The evolution of the thresholds distribution is described with the following master
equation:

ftC1.
/ D .1 � s/ ft .
/C s ıjrt j;	 ; (3)

with jrt j D jg.sign.fflt/Ft.jffltj//j, Ft being the cumulative distribution of the
thresholds.
The solution of Eq. 3 can be derived analytically and reads as

ft .
/ D .1 � s/t f0 C s
tX

jD1
.1� s/j�1ıjrt�j j;	 : (4)

Moreover, numerical tests confirm the validity of the former solution. Stationary
solutions are the limiting cases: without feedback s D 0, and without heterogeneity
s D 1.We specify now the range of parameters that leads to realistic price behaviors.
First of all, we want a large number of agents in order to guarantee heterogeneity in
the market. Indeed, when the number of agents is lowered, the distribution of returns
becomes multi-modal with 3 local maxima, one at zero, one positive maximum
and a negative one. This can be interpreted as a disequilibrium regime: the market
moves either one way or the other. The updating frequency s should be chosen
small, s << 1, in order to guarantee heterogeneity.When the amplitude of the noise
is small, D << g.1=n/, the absolute value of the returns evolves through a series
of periods characterized by “jumps” whose amplitudes decay exponentially in time.
The sensitivity of the thresholds increases when the noise level increases and the
behavior of the returns is closer to the Gaussian signal. On the other hand, when
the amplitude of the news is too high, D >> g.1/, the returns distribution has two
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peaks: the maximum at g.1/ and the minimum at g.�1/. We thus want the following
condition in order to get realistic returns dynamics:

g.1=n/ << D << g.1/: (5)

If we consider now the linear price impact function, g.x/ D x=�, with � the
market depth characterizing how much the market moves when filling one unit
of asset, the above condition leads to the parameter reduction Deff D D� and
1=n << Deff << 1. We then get clusters of volatility of length 1=s consistent with
the correlation structure suggested by the stationary solution. This slow feedback
mechanism generates endogenous heterogeneity, excess volatility, volatility clus-
tering and transforms Gaussian news into semi heavy-tailed price returns. When
a majority of agents have a low value for their threshold a large price fluctuation
becomes very probable. Because only a small fraction of agents increases its thresh-
old response when a large fluctuation occurs the probability of also getting a large
fluctuation at the next time step remains high. In other words, the slow feedback
mechanism causes persistence in the fluctuations.

2 Definition of the Agent-Based Limit Order Book Structure

I now extend the agent-based study to limit order book dynamics [5] and show how
by linking the previous volatility based model to liquidity I obtain the order book
high fluctuations. The model describes a limit order book where a single asset is
traded by various types of agents. These traders populate the book with limit and
market orders. Trading takes place at discrete time steps t . These periods may be
interpreted on a wide range of time scales: from tick level to trading days or weeks.
The trades in the model result frommatchingmarket orders against limit orders. The
first group of agents is composed of n market neutral traders operating as liquidity
providers: at each time period, each agent i of this group places limit orders (bid
and ask) of one unit size at distance 
i.t/ (� estimation for the volatility during
[t,t+1]) from the price (mid-price which is the average of the best bid and best ask).
Given a signal on expected price change (“new information”) IID Gaussian noise
�t � N.0;D2/ with D= noise level, informed agents then send market orders to
buy or sell limit orders that are at a distance below the expected market price. Prices
then move up or down according to the direction of the trades. The model produces
stochastic heterogeneity and sustains it through the updating of agents’ strategies.
Let us define in a more mathematical way the ingredients of the limit order dynamic
model.

2.1 Strategic Forces in the Trading Arena

I describe first the adaptive decision-making rules at each time period. Liquidity
providers’ strategies are distances or thresholds 
i.t/ that determines their bid and
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ask orders. These positions results from their expectations of price movements and
their risk aversion related for example to the uncertainty of execution and the waiting
time where informed traders can take advantage of the liquidity they are providing.
Each agent i places a bid and ask according to:

bid.i/ D pt � 
i .t/

ask.i/ D pt C 
i .t/: (6)

Given an information �t on the price change, which can have many potential ori-
gins (networks of friends, public news, private information) informed agents then
send market orders to buy or sell limit orders that are at a distance below the ex-
pected market price. The market order flow is thus determined by the direction of
the price change and the number of available limit orders in the book. Each liquidity
provider’s limit order will be likely to be executed or not according to:

• buy order likely to be executed if �t > 
i .t/: �i .t/ D C1 (buy);
• sell order likely to be executed if �t < 
i .t/: �i.t/ D �1 (sell);
• limit orders are canceled if not executed: �i .t/ D 0 (canceled).
So:

�i .t/ D 1�t >	i .t/ � 1�t <�	i .t/: (7)

In the model, orders placements and execution are very sensitive to the limit price,
but not to the volume of the order. By construction, the time period is the typical
cancellation time of limit orders’ strategies responsible for the market activity at
the studied time scale. One should be aware that the frequencies of execution and
cancellation are comparable. The capabilities of the model demonstrated throughout
the paper show that the typical cancellation time can be a relevant choice for deter-
mining the actors of the returns dynamics at a characteristic timescale. This quest
and focus on the actors of the dynamics at a given time scale is indeed the strength
and utility of the statistical approach when attacking problems with high number of
interacting entities.

2.2 Price Response to Aggregate Demand

I now describe the dynamics of the model ruled by the evolution of price and updat-
ing of strategies. The price is adjusted by the excess demand Zt D

P
�i .t/, which

corresponds to the orders likely to be executed, through a price impact function g
which depends on the total number of traded shares n:

rt D ln
�
ptC1
pt

�
D g.Zt /: (8)

The empirical behavior [6] of this function indicates increased linearity and de-
creased slope while increasing n. I focus on the linear case defined as: rt D Zt

�n

where ng0.0/ D ��1. � represents market depth at the studied time scale, the typ-
ical order imbalance needed to move the price by one point, normalized by total
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number of traded shares n and in this framework characterizes the order book depth.
A market with increased market depth is more liquid. By changing this function,
one can explore the impact of mechanical execution on market learning dynamics.

2.3 Learning Strategies for the Fitness Thresholds

Initially, each liquidity provider agent has a trading rule given by the choice of
a fitness threshold 
i .0/. At each time step, if the change in price is greater than
the parameter ı, each agent i consider the price movement as significant and update
with probability s according to the following defined rule: 
i .t C 1/ D jrt j.
As a consequence of this rule, a fraction s 2 Œ0; 1� of these agents updates their

strategies/thresholds using recent information. Because the limit order positions are
directly related to the price changes, this updating rule implies that the limit orders
are placed outside a spread 2ı. I introduced here the parameter ı which controls the
spread, the difference between the best bid and best ask, and often fix it to 2ı. The
reason of this choice for modeling the creation of a spread in the book is that agents’
threshold are indeed an estimate of risk and it is thus wise to bound it at a non-zero
minimal value.
Introducing IID random variables ui .t/; i D 1: : :n,t � 0 uniformly distributed

on Œ0; 1�, which indicate whether agent i updates his threshold or not, we can write
the learning rule as


i .t/ D 1jrt�1j>ı Œ1ui .t/<sjrt�1j C 1ui .t/�s
i .t � 1/�C 1jrt�1j�ı
i .t � 1/: (9)

Here �t represents randomness due to public news arrivals whereas the random vari-
ables ui .t/ represent idiosyncratic sources of randomness. This way of updating can
be seen as a stylized version of various estimators of volatility based on moving av-
erages or squared returns. As a consequence of this mapping, a feedback loop is
created between the volatility and the orders placement in the book.
The updating rule allows to differentiate between indistinguishable rational play-

ers. Indeed, given this probabilistic updating model, even if we start from an initially
homogeneous population 
i .0/ D 
0, heterogeneity develops into the population
through the learning process which corresponds to changes in the strategies moti-
vated by trading costs reduction. In this sense, the heterogeneity of agents strategies
is endogenous in this model and, as we will see below, evolves through high fluctu-
ations.

2.4 Features of the Model

Let us recall the main ingredients of the model defined above. At each time period:

• Informed agents receive a common signal �t � N.0;D2/.
• Each liquidity provider agent i uses a threshold 
i .t/ to set his bid and ask ac-
cording to (1).
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• If j�t j > 
i .t/ informed agent considers the signal as significant and are likely to
generate a market order �i .t/ according to (2).

• The market price is affected by the excess demand and moves according to (3).
• Each liquidity provider agent adjusts, with probability s, her threshold according
to (4).

With regard to some of the agent-based models considered in the literature, some
important aspects are the following:

• Prices move through market fluctuations of supply and demand. Players can be
“fundamentalist” and “chartist” traders. Price formation results from direct inter-
action of agents in the book.

• Information asymmetry: the model is based on the dynamics between informed
traders and liquidity providers. Liquidity providers use market neutral strategies
and differ in the way they process the information.

• Liquidity providers are localized in the book.
• Endogenous heterogeneity: heterogeneity of agents behavioral rules appears en-
dogenously due to their learning strategies. There is also a “structural” hetero-
geneity in the model between informed traders placing market orders and liquid-
ity providers placing limit orders. This structural diversity is also compatible with
a distinction between fundamentalists and chartists, between speculators with di-
rectional strategies and hedgers with market-neutral strategies [4]. The dynamics
of this heterogeneity is responsible for the shape of the book.

• The spread is the consequence of the decision making under uncertainty. The
order placement strategies are indeed based on an estimate of risk which is wise
to set strictly greater than zero.

The model has tractable parameters: s describes the average updating frequency,
D is the standard deviation of the news arrival process and � is the market depth.
Furthermore, as we will observe in the next section, if we require to interpret specif-
ically the trading periods this will put a further restriction on the parameters, re-
ducing the effective number of parameters. Nevertheless, the clear structure of the
model generates time series of returns with interesting complex dynamics and with
properties similar to those observed empirically.

3 Dynamics and Structure of the Order Book

The model is straightforward to simulate and the results can be reproduced in a ro-
bust way [5].

3.1 Occupation Number Dynamics

As defined in Sect. 4, the order book is composed of limit orders placed around the
price at distances defined as thresholds which belong to the set f k

n�
; k D 0; : : :; ng

because of the updating mechanism that maps the strategies to estimates of the
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volatility. The order book is symmetric by construction, however additional direc-
tional traders can be added to the model to take into account the temporary imbal-
ances observed in the book. I focus the study now on the dynamics of the number of
limit orders occupying the places at distance k

n�
of the price, for each k D 0; : : :; n.

Because only when the absolute returns are greater than ı, after an initialization
period, orders are placed at distances greater than ı, and 2ı represents the spread.
Fig. 1 shows the dynamics of the number of orders occupying a distance in the book.
Less orders are placed deeper in the book. However the dynamics is similar for all
the occupied distances. The occupation numbers decays exponentially in time and
increases through upward “jumps”: this behavior is actually similar to that of a class
of stochastic volatility models, used to describe various econometric properties of
returns. The upward jumps are understood as a fraction of agents updating their
thresholds to this distance, and the exponential decay is understood as the fact that
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Fig. 1 Occupation number dynamics generated numerically by the agent-based market model for
n D 2000, D D 0:001, � D 10, s D 0:015 and ı D 5

n�
. The x-axis represents the time

periods, and the y-axis the number of orders located at the same distance on one side of the book
from the set f k
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; k D 0; : : :; ng. The pictures shows how the various levels of depth in the book

are occupied during a simulated run. Less orders are placed deeper in the book. The occupation
numbers evolve through upward jumps and exponential decays
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a fraction s of these agents adjust their thresholds to other values in the following
time periods.

3.2 Profile of the Book

One note in the previous paragraph, the high fluctuations in the dynamics of occu-
pation numbers. The question now is if there is a stable shape that characterizes the
order book. To answer this question, I compute the average shape of the book over
periods of increasing lengths and show the results in Fig. 2 for the following param-
eter values n D 2000, s D 0:015, � D 10, D D 0:001. The threshold distribution
reaches a stationary state and one get a stable form for the average shape of the book,
however this is obtained only after averaging over a large period. The stable shape
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Fig. 2 Shapes of the book generated numerically by the agent-based market model for n D 2000,
D D 0:001, � D 10, s D 0:015 and ı D 5

n�
. The x-axis represents the set fk D 0; : : :; ng

of possible occupied distances k
n�
on each side of the symmetric book. The y-axis represents the

number of orders located at the same distance in the book. The pictures show the results for various
periods of averaging. One note the high fluctuations of the state of the book before reaching the
stable shape
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of the book that emerges from the simulations is a slow, continuous, symmetric de-
cay of limit order volume as a function of the distance from the spread, as shown
in Plot 1 of Fig. 3 with a logarithmic scale. This result demonstrates that the current
agent-based framework is capable of replicating reasonably well the hump-shape of
the book as reported in previous empirical studies [7] and offers a robust alternative
explanation compared to recent works on this subject [8]. However, this pattern ob-
tained on an average over a large period is not typical of the state of the book at any
given time and this is also true with the observed dynamics in order book data. The
shape of the book varies strongly from a time period to the other one, and is always
very different from the average pattern. One can distinguish three type of orders: (i)
a first block of orders around the spread consisting of a substantial fraction of the
volume in the book, (ii) a second long area moderately occupied in orders, (iii) and
finally some largely occupied distances deep in the book.
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Fig. 3 Plot 1: Shape of the book, with logarithmic scale, generated numerically by the agent-based
market model for n D 2000, D D 0:001, � D 10, s D 0:015 and ı D 5

n�
. The hump-

shape looking of the book is consistent with the empirical profile. Plot 2: Shape of the book, with
logarithmic scale, generated numerically by the agent-based market model for n D 2000, D D
0:001, � D 10, s D 0:1 and ı D 5

n�
. Robustness check for the profile of the book towards

the updating frequency. The orders tend to be more concentrated near the spread. Plot 3: Shape
of the book, with logarithmic scale, generated numerically by the agent-based market model for
n D 2000, D D 0:001, � D 3, s D 0:015 and ı D 5

n�
. Robustness check for the profile of

the book towards the descriptive time scale. This plot also shows that when decreasing liquidity,
orders tend to be more concentrated near the spread and the maximum of the shape of the book is
sharper and closer to the spread
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3.3 Master Equation

I now derive analytical results by studying the evolution of the state of the book.
The state of the book is defined by the threshold distributions or limit orders’ loca-
tion distribution. The evolution of the thresholds distribution is described with the
following master equation:

ftC1.
/ D .1 � s1jrt j>ı/ ft .
/C s1jrt j>ı ıjrt j;	 ; (10)

with jrt j D jg.sign.�t /Ft .j�t j//j, Ft being the cumulative distribution of the
thresholds.
The solution of Eq. 10 can be derived analytically and reads as

ft .
/ D f0

t�1Y
jD0

.1 � s1jrj j>ı /C s
tX

jD1
.1 � s/j�11jrt�j j>ııjrt�j j;	 : (11)

After an initial phase, the state of the book is independent of the initial distribution
and is described as a sum integrating weighted elements of a function of the price
path, expressed with the following equation:

ft .
/ D s

tX
jD1

.1 � s/j�11jrt�j j>ııjrt�j j;	 : (12)

The state of the book can thus be understood as a filter of the series .1jrt j>ııjrt j;	 /t
obtained with the convolution with the series .s.1 � s/t�1/t .
The present multi-agent study acts as a double transform because it provides

a double, spatial and temporal, multi-scale resolution. Indeed, Gaussian news are
transformed into a price series at a specifically tuned time resolution and the state
of the book is the result of a finely tractable transformation of past returns.

3.4 Robustness of the Results

The results obtained by varying the parameters of the limit order book model con-
firm the robustness of the results discussed in the previous sections.
Plot 2 in Fig. 3 is a picture of the shape of the book varying 1=s with n D 2000,

s D 0:1, � D 10,D D 0:001 and demonstrates the fact that the stable average shape
of the book is independent of the updating time scale. This is consistent with the fact
that the stationary state reached by the thresholds distribution must be independent
of the updating time scale. One note that varying 1=s does affect the occupation
number dynamics which is consistent with the high fluctuations before reaching the
stationary state.
Plot 3 in Fig. 3 is another picture of the average shape of the book obtained with

n D 2000, s D 0:015, � D 3, D D 0:001, parameters that are consistent with
intraday dynamics. The stable shape of the book that emerges from the simulations
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is again a slow, continuous, symmetric decay of limit order volume as a function of
the distance from the spread. This illustrates the robustness of this pattern towards
the descriptive time scale of the simulated financial dynamics.
One finally note that the maximum of the shape of the book tends to get sharper

and closer to the spread when liquidity or heterogeneity is decreased. Orders tend to
be nearer to the spread and more concentrated in these cases.

4 Economic Implications

4.1 Robustness Claim

Due to the comprehensive structure of the model, the results obtained through com-
puter controlled experiments can be explained and traced back to agents’ adaptive
behavior and analytical results are also produced. The properties are the conse-
quence of agents’ learning strategies rather than the consequence of structural ef-
fects detected for example with zero-intelligence models [9]. The robustness claim
holds when talking about the parameters which can take a wide range of values,
however the dynamics can change dramatically by increasing the complexity of the
model and by adding more strategies. It is indeed an interesting question to explore
the effects of more heterogeneity in the model, however this has to be consistent
with the adopted statistical mean fields approaches to model in a sophisticated way
sensible and rational players. The dynamics change radically as well when taking
other distributions for the information flow. In particular, with a power law distribu-
tion, the market fluctuations are more determined by the excessive fluctuations of the
information flow. Large fluctuations are indeed more the results of large fluctuations
in the information flow rather than due to the values of the strategies and the impact
of learning is reduced expressed by the absence of volatility clustering. One there-
fore questions if it is relevant to consider other than Gaussian distributions for mean
field approaches to modeling the information flow that is not yet “processed” in the
markets. Regarding the impact function, one can also observe the reduction of learn-
ing impact and even trimodal distribution of asset returns in some limit cases when
considering concave impact functions as suggested by empirical studies. However,
the descriptive time scale in the model is longer than the trade duration of market
orders filling the excess demand and this corresponds to large aggregation times
for computing empirically the market impact function. Empirically, market impact
tends indeed to be linear for long aggregation times. The model is thus compati-
ble with the empirically computed concave price impact function. It seems finer to
consider the linear case at the descriptive time scale, for market influence control.

4.2 Market Impact and Excessive Volatility

I now discuss specifically the role of market impact, its plausible origins and how
it is related to orders splitting. One can see in the discrete time model that at each
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time step, if the amplitude of the market order flow was directly executed with a sin-
gle market order, the dynamics of the price would match the information dynamics,
which means that the distribution of returns would be Gaussian. We deduce from
this that additional orders are necessary to obtain the observed dynamics. More-
over, one can expect indeed that this market order flow comes in a fragmented way,
simply because it is generated by many market players whose orders are executed
sequentially. One can see here as well the importance of latency for these market
participants and understand the technological race to gain a competitive edge. Now,
by construction, the time interval corresponds in the model to the cancellation time
of the limit orders placed by the agents who are the main contributors for the ex-
cess demand at the descriptive time scale, and market impact is linearly modeled
as resulting from the mesoscopic smoothing of market frictions effects. What could
be the origins of market impact is the placement during this time interval of market
orders hitting the other side or because the market order flow amplitude is fixed at
the beginning of the interval, the execution process involve other limit orders that
are placed during the time interval. Orders splitting, a strategy to minimize market
impact, seems to be directly linked in generating market impact. Indeed, these or-
ders can trigger more market activities. In a sense, this view reconciles the idea that
orders splitting [10] is responsible for market order flows correlations. However, in
my opinion, its role is more linked to market impact and the longer term correlations
are more the consequence of the updating of order book strategies and the effects of
assets allocation dynamics [11]. Market impact on the other hand is the major factor
in determining the excessive fluctuations. This is a strong result from an economic
point of view as it confirms that microstructure effects of price formation have dra-
matic consequences for market dynamics. It thus opens interesting perspectives for
policymaking in order to regulate excess volatility.

4.3 Market Impact and Market Efficiency

I summarize now some arguments to respond to the critique [12] on the linear mod-
eling of price impact. No, market impact is not simple. However, it appeared that it
is a good strategy to consider the linear case in order to asses its role and therefore
boost the explanatory power of the approach in order to show its consequences on
markets dynamics, including the nonlinear shape of the book. There are also less
contradictions than it seems. It is necessary to model market frictions, otherwise
the price dynamics would be the same as the information dynamics. The reported
nonlinear relation and the temporary decay are compatible with the framework be-
cause we are considering the descriptive time scale large enough compared to the
execution process to be able to linearize market impact. Correlation in orders signs
could very likely be due to the fragmentation of orders in the execution process
in order to fill the excess demand. The persistence observed when considering the
tick by tick process could be compatible with exponential decays of the various
execution processes described at the various descriptive time scales. Longer memo-
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ries effects, especially in the amplitude of order flows could be due to other causes
such as the updating of order book strategies. In the time interval corresponding to
trade duration, market frictions can be due to new limit orders in the spread and
also market orders hitting the other side until excess demand is filled, and that can
both lead to market efficiency, absence of autocorrelations in the returns, and mar-
ket impact. Orders splitting can lead to the observed nonlinear relations for market
impact. A general theory on market impact should be cautious when describing the
phenomenon at different time scales, because the more orders splitting is important,
as it is perceived for small aggregation times, the orders placement provoking mar-
ket frictions is more diffusive and strategically non directional. The volume being
proportional to trade duration, that can explain for example the exponents in the
nonlinear relations. However, if the fragmentation of orders splitting is less impor-
tant as perceived for large aggregation times, then market impact can be mainly due
to strategic contrarian trading directly proportional to the volume.

4.4 What Are the Effects of Algorithmic Trading?

Algorithmic trading has witnessed an important growth the last decade and the mo-
mentum is still strong. How the present study is compatible with algorithmic trading
and what can it tell us on its effects? The implementation of these algorithms can
aim for example orders splitting and in that case it affects market impact. Obser-
vations in the market have witnessed a tightened spread, therefore according to the
agent-based model an increased market depth. Orders splitting seems to play its role
of minimizing market impact. According to the model, this should provoke a de-
creased level of volatility and what is observed is that volatility behaviors remained
similar and trading volume has increased. That means for a given descriptive time
scale, thatDeff remained the same and D decreased, in other words that the infor-
mation flow and thus market order flow is getting faster as one can expect from the
technological development of the last decade in finance.

5 Conclusions

In the present work I have focused on the combined role of market impact and order
book strategies in limit order book dynamics and structures with the introduced ro-
bust agent-based market model capable of reproducing the major empirical stylized
facts observed in the returns of financial assets for all timescales. The high instabili-
ties in the state of the book emerge endogenously as a result of trading strategies and
not from the input signal that can be interpreted as the fundamentals of the asset.
Because of market impact, these high fluctuations provoke excessive volatility. The
framework puts back the central microstructure role of price formation in generat-
ing excessive volatility. The present studies bring thus many elements of answers to
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the question of how markets process supply and demand, and on how to understand
markets dynamics for fundamental purposes, reduce volatility for regulatory goals
and manage it in practice. My agent-based works lead to a better appreciation of
the relationships between market forces and the various time scales and open inter-
esting perspectives to explore other markets features with a solid tested base that
constitutes the present agent-based market model of learning.
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Multi-Agent Order Book Simulation:
Mono- and Multi-Asset High-Frequency
Market Making Strategies

Laurent Foata, Michael Vidhamali and Frédéric Abergel

Abstract. We present some simulation results on various mono- and multi-asset
market making strategies. Starting with a zero-intelligence market, we gradually
enhance the model by taking into account such properties as the autocorrelation of
trade signs, or the existence of informed traders. We then use Monte Carlo simu-
lations to study the effects of those properties on some elementary market making
strategies. Finally, we present some possible improvements of the strategies.

1 Introduction

In the context of electronic markets, with trade and price transparency, market mak-
ing has evolved from being a highly privileged, volume-based, broker-like activity
to one of the many strategies commonly used by most market members. High fre-
quency traders can more or less be considered as market makers, since they provide
liquidity on markets via limit orders. It is therefore natural, and quite important for
the applications, to understand the type of strategies that market makers can use,
and to assess their profitability. The aim of this paper is to provide some insight into
this question, using simulation. In particular, we will address the following three
questions: can a market maker make money in a zero-intelligence market? In a mar-
ket with order flow autocorrelation? In a market with informed traders? The last
two questions arise naturally when one want to reproduce some known features of
real-life markets, whereas the answer to the first one provides an indirect way of val-
idating or invalidating the use of zero-intelligence order book models in the context
of trading strategies. As we will show in this paper, the use of more realistic as-
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sumptions will make the simplest market making strategies lose money. It will then
become necessary to use more sophisticated ones involving both market making and
directional strategies in order to recover some of the profitability.

2 Market Models

2.1 Zero-intelligence Market

Our aim is to accurately reproduce the structure and the mechanisms of a typical
order book in financial markets. In the zero-intelligence setting as introduced by
J. Doyne Farmer [4], a market simply comprises liquidity providers and takers which
send their orders independently from one another. The structure of an order book is
recreated through interactions between agents. For numerical purposes, we have
used the basic algorithm defined by Preis [8].
The liquidity provider only places limit orders which fill the order book. It sub-

mits orders at a random time, and with a random volume, all following exponential
distributions. The prices are given by

pbuy D pa � 1 � 	 (1)

psell D pb C 1C 	 (2)

where pa is the best ask price, pb the best bid price, 	 is an exponentially distributed
random variable.
The order type – sell limit, buy limit, cancel buy or cancel sell – is chosen ac-

cording to a 45/45/5/5 uniform probability. At a given price, orders are queued and
are processed according to a first in, first out system.
The liquidity taker places market orders with timing and volumes also following

exponential laws; though it is constrained to buy or sell at the best available ask or
bid price. The order type – market buy or market sell – is chosen according to a
50/50 uniform probability, by default. We will use the notation �buy D 1 � �sell as
parameter of this Bernoulli process.
This kind of market is called a “zero-intelligence market” [4], for agents do not

take into account interactions with other agents and do not follow any strategy of
their own. In other words, they do not know why they are trading, nor what the
others are doing. Note that with such settings, a log-normally distributed order book
is achieved, as found in real financial markets.

2.2 Market with Autocorrelated Order Flow

In the zero-intelligence case, the price process is unrealistic, for it fails to exhibit
many properties found in real financial markets according to the stylized facts [1] as,
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Fig. 1 ACF from Voss algorithm withH D 0:7

for instance, volatility clustering. We will then add in our model one of those proper-
ties: the autocorrelation of trade signs in n�˛ [6,7]. In reality, this phenomenon can
be explained by the splitting of large orders by brokers seeking optimal execution.
The fractional Brownian motion exhibits long-range dependence and the signs

of its increments are autocorrelated. We use this fact to correlate trade signs of
the liquidity taker, i.e. �buy. We have chosen a quick algorithm called Voss random
addition algorithm [11] to simulate a fBm, which gives satisfactory results (1). It
consists in adding a white noise in the middle of a segment, and on the other, already
computed points. The correlation of trade signs varies with the Hurst exponent.

2.3 Market with Informed Traders

In order to simulate the behavior of, for instance, fundamentalist traders who believe
an asset should have a particular value, we implement an enhanced liquidity taker
with a reference price [9]. The liquidity taker will seek to match this price, updating
his buy frequency �buy according to the formula

x D �t
buy C sgn.RP � St/.e

�jRP�St j � 1/ (3)

�tC1
buy D x1

Œ��buy;�
C
buy�
.x/ (4)

where RP is the reference price, St the current mid-price, � an elasticity coefficient,
�ḃuy the boundaries of �buy.

� and �ḃuy parameters determine the convergence speed toward the reference

price. We will use � D 0:01 tick�1. Also, we take values such as ��buy C �Cbuy D 1.
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3 High Frequency Market Making Strategies

3.1 Default Strategy

Theoretically, a market maker places sell and buy limit orders in a symmetric fash-
ion, hoping to earn (to make) the bid-ask spread by simultaneously selling and buy-
ing to two liquidity takers with opposite interests. In this model, the agent identified
as market maker bears some similarities with the standard liquidity provider intro-
duced in Sect. 2.1: random action times and orders volumes. But its strategy is more
refined: it will submit two limits orders, and improve the current best limits by one
tick whenever possible, in order to increase the likelihood that its orders be executed.
Moreover, it will also follow some specific rules related to overnight positions and
inventory risk. These rules are detailed below.

Position Closing
At the end of each trading day, the market maker closes its position in order to avoid
overnight risk. Thus, it sends market orders at the end of the day like a liquidity
taker. This effectively lowers its P&L. We analyze this in the simulations. Note that,
in our simulations, the market is very liquid, so that the market maker has no trouble
closing its positions.

Inventory Limits
At any given time during a trading day, the market maker may not hold more than
a limit quantity of stock - this particular type of market risk is known as inventory
risk. Since there is no overnight position, this restriction is imposed by fixing the
maximum number of orders originated by the market maker at 5% of the average
number of limit orders. The limits can be modified manually via the program’s op-
tions.

Orders Cancellation
In the simplest case, the market maker only places orders at the best bid and ask.
Market maker’s orders which are not at the best limits will be cancelled when it is
the acting agent. This rule will be adapted for other strategies.

3.2 Full Priority

We make the purely-theoretical, unrealistic assumption that the market maker can
place limit orders which have priority amongst all the other orders at the same price.
At a given price, the market makers orders will always be at the top of the queue and
will be executed before the others. Actually, this hypothesis is common in the liter-
ature [12] and is equivalent to supposing that the market maker provides liquidity
for a given percentage of any new incoming market order. This assumption is also
implicit when replaying marginal strategies on data.



Multi-Agent Order Book Simulation 143

3.3 Spread-based Priority

We have coded a more realistic priority based on the spread value. When the spread
is greater than or equal to 2 ticks, the agent improves the best limits and its or-
ders are executed before those of any other liquidity provider. This priority mimics
a technological advantage and can be replicated in practice.

3.4 Orders Placement Strategy

Instead of always improving the best limits, we study the effects of symmetrically
submitting orders at various distances from the best limits. For instance, the mar-
ket maker can chose to submit its orders only at the third limit in the order book.
These orders will therefore be in a good position if and when the price reaches these
limits.

3.5 Advanced Strategies

With a default liquidity taker, the price processes exhibit no significant trend. How-
ever, when there is a reference price different than the actual asset price, a trend
emerges. In general, this implies that the market maker will lose money, due to
mean aversion. Trying to hit the bid-ask spread the usual way will not work even
with theoretical full-priority orders. As a result, the market maker has to design
more sophisticated strategies.

3.5.1 Trend Follower

In order to detect a trend, the agent computes a coefficient 
 2 Œ�1I 1� equal to the
average sign of market orders along a sliding window of depth d . If j
 j is higher than
a certain threshold t , then, in agreement with the positive (negative) trend, it places
a sell (buy) limit order at a fixed, further limit f than usual, and a buy (sell) market
order at the best limit. Otherwise, the usual market making strategy is applied. We
will use d D 10, t D 0:3 and f D 3.

3.5.2 Mean Reversion

To develop more complex strategies, we add another asset in the modelled market
which will be correlatedwith the asset #1. This is a realistic assumption, for we often
find, in real markets, pairs of assets which are strongly correlated, either positively
or negatively.



144 L. Foata et al.

For each asset, the liquidity taker on one asset keeps track of the last orders of the
liquidity taker on the other asset up to a certain depth p, and updates its probability
parameter �buy with an exponential regression

x D 0:5C 0:5
p�1X
iD0

c exp.� i
p
/.1fordert�iDbuyg � 1fordert�iDsellg/ (5)

�t
buy D x1

Œ��buy;�
C
buy�
.x/ (6)

where p is the number of trades taken into account and c D 1�e1=p

1�e�1
a normalization

coefficient
Here, we will use p D 50. The interval Œ��buy; �

C
buy� can be chosen in order to

stick to a precise correlation factor between assets prices. In our model, when the
reference price option is enabled, asset #1 will have a reference price, and asset #2
will follow the trend thanks to the cross-correlation between assets.
With this simple algorithm, we have managed to reproduce a particular effect

present in all high frequencies markets, called the Epps effect: time series analysis
exhibit a dependence of stock returns correlations upon the sampling time scale �t
of data [5, 23] (2).
Note that this algorithm can be seen as a discrete time version of the model

presented by Bacry and coauthors [13]. Given those two correlated assets, we then
develop a simple strategy exploiting mean reversion. Using a Dickey-Fuller test on
yt D log.S2t /� log.S 1t /, we find a p-value below 0.01, which means that the model
produces mean reversion between the two assets [2].
We build as indicators Bollinger bands of the price ratio S1

S2
� log.S1

S2
/ � 1: the

moving averageMA, and the upper and lower bands .MA˙2�/. Whenever the ratio

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●
● ●

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

trade time

M
ea

n 
cr

os
s−

co
rr

el
at

io
n

Fig. 2 Mean cross-correlation for different sampling time scales �t (trade time) with �
C
buy D 0:7



Multi-Agent Order Book Simulation 145

goes higher (resp. lower) than the upper (resp. lower) band, then the market maker
opens a position exploiting mean reversion. Otherwise, the market maker follows its
default strategy.
Several approaches were possible to take a position exploiting mean reversion.

At first, we tried only with limit orders. For example, let us assume that the price
ratio is over .MAC 2�/. Then, we place a limit buy on order book #1 at a further
limit than usual and also and a limit sell at the best ask. We do the opposite on order
book #2: limit sell at a further limit, and limit buy at the best bid.
We can also use mixed strategies with market orders in order to control inventory

risk. With the same assumptions as before, we can place a limit buy and a market
sell on order book #1 and a limit sell and a market buy on order book #2. Note that
this last strategy is not a pure market-making strategy anymore, but rather a market-
making with trend inclusion strategy.

4 Analysis

Once our strategies are implemented, we test them using Monte Carlo simulations.
Each simulation corresponds to a trading day of 6 hours 30 minutes (NYSE). The
most interesting outputs are the agents’ P&L and P&L per trade at the end of the
trading day, the traded volumes and the price volatility.
Agents’ laws of probability are fixed for simulations as shown in Table 1.

4.1 Zero-intelligence Market

We start by analyzing simple market making strategies on zero-intelligence market.
Results of simulations are given in Table 2, and on Figs. 3 and 4. Boxplots indicate

Table 1 Agents’ probability distributions

Liquidity Provider Liquidity Taker Market Maker

Buy frequency �buy D 0:5 �buy D 0:5 determinist
(uniform)

Cancellation ı D 0:1 none determinist
(uniform)

Action time ˛ D 12 ˛ D 10 ˛ D 10
(exponential)

Orders price ˇ D 7 best limits depends on strategy
(exponential)

Orders volume � D 120 � D 80 � D 10
(exponential)



146 L. Foata et al.

minimum, 1st quartile (0.25), median, 3rd quartile (0.75) and maximum of distribu-
tions. P&L is always given in hundreds of ticks.
Adopting the default market making strategy on a zero-intelligence market leads

to positive gains on average: the P&L distribution is Gaussian, centered on 116:7.
Spread-based priority increases P&L because the volume traded per day increases,
even though P&L per trade is somewhat lower. With full priority, P&L increases
because of a rise in P&L/trade, the traded volume being constant.

Table 2 Basic market making strategies on zero-intelligence market

Strategy Output Min. 1st Qu. Median Mean 3rd Qu. Max. SD

Default

P&L �216:3 72.1 120.0 116.7 163.4 468.1 71.42
P&L/trade �0:006873 0.002186 0.003644 0.003567 0.00494 0.01486 0.002196
Volume 31550 6074
Volatility 0.3914

Spread
priority

P&L �145:5 113.5 148.5 147.6 184.8 371.5 57.52
P&L/trade �0:00353 0.002694 0.003575 0.003554 0.004426 0.008791 0.001394
Volume 41270 3696
Volatility 0.3830

Full
priority

P&L �138:9 143.1 185 180.9 218.7 445.2 61.04
P&L/trade �0:004012 0.004073 0.005288 0.005163 0.006239 0.01299 0.001756
Volume 34120 5023
Volatility 0.3679

Market making default strategy on zero−intelligence market
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321

P&L of Market Maker − Zero intelligence market

321

P&L/Trade of Market Maker − Zero intelligence market

Fig. 4 Different market making strategies – default (1), spread-based priority (2) and full prior-
ity (3)

We then vary the placement of orders for the default market maker. P&L/trade
increases as the limit orders are placed further and total P&L too, albeit not as
dramatically (see Table 3, Fig. 5), because the market maker trades less.
This strategy slightly increases the P&L, compared with the default strategy and

the spread-based priority. This rise may be explained by an implicit priority of mar-
ket maker’s orders which would be higher on the queue than with other strategies,
for they are submitted long before the market price is actually close to the order
price.
The P&L seems to reach a peak then decreases when the placement lag increases,

because of the competition between the increasing P&L/trade and the lowering vol-

Table 3 Orders placement strategy on zero-intelligence market

Strategy Output Min. 1st Qu. Median Mean 3rd Qu. Max. SD

1st limit
P&L �386:4 86.83 134.8 139.5 191.5 1306 93.5545
P&L/trade �0:009765 0.003176 0.004857 0.00498 0.006909 0.02021 0.003038
Volume 27110 5023

2nd limit
P&L �540:2 73.99 128.7 130.3 192.3 732.3 107.92
P&L/trade �0:02375 0.003505 0.006237 0.006173 0.009195 0.024020 0.004945
Volume 21140 8370

3rd limit
P&L �126:9 98.13 164.7 165.6 230.8 706 104.06
P&L/trade �0:008498 0.005720 0.009735 0.009559 0.01342 0.03391 0.0055784
Volume 16790 7251

4th limit
P&L �340 119.3 180 182.4 245.4 705.2 109.17
P&L/trade �0:017840 0.008364 0.01275 0.0127 0.01721 0.04933 0.0072725
Volume 14130 6192
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Fig. 5 Orders placement at 1st limit (2), at 2nd limit (3), at 3rd limit (4), at 4th limit (5), compared
with the default strategy (1)

ume traded. When the P&L reaches its peak, we are close to that obtained with full
priority.

4.2 Autocorrelated Market

The market making P&L decreases on autocorrelated markets (H > 0:5) and in-
creases on anti-correlated markets (H < 0:5), as shown on Fig. 6. This was ex-
pected because, on positively correlated markets, the next market order type has
a high probability to be the same as the previous one, thus, the market maker makes
the spread less often.
We now apply previous strategies on an autocorrelatedmarket with a Hurst expo-

nent of H D 0:7. Regarding priority-based strategies, the spread-based one is less
efficient than in a zero-intelligence market, because a high frequency strategy based
on high volumes and low returns per trade cannot be successful due to the local
correlation. The full priority strategy remains efficient because it leads to a higher
P&L per trade.
We can also compare our results with the model developed by Bouchaud et

al. [12], which is quite similar to the case of an autocorrelated market with full
priority as said in Sect. 3.2. By taking this model and our own parameters, we find
the following interval for the market maker P&L per trade: Œ0:00429; 0:00621�, with
the lower (resp. upper) boundary corresponding to slow (resp. fast) market making.
Therefore, the value obtainedwith our simulations (a mean P&L/trade of 0.004391 –
see Fig. 6) seems to correspond to a rather slow market making in their model.
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Now, we study the impact of order placement. Results on Fig. 7 shows a bet-
ter efficiency of this strategy compared with priority-based ones, on autocorrelated
markets. Both P&L and P&L per trade are quite higher than with priority-based
strategies.
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4.3 Market with Informed Traders

We now consider a market with informed traders who have a reference price for one
asset. The market maker does not have any information on this price. We study the
consequences of this information asymmetry on the previous strategies.
As shown on Fig. 8, the P&L/trade of the market maker is now negative. This fact

is well known by traders on real financial markets who estimate that a basic market
making strategy leads to losing roughly 1 tick per trade. Therefore, when competing
against a market which has a clear trend, the market maker’s performance drops as
expected if it plays his default strategies.

Market Maker default strategy on market
with reference price
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We now study performances of our strategies developed against a reference price.
The strategy with a rolling mean translates the P&L/trade distribution so that it is
now centered around 0 (mean D �0:004), but the agent is still losing money on
each trade as shown on Fig. 9.
The mean reversion strategy helps to recover positive gains (Fig. 10). The results

are even better than with full priority orders, so it appears that one can exploit the
assets correlation in order to build a good indicator. We see that P&L/trade is lower
with the mixed strategy than with the strategy with only limit orders. Actually, with
the former, the market maker reduces its inventory risks, but loses part of the bid-ask
spread because of the market orders.

5 Conclusions and Current Research

Although basic market making strategies are efficient on zero-intelligence markets,
when the market becomes complex, with autocorrelation of trade signs and refer-
ence price, those strategies fail and the market maker starts losing money. We have
developed other strategies in order to cope with such a market. Guessing the trend
with a rolling mean computation is not enough to recover positive gains. More in-
terestingly, in the case of a market with two correlated assets, we have implemented
a strategy based on mean reversion which gives satisfactory results even on markets
with clear trends.
However, our enhanced zero-intelligence market is still too restrictive to repro-

duce efficiently real markets. New empirical observations verified on several mar-
kets (equities, futures on index, futures on bonds, . . . ), show evidence of an excita-
tion of the limit order process by the market order process [10]: after a market order,



152 L. Foata et al.

a limit order is likely to be submitted more quickly than it would have been without
the market order. This has a direct impact on the bid-ask spread shape, and thus on
the market maker profit.
In further study, this phenomenon could be added in the model and the modified

competition between the market maker and the liquidity provider analyzed.
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The Nature of Price Returns During Periods
of High Market Activity

Khalil Al Dayri, Emmanuel Bacry and Jean-François Muzy

Abstract. By studying all the trades and best bids/asks of ultra high frequency snap-
shots recorded from the order books of a basket of 10 futures assets, we bring qual-
itative empirical evidence that the impact of a single trade depends on the intertrade
time lags. We find that when the trading rate becomes faster, the return variance per
trade or the impact, as measured by the price variation in the direction of the trade,
strongly increases. We provide evidence that these properties persist at coarser time
scales. We also show that the spread value is an increasing function of the activity.
This suggests that order books are more likely empty when the trading rate is high.

1 Introduction

During the past decade, the explosion of the amount of available data associated with
electronic markets has permitted important progress in the description of price fluc-
tuations at the microstructure level. In particular the pioneering works of Farmer’s
group [8,9,11,12] and Bouchaud et al. [4,5,7] relying on the analysis of order book
data, has provided new insights in the understanding of the complex mechanism of
price formation (see e.g [3] for a recent review). A central quantity in these works
and in most approaches that aim at modeling prices at their microscopic level, is the
market impact function that quantifies the average response of prices to “trades”. In-
deed, the price value of some asset is obtained from its cumulated variations caused
by the (random) action of sell/buy market orders. In that respect, the price dynamics
is formulated as a discrete “trading time” model like:

pn D
X
i<n

G.n � i; Vi/"i C diffusion (1)
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where n and i are transaction “times”, i.e., integer indices of market orders. Vi is the
quantity traded at index i , "i is the sign of the i th market order ("i D �1 if selling
and "i D C1 if buying). The function G.k; V / is the bare impact corresponding to
the average impact after k trades of a single trade of volume V . Among all signif-
icant results obtained within such a description, one can cite the weak dependence
of impact on the volume of market orders, i.e., G.n; V / � G.n/ lnV , the long-
range correlated nature of the sign of the consecutive trades "i and the resulting
non-permanent power-law decay of impact function G.n/ [3]. Beyond their ability
to reproduce most high frequency stylized facts, models like (1) or their continuous
counterparts [1] have proven to be extremely interesting because of their ability to
control the market impact of a given high frequency strategy and to optimize its
execution cost [10].
Another well known stylized fact that characterizes price fluctuations is the high

intermittent nature of volatility. This feature manifests at all time scales, from in-
tradaily scales where periods of intense variations are observed, for instance, around
publications of important news to monthly scales [2]. Since early works of Mandel-
brot and Taylor [13], the concept of subordination by a trading or transaction clock
that maps the physical time to the number of trades (or the cumulated volume) has
been widely used in empirical finance as a way to account for the volatility intermit-
tency. The volatility fluctuations simply reflects the huge variations of the activity.
The observed intradaily seasonal patterns [6] can be explained along the same line.
Let us remark that according to the model (1), the physical time does not play any
role in the way the market prices vary from trade to trade. This implies notably that
the variance per trade (or per unit of volume traded) is constant and therefore that
the volatility over a fixed physical time scale, is only dependent on the number of
trades.
The goal of this paper is to critically examine this underlying assumption asso-

ciated with the previously quoted approaches, namely the fact that the impact of
a trade does not depend in any way on the physical time elapsed since previous
transaction. Even if one knows that volatility is, to a good approximation, propor-
tional to the number of trades within a given time period (see Sect. 3), we aim at
checking to what extent this is true. For that purpose we use a database which in-
cludes all the trades and level 1 (i.e., best ask and best bid) ultra high-frequency
snapshots recorded from the order books of a basket of 10 futures assets. We study
the statistics of return variations associated to one trade conditioned by the last inter-
trade time. We find that the variance per trade (and the impact per trade) increases as
the speed of trading increases and we provide plausible interpretations to that. We
check that these features are also observed on the conditional spread and impact.
Knowing that the spread is a proxy to the fullness of the book and the available
liquidity [15], we suspect that in high activity periods the order books tend to de-
plete. These “liquidity crisis” states would be at the origin of considerable amounts
of variance not accounted for by transaction time models.
The paper is structured as follows: in Sect. 2 we describe the futures data we

used and introduce some useful notations. In Sect. 3, we study the variance of price
increments and show that if it closely follows the trading activity, the variance per
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trade over some fixed time interval is not constant and increases for strong activity
periods. Single trade variance of midpoint prices conditioned to the last intertrade
duration are studied in Sect. 4. We confirm previous observations made over a fixed
time interval and show that, as market orders come faster, their impact is greater.
We also show that, for large tick size assets, the variations of volatility for small
intertrade times translates essentially on an increase of the probability for a trade
to absorb only the first level of the book (best bid or best ask). There is hardly no
perforation of the book on the deeper levels. In Sect. 5.1 we show that the single
trade observations can be reproduced at coarser scales by studying the conditional
variance and impact over 100 trades. We end the section by looking at the spread
conditioned to the intertrade durations. This allows us to confirm that in period of
high activity, the order book tends to empty itself and therefore the increase in the
trading rate corresponds to a local liquidity crisis. Conclusions and prospects are
provided in Sect. 6.

2 Data Description

In this paper, we study highly liquid futures data, over two years during the pe-
riod ranging from 2008/08 till 2010/03. We use data of ten futures on different
asset classes that trade on different exchanges. On the EUREX exchange (local-
ized in Germany) we use the futures on the DAX index (DAX) and on the EURO
STOXX 50 index (ESX), and three interest rates futures: 10-years Euro-Bund
(Bund), 5-years Euro-Bobl (Bobl) and the 2-years Euro-Schatz (Schatz). On the
CBOT exchange (localized in Chicago), we use the futures on the Dow Jones in-
dex (DJ) and the 5-Year U.S. Treasury Note Futures (BUS5). On the CME (also in
Chicago), we use the forex EUR/USD futures (EURO) and the the futures on the
SP500 index (SP). Finally we also use the Light Sweet Crude Oil Futures (CL) that
trades on the NYMEX (localized in New-York). As for their asset classes, the DAX,
ESX, DJ, and SP are equity futures, the Bobl, Schatz, Bund, and BUS5 are fixed
income futures, the EURO is a foreign exchange futures and finally the CL is an
energy futures.
The date range of the DAX, Bund and ESX spans the whole period from 2008/08

till 2010/03, whereas, for all the rest, only the period ranging from 2009/05 till
2010/03 was available to us. For each asset, every day, we only keep the most liq-
uid maturity (i.e., the maturity which has the maximum number of trades) if it has
more than 5000 trades, if it has less, we just do not consider that day for that asset.
Moreover, for each asset, we restrict the intraday session to the most liquid hours,
thus for instance, most of the time, we close the session at settlement time and open
at the outcry hour (or what used to be the outcry when it no longer exists). We refer
the reader to Table 1 for the total number of days considered for each asset (col-
umn D), the corresponding intraday session and the average number of trades per
day. It is interesting to note that we have a dataset with a variable number of trading
days (around 350 for the DAX, Bund and ESX, and 120 for the rest) and a variable
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average number of orders per day, varying from 10 000 trades per day (Schatz) to
95 000 (SP). Our data consist of level 1 data: every single market order is reported
along with any change in the price or in the quantity at the best bid or the best ask
price. All the associated timestamps are the timestamps published by the exchange
(reported to the millisecond).
It is important to point out that, since when one market order hits several limit

orders it results in several trades being reported, we chose to aggregate together all
such transactions and consider them as one market order. We use the sum of the
volumes as the volume of the aggregated transaction and as for the price we use
the last traded price. In our writing we freely use the terms transaction or trade for
any transaction (aggregated or not). We are going to use these transactions as our
“events”, meaning that all relevant values are calculated at the time of, or just before
such a transaction. As such, we set the following notations:

Notations 1 For every asset, let D be the total number of days of the considered
period. We define:

1. Nk; k 2 f1 : : :Dg the total number of trades on the kth day
2. ti is the time of the i th trade (i 2 Œ1;Pk Nk�)
3. bti and ati are respectively the best bid and ask prices right before the i th trade

4. pti D bti
Cati

2 is midpoint price right before the i th trade
5. sti D ati � bti is spread right before the i th trade
6. rti D ptiC1 � pti is the return caused by the i th trade, measured in ticks
7. NT Œs; t � D #fti ; s � ti < tg corresponds to the number of trades in the time

interval Œs; t �
8. et Œ:::� or ei Œ:::� indifferently refers to the historical average of the quantity in

between backets, averaging on all the available days and on all the trading
times t D ti . The quantity is first summed up separately on each day (avoiding
returns overlapping on 2 consecutive days), then the so-obtained results are
summed up and finally divided by the total number of terms in the sum.

Let us note that in the whole paper, we will consider that the averaged returns are
always 0, thus we do not include any mean component in the computation of the
variance of the returns.

“Perceived” Tick Size and Tick Value
The tick value is a standard characteristic of any asset and is measured in its cur-
rency. It is the smallest increment by which the price can move. In all the following,
all the price variations will be normalized by the tick value to get them expressed
in ticks (i.e., in integers for price variations and half-integers for midpoint-price
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Table 1 Data Statistics. The assets are listed from top to bottom following the increasing order of
the PD column (see (2)), i.e., from the smaller (top) to the greater (bottom) “perceived” tick size.
D: number of days that are considered. The Tick Value is the smallest variation (expressed in the
local currency) by which a trading price can move. The Session column indicates the considered
trading hours (local time). The # Trades/Day is the average of the daily number of trades (i.e.,PD

kD1 Nk=D using Notations 1). P0 and PD are defined in Eqs. (4) and (2) and reported here in
percent

Futures Exchange Tick Value D Session # Trades/Day 1/2-� P0 PD

DAX EUREX 12.5e 349 8:00-17:30 56065 0.082 49 67.9
CL NYMEX 10$ 127 8:00-13:30 76173 0.188 72.8 79.8
DJ CBOT 5$ 110 8:30-15:15 36981 0.227 72.6 92.2
BUS5 CBOT 7.8125$ 126 7:20-14:00 22245 0.288 81.6 95.1
EURO CME 12.5$ 129 7:20-14:00 42271 0.252 79.5 95.2
Bund EUREX 10e 330 8:00-17:15 30727 0.335 80.9 97.6
Bobl EUREX 10e 175 8:00-17:15 14054 0.352 86.5 99.1
ESX EUREX 10e 350 8:00-17:30 55083 0.392 88.3 99.2
Schatz EUREX 5e 175 8:00-17:15 10521 0.385 89.3 99.4
SP CME 12.5$ 112 8:30-15:15 97727 0.464 96.6 99.8

variations). As one can see in Table 1, column Tick Value, our assets have very dif-
ferent tick values. It is important to note a counter-intuitive though very well known
fact: the tick value is not a good measure of the perceived size (by pratitionners) of
the tick. A trader considers that an asset has a small tick when he “feels” it to be
negligible, consequently, he is not averse at all to price variations of the order of
a single tick. For instance, every trader “considers” that the the ESX index futures
has a much greater tick than the DAX index futures though the tick values are of
the same orders! There have been several attempts to quantify the perceived tick
size. Kockelkoren, Eisler and Bouchaud in [7], write that “large tick stocks are such
that the bid-ask spread is almost always equal to one tick, while small tick stocks
have spreads that are typically a few ticks”. Following these lines, we calculate the
number of times (observed at times ti ) the spread is equal to 1 tick:

PD D #fi; sti D 1g
N

(2)

and show the results in Table 1. We classify our assets according to this criterion
and find SP to have the largest tick, with the spread equal to 1 99:8% of the time,
and the DAX to have the smallest tick.
In a more quantitative approach, in order to quantify the aversion to price

changes, Rosenbaum and Robert in [14] give a proxy for the perceived tick size
using last traded non null returns time-series. If N a

t (resp. N
c
t ) is the number of

times a trading price makes two jumps in a row in the same (resp. different) direc-
tions, then the perceived tick size is given by 1=2� 	 where 	 is defined by

	 D N c
t

2N a
t

(3)
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For each asset, we computed 	 for every single day, and average over all the days
in our dataset and put the result in the 1=2 � 	 column in Table 1. We find that the
rankings of the assets using this criterion almost matches the ranking using [7]’s
PD criterion (two slight exceptions being the ESX/Schatz and BUS5/EURO rank-
ing). One interpretation of the 	 based proxy is that if the tick size is large, market
participant are more averse to changes in the midpoint price and market makers are
happy to keep the spread collapsed to the minimum and the midpoint would only
move when it becomes clear that the current price level is unsustainable. To check
that, we calculate the number of times (observed at times ti ) the return (as defined
in notation 1) is null:

P0 D #fi; rti D 0g
N

(4)

and show the result in Table 1. Again, it approximately leads to the same ranking
which has nothing to do with the ranking using Tick Values.

3 Realized Variance versus Number of Trades

It is widely known that, in a good approximation, the variance over some period of
time is proportional to the number of trades during that time period (see e.g. [6]).
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Fig. 1 Bund intraday seasonality of both trading rate and volatility (abscissa are expressed in hours,
local time). Averages are taken on all available days. Dashed line: average intraday rate of trading
(average number of trades per second) using 15mn bins. Solid line: average 15-minutes-realized
variance (estimated summing on 15 1mn-squared returns)
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Fig. 1 illustrates this property on Bund data. On 15 minutes intraday intervals, aver-
aging on every single day available, we look at (dashed curve) the average intraday
rate of trading (i.e., the average number of trades per second) and (solid curve) the
average (15 minutes) realized variance (estimated summing on 1mn-squared returns
.ptC1mn � pt /

2). We see that the so-called intraday seasonality of the variance is
highly correlated with the intraday seasonality of the trading rate [6]. In order to
have more insights, we look at some daily statistics: Fig. 2 shows a scatter plot in
which each point corresponds to a given day k whose abscissa is the number of
trades within this day, i.e., Nk , and the ordinate is the daily variance (estimated
summing over 5-mn quadratic returns) of the same day k. It shows that, despite
some dispersion, the points are mainly distributed around a mean linear trend con-
firming again the idea shown in Fig. 1 that, to a good approximation, the variance is
proportional to the number of trades. In that respect, trading time models (Eq. (1))
should capture most of the return variance fluctuations through the dynamics of the
transaction rate. However, in Fig. 2, the points with high abscissa values (i.e., days
with a lot of activity) tend to be located above the linear line, whereas the ones with
low abscissa (low activity) cluster below the linear line, suggesting that the variance
per trade is dependant on the daily intensity of trading.
Before moving on, we need to define a few quantities. Let�t be an intraday time

scale and let N be a number of trades. We define V.�t;N / as the estimated price
variance over the scale �t conditioned by the fact that N trades occurred. Using
notations, 1 (7) and (8), from a computational point of view, when �t D �t0 is
fixed and N is varying, V.�t D �t0; N / is estimated as:

V.�tD�t0; N /Det



.ptC�t0�pt/

2jNT Œt; tC�t0� 2 ŒN�ıN ; NCıN �
�

(5)

where ıN is some bin size. And, along the same line, when we study V.�t;N / for
a fixedN D N0 value over a range of different values of�t , one defines a temporal
bin size ı�t and computes V.�t;N D N0/ as1

V.�t;N DN0/Dei

h
.ptiCN0

�pti /
2jti�1CN0�ti�1 2 Œ�t�ı�t ; �tCı�t �

i
: (6)

Let us note that, in both cases, the bins are chosen such that each bin involves ap-
proximately the same number of terms. We also define the corresponding condi-
tional variance per trade as:

v.�t;N / D V.�t;N /

N
: (7)

In order to test the presence of an eventual non-linear behavior in the last scatter
plots (Fig. 2), we show in Fig. 3 the 5-minutes variance per trade v.�t D 5mn;N /
as a function of the average intertrade duration 5mn

N
as N is varying. We clearly see

that the estimated curve (solid line) is below the simple average variance (dashed
line) for large intertrade durations and above the average variance when the trades

1 Let us point out that we used the index i � 1 in the condition of (6) and not the index i since, for
the particular case N0 D 1 (extensively used in Sect. 4), we want to use a causal conditionning of
the variance. ForN0 large enough, using one or the other does not really matter.
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are less than 600 milliseconds apart. Note that we observed a similar behavior for
most of the futures suggesting a universal behavior.
To say that the realized variance is proportional to the number of trades is clearly

a very good approximation as long as the trading activity is not too high as shown
both on a daily scale in Fig. 2 and on a 5mn-scale in Fig. 3. However, as soon as
the trading activity is high (e.g., average intertrade duration larger than 600ms on a
5mn-scale), the linear relationship seems to be lost. In the next section we will focus
on the impact associated with a single trade.

4 Single Trade Impact on the Midpoint Price

In this section, we will mainly focus on the impact of a trade i , and more specifically
on the influence of its arrival time ti on the return rti D ptiC1 � pti . In order to do
so, it is natural to consider the return rti conditioned by ti � ti�1, the time elapsed
since previous transaction. We want to be able to answer questions such as: how do

0 0.5 1 1.5 2

x 10
5

0

1000

2000

3000

4000

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

DAX

0 5 10 15

x 10
4

0

200

400

600

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

CL

0 2 4 6 8

x 10
4

0

50

100

150

200

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

DJ

0 1 2 3 4 5

x 10
4

0

50

100

150

200

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

BUS5

0 2 4 6 8 10

x 10
4

0

100

200

300

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

EURO

0 2 4 6 8

x 10
4

0

50

100

150

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

Bund

0.5 1 1.5 2 2.5 3

x 10
4

0

20

40

60

80

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

Bobl

0.5 1 1.5 2

x 10
4

0

5

10

15

20

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

Schatz

0 0.5 1 1.5 2 2.5

x 10
5

0

100

200

300

400

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

ESX

0 0.5 1 1.5 2 2.5

x 10
5

0

10

20

30

40

# Trades

D
ai
ly
va
ri
an
ce
ti
ck
s2

SP

Fig. 2 For each asset (in increasing perceived tick size PD): Daily variance (estimated summing
over 5-mn quadratic returns) against daily number of trades. Each dot represents a single day.
The solid line is the linear regression line with zero intercept. We see strong linearity between the
variance and the number of trades but there seem to be clustering of dots above (resp. below) the
solid line for days with high (resp. low) activity
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compare the impacts of the i th trade depending on the fact that it arrived right after
or long after the previous trade? Of course, in the framework of trading time models
this question has a very simple answer: the impacts are the same! Let us first study
the conditional variance of the returns.

4.1 Impact on the Return Variance

In order to test the last assertion, we are naturally lead to use Eqs (6) and (7) for
N0 D 1, i.e,

v.�t;N D 1/ D ei



r2ti j ti � ti�1 2 Œ�t � ı�t ; �t C ı�t �

�
: (8)

Let us illustrate our purpose on the DAX and the SP futures. They trade on two
different exchanges, (EUREX and CME) and have very different daily statistics
(e.g., DAX has the smallest perceived tick and SP the largest as one can see in
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Fig. 3 For each asset (in increasing perceived tick size PD), Solid line: conditional v.�t D
5mn; N / variance per trade (see (5) as a function of the average intertrade duration 5mn

N
when

varying N . Dashed line: unconditional 5mn-variance per trade. The solid line is almost constant
for average times above 0.6 seconds, and it increases when the trading becomes faster
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Fig. 4 v.�t; N D 1/ as a function of�t over very short�t ’s for DAX and SP. The variance per
trade increases dramatically below a certain �t

Table 1). Fig. 4 shows for both assets v.�t;N D 1/ (expressed in squared t ick) as
a function of �t (in milliseconds). We notice that both curves present a peak for
very small�t and stabilize around an asymptotic constant value for larger�t . This
value is close to 0:7 ticks2 for the DAX and to 0:005 ticks2 for the SP. The peak
reaches 0:95 (35% above the asymptote) for the DAX, and 0:1 (2000% above the
asymptote).
Fig. 5 switches (for all assets) to a log scale in order to be able to look at a larger

time range. A quick look at all the assets show that they present a very similar
behavior. One sees in particular for the ESX curve that the variance increases al-
most linearly with the rate of trading, and then suffers an explosion as �t becomes
smaller than 20 ms. The “same” explosion can be qualitatively observed over all
assets albeit detailed behavior and in particular the minimal threshold �t may vary
for different assets.
Let us note that the variance v.�t;N D 1/ as defined by (8) can be written in

the following way:
v.�t;N D 1/ D P.�t/A.�t/; (9)

where P.�t/ is the probability for the return to be non zero conditioned by the
intertrade duration ti � ti�1 D �t , i.e.,
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Fig. 5 For each asset (in increasing perceived tick size PD), v.�t; N D 1/ as a function of �t
(logarithm scale). We see an “explosion” of the variance when the trading is getting faster

P.�t/ D P robfrti ¤ 0 j ti � ti�1 2 Œ�t � ı�t ; �t C ı�t �g (10)

and where A.�t/ is the expectation of the squared return conditioned by the fact
that it is not zero and by the intertrade duration ti � ti�1 D �t , i.e.,

A.�t/ D ei



r2ti
j rti ¤ 0 and ti � ti�1 2 Œ�t � ı�t ; �t C ı�t �

�
: (11)

In short P.�t/ is the probability that the midpoint price moves while A.�t/ is the
squared amplitude of the move when non-zero. In Fig. 6, we have plotted, for all
assets, the function P.�t/ for different�t . One clearly sees that, as the trading rate
becomes greater (�t ! 0), the probability to observe a move of the midpoint price
increases. One mainly recovers the behavior we observed for the analog variance
plots. Let us notice that (except for the DAX), the values of the moving probabili-
ties globally decrease as the perceived ticks PD increases (for large ticks, e.g. SP, at
very low activity this probability is very close to zero). The corresponding estimated
moving squared amplitudes A.�t/ are displayed in Fig. 7. It appears clearly that,
except for the smallest perceived ticks assets (DAX and CL basically), the amplitude
can be considered as constant. This can be easily explained: large tick assets never
make moves larger than one tick while small tick assets are often “perforated” by
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Fig. 6 For each asset (in increasing perceived tick size PD), Probability P.�t/ as defined by
(10) as a function of�t . We see that the probability of getting a price move increases with market
order rate for most assets

a market order. One can thus say that, except for very small ticks assets, the variance
increase in high trading rate period is mostly caused by the increase of the probabil-
ity that a market order absorb only the first level of the book (best bid or best ask).
There is hardly no perforation of the book on the deeper levels.

4.2 Impact on the Return

Before moving to the next section, let us just look at the direct impact on the return
itself, as defined for instance by [3], conditioned by the intertrade time:

I.�t;N D 1/ D ei



"irti jti � ti�1 D �t

�
: (12)

According to [15], we expect the impact to be correlated with the variance per trade
and therefore for I.�t/ to follow a very similar shape to that of v.�t;N D 1/
shown in Fig. 5. This is confirmed in Fig. 8 where one sees that, for all assets, the
impact goes from small values for large intertrade intervals to significantly higher
values for small intertrade durations.
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Fig. 7 For each asset (in increasing perceived tick size PD), Size of Absolute squared returns
A.�t/ as a function pf �t . For very small tick assets, like DAX and CL we see that the absolute
size of a return increases with the rate of market orders. This propriety quickly stops being true as
the tick increases. The orderbook of a large tick asset is generally much thicker than that of a small
tick asset and therefore it is extremely hard to to empty more than one level

5 From Fine to Coarse

5.1 Large Scale Conditional Variance and Impact

One of the key issue associated to our single trade study is the understanding of the
consequences of our findings to large scale return behavior. This question implies
the study of (conditional) correlations between successive trades, which is out of the
scope of this paper and will be addressed in a forthcoming work. However one can
check whether the impact or the variance averaged locally over a large number of
trades still display a dependence as respect to the trading rate. Indeed, in Fig. 3 we
have already seen that this feature seems to persist when one studies returns over
a fixed time (e.g., 5 min) period conditioned by the mean intertrade duration over
this period. Along the same line, one can fix a large N D N0 value and compute
v.�t;N D N0/ and I.�t;N D N0/ as functions of �t . Note that v.�t;N D N0/

is defined in Eq. (7) while the aggregated impact can be defined similarly as:



168 K. Al Dayri et al.

0 1 7 55 403 2981 22026
0.4

0.42

0.44

0.46

0.48

0.5

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

DAX

0 1 7 55 403 2981
0.1

0.15

0.2

0.25

0.3

0.35

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

CL

0 1 7 55 403 2981

0.2

0.25

0.3

0.35

0.4

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

DJ

0 1 7 55 403 2981 22026
0.05

0.1

0.15

0.2

0.25

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

BUS5

0 1 7 55 403 2981
0.1

0.15

0.2

0.25

0.3

0.35

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

EURO

0 1 7 55 403 2981 22026
0.1

0.15

0.2

0.25

0.3

0.35

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

Bund

0 1 7 55 403 2981 22026
0.05

0.1

0.15

0.2

0.25

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

Bobl

0 1 7 55 403 2981 22026
0.05

0.1

0.15

0.2

0.25

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

ESX

0 1 7 55 403 2981 22026
0.05

0.1

0.15

0.2

0.25

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

Schatz

0 1 7 55 403 2981
0

0.02

0.04

0.06

0.08

0.1

Faster Trading ← Δt (ms) → Slower Trading

I
(Δ

t,
N
=
1)
(t
ic
k)

SP

Fig. 8 For each asset (in increasing perceived tick size PD), I.N D 1j�t/ as defined by (12) as
a function of�t . The shape of the curves confirms the idea that the impact is high correlated with
the variance per trade

I.�t;N D N0/ D ei

h
�i .ptiCN0

� pti / j ti�1CN0 � ti�1 2 Œ�t � ı�t ; �t C ı�t �
i
:

(13)
In Fig. 9 and 10 are plotted respectively the variance v.�t;N D 100/ and the return
impact I.�t;N D 200/ as functions of�t . One sees that at these coarse scales, the
increasing of these two quantities as the activity increases is clear (except maybe for
the variance of the EURO). As compared to single trade curves, the threshold-like
behavior are smoothed out and both variance and return impacts go continuously
from small to large values as the trading rate increases.

5.2 Liquidity Decreases when Trading Rate Increases

One possible interpretation of these results would be that when the trading rate gets
greater and greater, the liquidity tends to decrease, i.e., the order book tends to
empty.
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Fig. 9 For each asset (in increasing perceived tick size PD), v.�t; N D 100/, as defined by (7),
as a function of �t . Clearly the variance of a speedy 100 trades is higher than the variance of 100
slow trades

In [15], the authors mention that the spread is an indicator of the thinness of the
book and that the distance from the best bid or ask to the next level of the order
book is in fact equivalent to the spread. Moreover, they bring empirical evidence
and theoretical no-arbitrage arguments suggesting that the spread and the variance
per trade are strongly correlated. Accordingly, we define the mean spread over N
trades as

sti ;N D 1

N

N�1X
kD0

stiCk
; (14)

and the conditional spread at the fixed scale N D N0 as

S.�t;N D N0/ D ei



sti ;N j tiCN � ti 2 Œ�t � ı�t ; �t C ı�t �

�
: (15)

Fig. 11 displays, for each asset, S.�t;N D 100/ as a function of �t=100 (using
log scale). One observes extremely clearly an overall increase of the spread value
with the rate of trading for all assets, This clearly suggests that the order book is
thinner during periods of intense trading. This seems to be a universal behavior not
depending at all on the perceived tick size.
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Fig. 10 For each asset (in increasing perceived tick size PD), I.�t; N D 200/, as defined by
(13), as a function of �t . The impact of speedy trades propagates well into the future. Even 200
trades away, one speedy trade has caused more impact than a slower one

6 Conclusions

In this short paper we provided empirical evidence gathered from high frequency
futures data corresponding to various liquid futures assets that the impact (as mea-
sured from the return variance or using the standard definition) of a trading order
on the midpoint price depends on intertrade duration. We have also shown that this
property can also be observed at coarser scale. A similar study of the spread value
confirmed the idea that order books are less filled when trading frequency is very
high. Notice that we did not interpret in any causal manner our findings, i.e., we do
not assert that a high transaction rates should be responsible for the fact that books
are empty. It just appears that both phenomena are highly correlated and this ob-
servation has to be studied in more details. In a future work, we also plan to study
the consequences of these observations on models such those described in the intro-
ductory section (Eq. (1)). A better understanding of the aggregation properties (i.e.,
large values of N ) and therefore of correlations between successive trades will also
be addressed in a forthcoming study.
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Fig. 11 For each asset (in increasing perceived tick sizePD), S.�t; N D 100/ as defined in (15)
as a function of �t=100. The form of the curves confirms that there is a strong liquidity decrease
when the trading rate is increasing
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Tick Size and Price Diffusion

Gabriele La Spada, J. Doyne Farmer and Fabrizio Lillo

1 Introduction

A tick size is the smallest increment of a security price. Tick size is typically reg-
ulated by the exchange where the security is traded and it may be modified either
because the exchange enforces an overall tick size change or because the price of the
security is too low or too high. There is an extensive literature, partially reviewed in
Sect. 2 of the present paper, on the role of tick size in the price formation process.
However, the role and the importance of tick size has not been yet fully understood,
as testified, for example, by a recent document of the Committee of European Secu-
rities Regulators (CESR) [1].
Tick size can affect security price in direct and indirect ways. It is clear that

at the shortest time scale on which individual orders are placed the tick size has
a major role which affects where limit orders can be placed, the bid ask spread, etc.
This is the realm of market microstructure and in fact there is a vast literature on
the role of tick size on market microstructure. However, tick size can also affect
price properties at longer time scales, and relatively less is known about the effect
of tick size on the statistical properties of prices. The rationale is that since market
microstructure affects price diffusion, if tick size affects microstructure it is likely
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to also affect price diffusion. This point of view is strengthened by the observation
that there is growing evidence that microstructural events are important factors in
explaining longer term price fluctuations [2]. For example, large fluctuations in price
returns are observed also at the individual transaction scale [3] and their effects last
for long periods [4]. Nonetheless the relation between market microstructure and
price diffusion on a longer time scale is still not fully understood. It is therefore
worth investigating the effect of tick size on price diffusion properties.
The present paper is divided in two parts. In the first (Sect. 2) we review the ef-

fect of tick size change on the market microstructure and the diffusion properties of
prices. The second part (Sect. 3) presents original results obtained by investigating
the tick size changes occurring at the New York Stock Exchange (NYSE). We show
that tick size change has three effects on price diffusion. First, as already shown in
the literature, tick size affects price return distribution at an aggregate time scale.
Second, reducing the tick size typically leads to an increase of volatility clustering.
We give a possible mechanistic explanation for this effect, but clearly more investi-
gation is needed to understand the origin of this relation. Third, we explicitly show
that the ability of the subordination hypothesis in explaining fat tails of returns and
volatility clustering is strongly dependent on tick size. While for large tick sizes the
subordination hypothesis has significant explanatory power, for small tick sizes we
show that subordination is not the main driver of these two important stylized facts
of financial market. Finally Sect. 4 concludes.

2 Literature Review

In this section we review some literature on the effect of tick size on market mi-
crostructure and on price diffusion. Most of the studies we consider are case studies
of tick size changes in different markets. This section is divided in two parts. In the
first we review the effect of tick size on market microstructure, while in the second
we discuss recent papers on the effect of tick size on price diffusion.

2.1 Tick Size and Market Microstructure

Crack [5] and Ahn et al. [6] studied the impact of the September 3, 1992 AMEX
reduction in the minimum tick size from 1/8 to 1/16 for stocks priced under five
dollars. They found approximately a 10% decline in quoted spreads and depths in
addition to an increase in average daily trading volume of 45-55 %. Niemeyer and
Sandås [7] studied the Stockholm Stock Exchange and found that tick size is pos-
itively correlated to spread and market depth, and negatively correlated to volume.
Angel [8] found that small tick size narrows the bid-ask spread, but diminishes liq-
uidity by making limit order traders and market makers more reticent to supply
shares.
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A series of studies [9–12] investigated the April 15, 1996 Toronto Stock Ex-
change (TSE) reduction in the minimum tick size to five cents. They found a sig-
nificant decline in the quoted bid-ask spreads of 17-27% and in the quoted depth
of 27-52%, while average trading volume displayed no statistically significant in-
crease.
Bessembinder [13] studied the Nasdaq stocks whose price level passes through

$10, and thus changed tick size from 1/8 to 1/32 and found that the effective spread
fell by 11%. Ronen and Weaver [14] studied the May 7, 1997 switch to 1/16 at
the AMEX and found reduced quote spreads and depths. They concluded that the
implemented reduction to the minimum tick size has decreased transaction costs and
increased liquidity. Bollen and Whaley [15] and Ricker [16] studied the 1997 tick
size reduction from 1/8 to 1/16 at the NYSE and found that volumeweighted bid-ask
spread declined by approximately 13-26% while quoted depth decreased between
38% and 45%. They concluded that the NYSE tick size reduction has improved the
liquidity of the market especially for low-priced shares. Jones and Lipson [17] used
institutional data to study the effect of tick size changes at the Nasdaq and NYSE.
They found that trading costs decreased for smaller trades, but increased for larger
trades.
Goldstein and Kavajecz [18] studied the tick size change from 1/8 to 1/16 at the

NYSE. They found that the quoted bid-ask spread narrowed by 14.3% (note that
this is the spread quoted by the specialist). For the most infrequently traded stocks
the spread increased. The quoted depth declined by 48% while the limit order book
spread (i.e. the spread between the highest buy order and the lowest sell order)
increased by 9.1% (note that this result is in disagreement with previous studies).
The tick size reduction had also an effect on transaction cost. Transaction costs
for small orders decreased even if this benefit is reduced for infrequently traded
and low-price stocks. Transaction costs for large orders either did not change (for
frequently traded stocks), or increased (for infrequently traded stocks). The authors
were also able to track the behavior of different market participants. They found
that after tick size reduction floor memberswere less frequently providing additional
depth at existing limit order book prices while they were more frequently improving
best prices. Contribution to displayed depth from floor members decreased by 35%
on average. Finally, limit order traders increased the ratio of cancelled limit orders
to total limit orders by 6.2%.
Huang and Stoll [19] compared two different market structures, namely the

NYSE, which is an auction market with a tick size rule, and the LSE, which in the
investigated period was a dealer market with no minimum tick size. They found that
dealer market spreads are higher than auction market spreads, because in auction
markets limit orders narrow spreads. Similarly depth is lower in auction markets
because limit orders narrow the spreads, and these spread narrowing limit orders
are small. Finally, in both markets they found evidence of clustering, which is the
tendency for prices to fall on a subset of available prices. Quote clustering is highly
correlated with spreads, while trade clustering is smaller in a auction market because
limit orders break up quote clustering as they seek to gain priority.
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Finally, Bacidore et al. [20] studied the tick size change from 1/16 to 1/100 at
the NYSE (“decimalization”) by considering separately the NYSE and the Consoli-
dated Quotation. They found that the NYSE’s quoted spread fell by 30% while non-
NYSE spreads also generally decreased, albeit by relatively small amounts. Overall,
the NBBO1 quoted spread fell by 30.7%. Overall, NYSE quoted size fell by 70.5%
while non-NYSE average size declined by 26.9% (in both cases the greatest per-
centage decrease occurred in the high-volume, low-price group). NBBO size fell by
61.5%, which suggests that the non-NYSE markets became more likely to add to
the NBBOs depth. The authors also investigated the overall shape of the limit order
book. They found that displayed liquidity fell dramatically with decimal pricing,
with a drop in displayed size of the order of 50%. This effect appears to be greatest
for low-priced stocks. As for the order properties, decimalization had only a mini-
mal effect on the relative fraction of market and limit orders. However the average
limit order size decreased by 33.4% and the average market order size decreased by
15.7% after decimalization. Limit order traders became more aggressive after deci-
malization and the cancellation rate increased from 43% to 53%. The average time
between quote updates declined and the total number of quotes across all markets
increased; this effect was stronger in non-NYSE markets. NYSE’s share of quotes
declined on average from 40% to 34%. The average number of NBBO per stock per
day doubled, while the number of quotes increased only by 27% and the fraction
of the average trading day that the NYSE is at both sides of the NBBO declined
from 93% to 82%. All these results are consistent with a more competitive quoting
environment. The average transaction cost greatly increased after decimalization2.
However, the effect is different depending on the volume. For all stocks, the cost of
small orders decreased while the cost of large orders increased after decimalization.
Taken together these studies indicate that a reduction in tick size (i) narrows the

spread; (ii) decreases the quoted depth and the overall depth in the limit order book,
i.e. the displayed liquidity decreases; (iii) modifies the order flow in a way that the
rate of orders (and cancellations) per unit time increases, but their size becomes
smaller; (iv) the transaction cost decreases for small orders, but increases for large
orders (at least when the cost is computed by assuming that a large order climbs up
the book); (v) creates a more competitive environment for liquidity provision inside
a market (for example limit orders become more aggressive) and across different
market segments. These two last aspects are probably important factors which con-
tribute significantly to the practice of order splitting and algorithmic trading.

1 The National Best Bid and Offer (NBBO) includes prices from all competing exchanges and
refers to the price at the time of entry into the market.
2 As in other studies, this is the average cost of trading a given number of shares if the only liquidity
in the market is the liquidity displayed in the book. Assuming that the midpoint of the spread is
a proxy for the value of a security, the cost of displayed liquidity for an order is the product of
the additional shares available in the limit order book at each price point times the distance of the
price point from the spread midpoint summed through the number of shares in the order of interest.
Dividing that sum by the total number of shares in the order provides the per share cost of obtaining
the displayed liquidity. This might be different from the actual cost of a large order obtained for
example with order splitting.
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It is worth noting that the literature has given different sign to the relation be-
tween tick size and liquidity. On one side a small tick size reduces the spread, i.e.
increases liquidity. On the other hand, it reduces depth andmakes liquidity providers
more reluctant to display their orders, with an effect of reducing liquidity. These
contradictory results can be better reconcilied by considering that a complex con-
cept such as liquidity is hardly captured by one metric.

2.2 Tick Size and Price Properties on Longer Time Scales

As said above, the literature on the relation between tick size and the statistical
properties of prices is smaller than the huge literature on tick size and market mi-
crostructure. Here we review two recent papers from the Econophysics literature.
Onnela et. al. [21] studied how tick size affects price return distribution. They

assumed a continuous price process that is discretized by the tick size. By using
numerical simulations they found that the effect of discretization on return distri-
bution due to tick size is negligible when the tick-to-price ratio is small, while it is
significant when this ratio is large. Moreover, the proportion of zero returns appears
to be much higher for stocks with a high tick-to-price ratio. They performed an em-
pirical study by considering stocks traded at the same time in two exchanges with
different tick sizes (NYSE and TSE). They observed that on average the proportion
of zero returns increases as the tick size increases, but this is better accounted for
by the tick-to-price ratio, whose variation explains roughly 69% of variation in zero
returns. Moreover 57% of cases exhibit price clustering, such that the effective tick
size deviates from the nominal tick size. In particular at the NYSE there is a strong
preference for even-eights.
In a recent paper Munnix et al. [22] considered two effects of tick size on price

diffusion properties. The first is, as in the previous paper, on the return distribution
and the conclusions are similar. The second is the effect of tick size on the estimation
of cross correlation between price returns of two stocks. It is known [23] that cross
correlation between returns of two stocks declines when one reduces the length of
the time interval used to compute returns. There has been several explanations for
this, which is called the Epps effect, ranging from those based on learning to those
on non-syncronous trading [24, 25]. By using numerical simulations and analyti-
cal calculations authors of [22] showed that even for synchronous time series, the
discretization due to the tick size induces a distortion of the correlation coefficient
toward smaller intervals. They then test their model on real financial data and they
find that the discretization effect is responsible for up to 40% of the Epps effect.
Moreover, the contribution of the discretization effect is particularly large for stocks
that are traded at low prices. This highlights the importance of the tick-to-price ratio
as compared to the absolute tick size. We will see below that more generally tick
size affects the correlation properties of the second moment including its temporal
autocorrelation.
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3 Tick Size and Price Diffusion

In this section we investigate the role of tick size in the statistical properties of price
fluctuations, namely the return distribution, volatility clustering, and the subordina-
tion hypothesis.

3.1 Return Distribution

The first question is how tick size change affects the distributional properties of re-
turns. We have mentioned above two recent papers [21,22] that discuss theoretically
and empirically how the return distribution changes when tick size changes.
We use here a set of 5 high cap stocks (KO, MRK, PEP, T, WMT) traded at

the New York Stock Exchange (NYSE). There have been two tick size changes in
the NYSE. On June 24, 1997 the tick size changed from 1=8 to 1=16 of a dollar,
and on January 29, 2001 the tick size changed from 1=16 to 1=100 of a dollar. We
consider short timescale log returns, namely, fifteen-minute returns. For each tick
size change we consider two time intervals of length 100 trading days, one before
and one after the tick size change. We consider absolute returns jr j and we compute
the complementary cumulative distribution function defined as Fc.x/ D P.jr j � x/.
In Fig. 1 we show the complementary cumulative distribution function of 15 minute
absolute returns for the stock MRK before and after the first tick size change (left
panel), and the second tick size change (right panel). When the tick size changed
from 1/8 to 1/16, both smaller non-zero returns and larger returns became more
likely, i.e. the distribution function of the absolute returns became more fat-tailed.
On the other hand, when the tick size changed from 1/16 to 1/100, only smaller
non-zero returns becamemore likely. In this second case the distribution function of
absolute returns did not become more fat-tailed, but the number of small non-zero
returns increased significantly. Similar results hold for all the other stocks.
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Fig. 1 Complementary cumulative distribution function of the stock MRK before and after the first
tick size change (left panel), and the second tick size change (right panel)
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We use the probability of zero price change and the tail exponent to quantify the
difference in the return distribution before and after a tick size change. We denote
the frequency of zero returns by p0. We define the difference in the frequency of zero
returns just before (p�0 ) and just after (p

C
0 ) the tick size change, as�p0 D pC0 �p�0 .

For each tick size change we perform a t-test of the null hypothesis that the mean
of �p0 is statistically greater than or equal to zero. We obtain a p value equal to
0:0031 and 0:0014 for the first and the second tick size change, respectively. We
can therefore reject the null that �p0 did not change or increase at a level of 1% for
both tick size changes. This means that in both cases the frequency of zero returns
diminished. On average it reduced by 50% on the first tick size change and by 70%
on the second tick size change. In other words, the price becomes less “sticky” when
the tick size decreases. In order to study the tail properties of the return distribution,
we make use of the Hill estimator ˛H of the tail exponent. Fig. 2 shows the value
of the Hill estimator of the 5 stocks before and after the two tick size changes. As
before, we define the difference in the Hill estimator before and after a tick size
change as �˛H D ˛CH � ˛�H and we perform a t-test of the null hypothesis that
�˛H is greater or equal than zero. For the first tick size change we can reject the
null hypothesis at a level of 10% (p D 0:06), while for the second tick size change
we cannot reject the null hypothesis (p D 0:62). By using a shorter time period (50
trading days) on a larger set of 9 stocks we obtain a 5% significant rejection of the
null for the first tick size change, while again we cannot reject the null for the second
tick size change. This confirms the intuition obtained from Fig. 1 that the tail of the
return distribution changed after the first tick size change, but remained statistically
the same in the second tick size change. The explanation of this difference remains
an open issue.
In conclusion, our empirical results confirm that the return distribution can be

different before and after a tick size change. In both cases the frequency of zero
returns is higher for large tick sizes, while the behavior of the tails seems to be
different in the two tick size changes.

Fig. 2 Hill estimator for the tail exponent of the absolute return distribution before and after a tick
size change from 1/8 to 1/16 (left panel) and from 1/16 to 1/100 (right panel). The stocks are
alphabetically ordered and the error bars are 95% confidence intervals
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3.2 Volatility Clustering

The other important stylized fact of financial time series is volatility clustering.
Roughly speaking, volatility clustering means that periods of high (low) volatility
are more likely followed by periods of high (low) volatility. A method to quantify
the degree of volatility clustering is through its autocorrelation function (ACF). It is
commonly observed that the ACF of volatility decreases slowly to zero and is statis-
tically different from zero for long time periods of the orders of months. Moreover,
there is a consensus that volatility is a long memory process [26], which means that
for large lags the ACF �.k/ decays as a power law, �.k/ � k�� with 0 < � < 1.
A long memory process lacks a typical time scale and can be characterized by the
Hurst exponent H , which for long memory processes is given by H D 1 � �=2.
Here we investigate how the ACF and the (estimated) Hurst exponent changes when
the tick size changes. We consider the same stocks and time periods as in the pre-
vious section using the absolute price return for 15 minute intervals as a proxy of
volatility
Let us denote the ACF of the absolute returns by �.k/, where k is thenumber of

15 minute intervals. Fig. 3 shows the ACF of volatility for the stock MRK for 100
days before and after the tick size change. In both cases the volatility ACF before the
tick size change is smaller than the one after the tick size change. This suggests that
volatility is less clustered (autocorrelated) when the tick size is large. In order to test
this conclusion more quantitatively we define the difference in the autocorrelation
function before and after the tick size change as ��.k/ D �C.k/ � ��.k/, where
��.k/ is the ACF just before the change, and �C.k/ is the ACF just after the change.
For each lag k D 1; : : :; 4 we perform a t-test of the null hypothesis that the mean of
��.k/ is smaller than zero. Fig. 3 shows the statistics and the p value. In all but one
case we reject the null at the 1% confidence level. In one case (k D 1 in the second
tick size change) the p value is 0:019. This shows that the volatility becomes more
correlated, i.e. more clustered, when the tick size is reduced. In the next subsection
we present a simple model explaining this effect.
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Fig. 3 Autocorrelation function of 15 min absolute returns for the stock MRK in a 100 trading day
period before and after the tick size change from 1/8 to 1/16 (left panel) and from 1/16 to 1/100
(right panel)
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Table 1 Result of a t-test of the null hypothesis that the difference ��.k/ of the autocorrelation
function of 15 min absolute returns before and after a tick size change is smaller than zero

k D 1 k D 2 k D 3 k D 4
t-stat p-value t-stat p-value t-stat p-value t-stat p-value

tick size change #1 3.7982 0.0096 5.8893 0.0021 5.6963 0.0023 7.0142 0.0011
tick size change #2 3.0323 0.0193 7.4501 0.0009 3.9608 0.0083 8.7527 0.0005

The previous analysis focused mainly on the autocorrelation for small lags. In
order to investigate the change in the ACF for large lags before and after a tick size
change we compute the Hurst exponent of absolute returns. It was suggested in [27]
that the Hurst exponent of volatility becomes larger when the tick size becomes
smaller. This is based on empirical evidence obtained by measuring the Hurst ex-
ponent in periods of about three years. Here we want to see if this effect persists on
much shorter time intervals (5 months). The main problem is that we have shorter
time series and therefore the estimation of the Hurst exponent is noisier. We estimate
the Hurst exponent by using the detrended fluctuation analysis (DFA) [28]. Fig. 4
shows the estimated Hurst exponent of volatility for the two tick size changes. The
reduction of tick size from 1/8 to a 1/16 is associated with an increase of the esti-
mated Hurst exponent, while in the second tick size change this phenomenon is not
evident. A t-test of the null hypothesis that the variation �H D HC �H� in the
estimated Hurst exponent is smaller than zero confirms this intuition.
In conclusion, we showed evidence that a reduction in tick size leads to an in-

crease of volatility clustering, measured as the autocorrelation function of 15 min
absolute returns. In the next section we give some indication that this phenomenon
can be explained with a mechanistic model of price dynamics. A more detailed ex-
planation of this effect is presented elsewhere [29]. We found less evidence that the
Hurst exponent changes when the tick size is modified. The increase of the Hurst
exponent is clear after the first tick size reduction, while it is not observed during

Fig. 4 DFA estimator of the Hurst exponent of the absolute returns before and after a tick size
change from 1/8 to 1/16 (left panel) and from 1/16 to 1/100 (right panel). The stocks are alphabet-
ically ordered and error bars are standard deviations
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the second tick size change. This might be due to a poor estimation of the Hurst
exponent. Mechanistic models [29] predict that the Hurst exponent should remain
the same, but they also show that larger tick sizes have a lower estimated Hurst
exponent.

3.3 A Simple Model

We present here a simple mechanistic model that reproduces the increase in volatil-
ity clustering when the tick size is reduced. A more detailed explanation is given
in [29]. Consider a price process described by a simple ARCH(1) process [30]

rt D �tzt �2t D ˛0 C ˛1r2t�1 (1)

where rt is the price returns on a given time scale and zt is a Gaussian noise term
with zero mean and unit variance. We generated a return time series of length 216

with parameters ˛0 D 0:1 and ˛1 D 0:9. We then construct the price time series p
by integrating the return time series3. We assumed that this (unobservable) price is
coarse grained by the tick size grid. Specifically, if the tick size is ı the observed
price at the given time scale is pobs D Œp=ı�ı, where Œx� indicates the integer part of
x. Finally, we construct observed returns from the observed price and we compute
the autocorrelation function of absolute observed returns.
In Fig. 5 we show the autocorrelation function of absolute returns of the original

process and of the discretized process. Note that the squared returns of an ARCH(1)
price process are exponentially autocorrelated with a time scale 1=j log˛1j. It is ev-
ident that coarse graining due to tick size reduces the ACF and that the larger the
tick size, the smaller the autocorrelation function, similarly to what we observed in

Fig. 5 Autocorrelation function of absolute returns of an ARCH(1) model and of a coarse grained
version of it with different tick sizes ı

3 Note that we are considering additive rather than multiplicative returns. For the small time scales
we are considering here the two give nearly equal results.



Tick Size and Price Diffusion 183

real data. This is a fully mechanistic model of the effect of tick size on volatility
clustering. Other reasons can be at the origin of the empirically observed increase
of volatility clustering after a tick size reduction. These may include microstruc-
tural effects, change in the strategic behavior of traders, etc. Our simple model and
its extensions [29] show that part of the effect could be due to purely mechanical
reasons.

3.4 Tick Size and the Subordination Hypothesis

The origin of fat tails and clustered volatility in price fluctuations is an important
problem in financial economics Although the cause is still debated, the view has
become increasingly widespread that in an immediate sense both of these features
of prices can be explained by fluctuations in volume, particularly as reflected by
the number of transactions. The original idea dates back to a paper by Mandelbrot
and Taylor [31] that was developed by Clark [32]. Mandelbrot and Taylor proposed
that prices could be modeled as a subordinated random process Y.t/ D X.�.t//,
where Y is the random process generating returns, X is Brownian motion and �.t/
is a stochastic time clock whose increments are IID and uncorrelated with X . Clark
hypothesized that the time clock �.t/ is the cumulative trading volume in time t ,
but more recent works indicated that the number of transactions is more important
than their size [33]. Gillemot, Lillo, and Farmer [27] performed a series of shuffling
experiments and showed that neither number of transactions nor volume are the
principal cause of heavy tails in price returns and clustered volatility. Specifically,
they compared returns (or volatilities) computed under different measures of time.
They found that volatility is still very strong even if price movements are recorded
at intervals containing an equal number of transactions (or volume), and that the
volatility observed in this way is highly correlated with volatility measured in real
time. In contrast, when they shuffle the order of events, but control for the number of
transactions so that it matches the number of transactions in real time, they observe
a much smaller correlation to real time volatility.
For the purpose of this paper we would like to stress the importance of the tick

size in assessing the relative role of the subordination hypothesis in explaining fat
tails and clustered volatility (in part discussed also in [27]). We consider here the
626 trading day period from Jan 1, 1995 to Jun 23, 1997, when the tick size at
NYSE was 1/8 of a dollar, and the 734 trading day period from Jan 29, 2001 to
December 31, 2003, when the tick size was a penny. We consider returns in real
time, transaction time, and shuffled transaction time. Real time returns are simply
15 minute returns. Transaction time returns are obtained by considering time in-
tervals containing an equal number of transactions. To make series with different
time measures comparable we compute returns in transaction time by considering
a number of transactions equal to the average number of transactions in 15 min.
Finally, shuffled transaction time is obtained in the following way: We first measure
the return of each transaction. We then shuffle the time series of individual trans-
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action returns and we aggregate individual transaction returns so that we match the
number of transactions in each real time interval. In transaction time returns we are
destroying any fluctuation of number of transactions while we preserve the tempo-
ral sequence of real trades. In contrast, in shuffled transaction time we preserve the
fluctuations of trading activity (as measured by the number of transactions), but we
destroy any temporal correlation between the amplitude of consecutive individual
transaction price movements. If the subordination hypothesis is correct, then real
time returns should be closer to shuffled transaction time returns than to transaction
time returns.
In Fig. 6 we show the complementary cumulative distribution function of abso-

lute returns of the stock PG in the two tick size regimes. When the 1/8 tick size was
shuffled, transaction time returns are closer than transaction time returns to real time
returns. This is qualitatively consistent with the subordination hypothesis. The pe-
riod when the tick size was a penny shows a completely different pattern. The right
panel of Fig. 6 shows that in the small tick size regime the transaction time returns
are closer than the shuffled transaction time returns to the real time returns. Clearly
in this case the subordination hypothesis is not the main driver of fat tails. In other
words, in order to reproduce fat tails of returns it is more important to preserve the
temporal order of individual transaction returns than the fluctuations of their arrival
rate. Since individual price returns are largely determined by liquidity fluctuations,
these results indicate that when the tick size is small liquidity fluctuations are more
important than volume (i.e. number of trades) fluctuations.
A similar conclusion can be drawn by investigating volatility clustering. Fig. 7

shows the autocorrelation of absolute returns for PG under different tick size and
time measures. When tick size is large (left panel), shuffled transaction time returns
show volatility clustering that is close to the real one, while transaction time abso-
lute returns are relatively less correlated. This again is in agreement with the sub-
ordination hypothesis. On the contrary, in the small tick size regime (right panel)
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Fig. 6 Complementary cumulative distribution function of absolute returns of the stock PG in the
period when the tick size was 1/8 (left) and when it was a penny (right). We show the distribution
of returns computed in real time (black), transaction time (light gray), and shuffled transaction time
(dark gray)
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Fig. 7 Autocorrelation of absolute returns for the stock PG in the period when the tick size was 1/8
(left) and when it was a penny (right). We show the autocorrelation of absolute returns computed
in real time (black), transaction time (light gray), and shuffled transaction time (dark gray)

the transaction time returns show volatility clustering very close to the real case4.
Shuffled transaction time returns show a volatility clustering that is almost an or-
der of magnitude smaller than the real case. Again, when the tick size is small, the
subordination hypothesis plays a minor role in explaining volatility clustering. We
conjecture that the strong liquidity autocorrelation is an important driver of volatility
clustering. In fact, most measures of liquidity, such as the spread [34] and distance
between occupied levels in the order book (gaps) [35], display strong autocorre-
lation, often consistent with long memory. Finally, note that the level of absolute
return ACF in real time is much larger in the small tick size regime (right panel)
than in the large tick size regime (left panel). This is in agreement with the analysis
and the mechanistic model of the previous section.
In conclusion we have shown that the role of the subordination hypothesis in fat

tails of returns and volatility clustering is strongly dependent on tick size. This is
important also because many empirical studies of the subordination hypothesis have
been performed on time periods of large tick size. Our study raises the question of
the validity of these studies if they are applied to recent periods of small tick size.

4 Conclusions

In conclusion we have shown that tick size has multiple roles in influencing the
statistical properties of price diffusion. As expected, and shown in the literature, tick
size affects return distribution. When tick size is large (compared to the price) the
price is more “sticky”, i.e. there is an higher fraction of zero returns. It is less clear

4 Note that real time and shuffled transaction time absolute return ACF show peaks due to the daily
periodicity of trading activity. This is not observed for the transaction time absolute return ACF
because of the way in which we have constructed the time series. Our discussion here refers to the
global level of the ACF and not to the daily periodicities.
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whether the tails of return distributions are affected by tick size. We have shown that
tick size affects volatility clustering. A decrease in tick size leads to more clustered
volatility. There might be many reasons for this effect that should be investigated.
Here we have shown that a simple mechanistic model is able to qualitatively capture
this effect. Finally, tick size influences the relative role of volume (i.e. number of
transactions) vs. liquidity fluctuations in explaining return distribution and volatility
clustering. This relates to the importance of the subordination hypothesis in price
diffusion. The original results presented here are preliminary in the sense that one
should consider different time windows, use control windows to check for global
trends, and consider different more tick size changes.
The approach we have followed in this research is to directly study the effect of

tick size on price diffusion properties. We know that this effect is mediated by the
price formation process, i.e. by the market microstructure. The long term goal of
this research is to understand how tick size affects market microstructure and how
in turn microstructure affects price diffusion.
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7. Niemeyer J, and Sandås P (1994) Tick size, market liquidity and trading volume: evidence
from the Stockholm Stock Exchange. Working Paper, Stockholm School of Economics, un-
published

8. Angel JJ (1997) Tick size, share price, and stock splits. Journal of Finance 52:655–681
9. Bacidore J (1997) The impact of decimialization on market quality: an empirical investigation
of the Toronto Stock Exchange. Journal of Financial Intermediation 6:92–120

10. Porter D and Weaver D (1997) Decimalization and market quality. Financial Management
26:5–26

11. Huson M, Kim Y, Mehrotra V (1997) Decimal quotes, market quality, and competition for
order flow: evidence from the Toronto Stock Exchange. Working Paper, University of Alberta,
unpublished

12. Ahn H, Cao CQ, Choe H (1998) Decimalization and competition among stock markets: evi-
dence from the Toronto Stock Exchange cross-listed securities. Journal of Financial Markets
1:51–87

13. Bessembinder H (1997) Endogenous changes in the minimum tick: an analysis of Nasdaq
securities trading near ten dollars. Working Paper, Arizona State University, unpublished

14. Ronen T, and Weaver DG (1998) Teenies’ anyone: the case of the American Stock Exchange.
Working Paper, Rutgers University, unpublished



Tick Size and Price Diffusion 187

15. Bollen NPB, Whaley RE (1998) Are “teenies” better? Journal of Portfolio Management
25:10–24

16. Ricker JP (1998) Breaking the eighth: sixteenths on the New York Stock Exchange. Working
Paper, unpublished

17. Jones CM, Lipson ML (2001) Sixteenths: Direct Evidence on Institutional Trading Costs.
Journal of Financial Economics 59:253–278

18. Goldstein MA, Kavajecz KA (2000) Eighths, sixteenths, and market depth: changes in tick
size and liquidity provision on the NYSE. Journal of Financial Economics 56:125–149

19. Huang RD, Stoll HR (2001) Tick Size, Bid-Ask Spreads, and Market Structure. The Journal
of Financial and Quantitative Analysis 36:503–522

20. Bacidore J, Battalio R, Jennings R (2001) Changes in Order Characteristics, Displayed Liq-
uidity, and Execution Quality on the New York Stock Exchange around the Switch to Decimal
Pricing. New York Stock Exchange Working Paper
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High Frequency Correlation Modelling

Nicolas Huth and Frédéric Abergel

1 Introduction

Many statistical arbitrage strategies, such as pair trading or basket trading, are based
on several assets. Optimal execution routines should also take into account correla-
tion between stocks when proceeding clients orders. However, not so much effort
has been devoted to correlation modelling and only few empirical results are known
about high frequency correlation. Depending on the time scale under consideration,
a plausible candidate for modelling correlation should:

• at high frequency: reproduce the Epps effect [1], take into account lead-lag rela-
tionships between assets [2];

• at the daily scale: avoid purely Gaussian correlations [3].

We develop a theoretical framework based on correlated point processes in order
to capture the Epps effect in Sect. 1. We show in Sect. 2 that this model converges
to correlated Brownian motions when moving to large time scales. A way of intro-
ducing non-Gaussian correlations is also discussed in Sect. 2. We conclude by ad-
dressing the limits of this model and further research on high frequency correlation.

2 A Model for High Frequency Correlation

In this section, we start by reviewing the most famous empirical fact about high
frequency correlation, namely the Epps effect. Then we suggest a theoretical frame-
work that captures this salient feature of high frequency data.
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2.1 Empirical Fact: the Epps Effect

In 1979, T.W. Epps [1] observed that, in his own words:

Correlations among price changes Œ: : :� are found to decrease with the length
of the interval for which the price changes are measured.

This result was then recovered on more recent data and on several markets [4–7].
Two reasons for the Epps effect were advocated in the literature:

• Market orders on two assets are asynchronous: as �t ! 0

P
�
.
˚
Xi�t � X.i�1/�t / ¤ 0

� \ ˚.Yi�t � Y.i�1/�t / ¤ 0
��! 0 (1)

so that
P

i .Xi�t � X.i�1/�t /.Yi�t � Y.i�1/�t / ! 0, where Xi�t and Yi�t are
the prices of two assets recorded at time i�t (�t being the sampling period)
with any scheme of interpolation (previous-tick, linear, etc. . . ). Indeed, when
sampling prices at very high frequency, it is highly unlikely that both assets will
experience a price jump.

• Information needs a human time scale to be processed [2]. On financial markets,
some assets, called the leaders, which are often the most liquid, incorporate infor-
mation onto their prices faster than others, called the laggers. As a result, when
dealing with two assets that exhibit a so-called lead-lag relationship, there will be
only partial correlation at timescales shorter than the characteristic lead-lag time.

Fig. 1 illustrates the Epps effect on French high frequency data. The stocks
studied are BNPP.PA;SOGN.PA;RENA.FP;VLOF.PA;LVMH.PA;LYOE.PA dur-
ing the time period from 2008-02-04 to 2008-03-20. Clearly, the correlation is al-
most nil when sampling at few seconds of trading. The correlation converges to an
asymptotic level after about half an hour of trading.
As a testimony that the Epps effect is not only due to asynchrony, Fig. 2 plots

the empirical probability of having both assets jumping in a time window of a given
length for the same three pairs of stocks. Obviously, this probability is quite small
for few seconds. It is noteworthy that the characteristic time of this probability is
not only smaller than the Epps effect one but is also the same for all the three pairs
of stocks. If asynchrony was to be the sole reason for the Epps effect, then all the
Epps curves should converge after about ten minutes.

2.2 Correlated Point Processes as a Model for Correlation

Because of the existence of a minimal price change on markets, called the tick,
prices are closer to point processes rather than diffusions, which is the standard
assumption for daily data. When looking at several assets, a natural question that
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Fig. 1 Correlation coefficient for three pairs of French stocks as a function of the sampling period
of price changes

arises is therefore how to correlate point processes. As a point process is fully de-
scribed by either the associated counting process or the intensity process, there are
basically three ways of addressing the issue of correlation, that we explain in Ta-
ble 1.

Table 1 Four ways of correlating two point processes

N2 �2

N1 sync. jumps Hawkes processes
(ex: N2 D N1 CN0) �2 D f .N1; : : :/

�1 async. jumps
�’s must be random

From the microstructure of markets point of view, the upper left solution is un-
realistic because it is highly unlikely that two market orders on two different assets
are executed at the very same time. Therefore, the most appropriate solution is to
use correlated stochastic intensities. The upper right solution, i.e. Hawkes processes,
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Fig. 2 Empirical probability of having both prices jumping in a time window of a given length as
a function of this length for three pairs of French stocks

can be interpreted as particular choice for the correlation structure: past events on
one asset tend to trigger (or inhibit) events on the other asset, so that correlation is
endogenous.
Let us consider the following model:

dP i
t D �P i

�
dN i;C

t � dN i;�
t

�
(2)

where

• P i
t is the price of asset i at time t . It can be all kind of prices: last traded price,
midprice, best limit, etc. . .

• �P i is the jump size for asset i . It is assumed to be constant for the sake of
simplicity.

• N
i;C
t (resp. N i;�

t ) is the number of market orders that triggered upward (resp.
downward) price changes for asset i up to time t .

This model is a pure price model in the sense that it does not explicitly take into
account the dynamics of the order book, which impacts�P i . In this model, we can
explicitly compute the Epps curve1:

1 See Appendix A for the proof.
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��t D Corr
�
dP 1�t ; dP

2
�t

� D aq
b0 C b1

�t
C b2

�t2

(3)

where

a D Cov
�
�1;C � �1;�; �2;C � �2;��

b0 D Var
�
�1;C � �1;��Var ��2;C � �2;��

b1 D E
�
�1;C C �1;��Var ��2;C � �2;��CE ��2;C C �2;��Var ��1;C � �1;��

b2 D E
�
�1;C C �1;��E ��2;C C �2;�� :

The features of ��t are:

• ��t ! 0 as �t ! 0,
• ��t ! ap

b0
D Corr

�
�1;C � �1;�; �2;C � �2;�� as �t ! C1,

• ��t is increasing and concave,

which reproduce most of the curves plotted on Fig. 1. In the case of time-dependent

intensities
�
�
1;˙
t ; �

2;˙
t ; t � 0

�
, we get

��t D Corr
�
dP 1�t ; dP

2
�t

� D a�tq
b0;�t C b1;�t

�t
C b2;�t

�t2

(4)

a�t D Cov

0@ 1

�t

�tZ
0

�
�1;Cs � �1;�s

�
ds;

1

�t

�tZ
0

�
�2;Cs � �2;�s

�
ds

1A

b0;�t D Var

0@ 1

�t

�tZ
0

�
�1;Cs � �1;�s

�
ds

1AVar
0@ 1

�t

�tZ
0

�
�2;Cs � �2;�s

�
ds

1A

b1;�t D E

0@ 1

�t

�tZ
0

�
�1;Cs C �1;�s

�
ds

1AVar
0@ 1

�t

�tZ
0

�
�2;Cs � �2;�s

�
ds

1A

C E
0@ 1

�t

�tZ
0

�
�2;Cs C �2;�s

�
ds

1AVar
0@ 1

�t

�tZ
0

�
�1;Cs � �1;�s

�
ds

1A

b2;�t D E

0@ 1

�t

�tZ
0

�
�1;Cs C �1;�s

�
ds

1AE
0@ 1

�t

�tZ
0

�
�2;Cs C �2;�s

�
ds

1A :
In particular, the use of time-dependent intensities allows for non-monotonous

shapes of ��t .
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Fig. 3 shows least squares fits of the empirical curves with Eq. 3. The last fit is
not as accurate as the two firsts because the Epps curve is not monotonous. This is
the typical case where time-dependent intensities are needed to achieve a better fit.
The least squares fit is not really natural and can not allow us to decide whether

our model is sophisticated enough to reproduce market mechanisms or not. We
should rather use maximum likelihood or moments estimation. If our model is right,
then the asymptotic value of the correlation should be equal to Corr

�
�1;C � �1;� ,

�2;C � �2;��, that we approximate by the empirical correlation of the imbalances of
upwards/downwards moves Corr

�
N 1;C �N 1;�; N 2;C �N 2;��. We also compute

the correlation of the imbalances of buy/sell market orders and the correlation of the
total number of trades Corr

�
N 1;C CN 1;�; N 2;C CN 2;�� for comparison. Fig. 4

shows how these quantities behave.

Fig. 3 Least squares fit of Eq. 3 for three pairs of French stocks
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Fig. 4 Comparison between various correlations for three pairs of French stocks

The asymptotic level of the empirical correlation is rather far from what the
model predicts, i.e. the upwards/downwards imbalance correlation. So there might
be other market mechanisms that are important to take into account. In particular, it
seems that the correlation of returns is close to the correlation of the total number
of trades Corr

�
N 1;C CN 1;�; N 2;C CN 2;��, which is a good proxy for the corre-

lation of the variances of returns Corr
��
dP 1

�2
;
�
dP 2

�2�
.

3 Large Scale Limit

So far we have been concernedwith high frequency correlationmodelling.Wemight
be interested in how a model behaves after a long time, a day, say. More stylized
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facts are known about daily time series [3]. In particular, we would like our model
on a daily scale to

• exhibit a diffusive behavior: Var .dP�t / / �t ;
• display non-Gaussian tails for the distribution of returns;
• reproduce volatility clustering;
• allow for a non-Gaussian correlation structure, such as extreme correlations.

In order to study the large scale limit of the point process model, let us consider
the special case of Hawkes processes, which was introduced in [8]

dP i;.ı/
t D �P i

p
ı
�
dN i;C

t=ı
� dN i;�

t=ı

�
�

i;˙
t D �C

tZ
0

�.t � s/dN i;�
s C

tZ
0

 .t � s/dN j;˙
s

with the stationarity constraint that the spectral radius of the matrix of the L1-norm
of regression kernels is strictly less than one. The large scale limit is reached as
ı ! 0. It can be shown2 that this model converges to correlated Brownian motions

dP i;0
t D �:�Pi :C

�
dB i

t CD:dBj
t

�
� WD

s
2�

1 � .k�k C k k/

C WD 1C k�k
.1C k�k/2 � k k2

D WD k k
1C k�k

where .B1; B2/ is a standard bi-dimensional Brownian motion. So this model
achieves a diffusive behaviour but fails to reproduce non-Gaussian tails and non-
Gaussian correlation and volatility clustering.
We suggest a way of making the correlation structure more complex by introduc-

ing a common exogenous noise in the dynamics of the intensities

dP i;ı
t D �Pi

p
ı
�
dN i;C

t=ı
� dN i;�

t=ı

�
�

i;˙
t D �C

tZ
0

�.t � s/dN i;�
s C

tZ
0

 .t � s/dN j;˙
s CMṫ :

2 See Appendix B for the proof.
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Then the diffusive limit reads

dP i;0
t D �Pi :C

�
�
�
dB i

t CD:dBj
t

�
C E:dM 0

t

�
� WD

s
2�

1 � .k�k C k k/

C WD 1C k�k
.1C k�k/2 � k k2

D WD k k
1C k�k

E WD 1C k�k C k k
1C k�k

M 0
t WD M

0;C
t �M 0;�

t WD lim
ı!0

p
ı

t=ıZ
0

�
MC

s �M�
s

�
ds:

As a result, the correlation coefficient reads

� D 2�2D C E2 dhM 0it
dt

�2 .1CD2/C E2 dhM 0it
dt

which is stochastic as long as
dhM 0it

dt is3. For instance, M 0 can be interpreted as
a market driver which is common to all stocks. Therefore the correlation depends
on the market volatility. Indeed, many studies on daily correlation matrices tend to
show that the largest part of the spectra of the correlation is explained by a market
factor, rather than by direct interactions between stocks.

4 Conclusions and Further Research

We studied a framework for high frequency correlation modelling based on point
processes. This model exhibits a correlation structure that depends on the time scale,
in agreement with the Epps effect. However, it seems that there are still market
mechanisms to be included to make it more in agreement with real data.
There are still open questions regarding high frequency correlation such as lead-

lag estimation [9,10] and modelling. Furthermore, the role played by the order book
shape in the dynamics of correlation has never been studied. We are also investigat-
ing ways of achieving better fits of empirical data by adding new parameters in the
dynamics of the intensities of market orders, such as an exogenous noise.

3 The brackets stand for the quadratic variation of a stochastic process.
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Appendix A

Standard computations show that

Cov
�
dP 1�t ; dP

2
�t

� D �P 1�P 2
�

Cov
�
N
1;C
�t ; N

2;C
�t

�
C Cov

�
N
1;�
�t ; N

2;�
�t

��
� Cov

�
N
1;C
�t ; N

2;�
�t

�
� Cov

�
N
1;�
�t ; N

2;C
�t

� �
Var

�
dP i

�t

� D �
�P i

�2 �
Var

�
N

i;C
�t

�
C Var

�
N

i;�
�t

�
� 2Cov

�
N

i;C
�t ; N

i;�
�t

��
and

Cov
�
N
1;a
�t ; N

2;b
�t

�
D E

�
Cov

�
N
1;a
�t ; N

2;b
�t

�
j�1;a; �2;b

�
C Cov

�
E
�
N
1;a
�t j�1;a

�
; E

�
N
2;b
�t j�2;b

��
D 0C�t2:Cov

�
�1;a; �2;b

�
for a; b 2 fC;�g and

Var
�
N

i;˙
�t

�
D �t:E

�
�i;˙�C�t2:Var

�
�i;˙� :

Finally, we get

Corr
�
dP 1�t ; dP

2
�t

� D aq
b0 C b1

�t
C b2

�t2

where

a D Cov
�
�1;C � �1;�; �2;C � �2;��

b0 D Var
�
�1;C � �1;��Var

�
�2;C � �2;��

b1 D E
�
�1;C C �1;��Var

�
�2;C � �2;��C E ��2;C C �2;��Var

�
�1;C � �1;��

b2 D E
�
�1;C C �1;��E ��2;C C �2;��

so that

lim
�t!0

Corr
�
dP 1�t ; dP

2
�t

� D 0
lim

�t!C1Corr
�
dP 1�t ; dP

2
�t

� D ap
b0
D Corr

�
�1;C � �1;�; �2;C � �2;�� :

In the case of time-dependent intensities, the same line of computing goes except
that �’s have to be replaced by their time average 1

�t

R tC�t

t
�.s/ds.
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Appendix B

Let us consider the following Hawkes model

dPt D �P
�
dNC

t � dN�
t

�
�ṫ D �C

tZ
0

�.t � s/dN�
s

where�P 2 RC and k�k < 1. We are looking for the diffusive limit of this model.
Therefore, we introduce the rescaled model

dP ı
t D �P

p
ı
�
dNC

t=ı
� dN�

t=ı

�
:

We are interested in the limit ı ! 0. Let us split the price into two parts: the
martingale and the compensator

dP ı
t D dM ı

t C dC ı
t

M ı
t D �P

p
ı

0B@�NC
t=ı
�N�

t=ı

�
�

t=ıZ
0

�
�Cs � ��s

�
ds

1CA
C ı

t D �P
p
ı

t=ıZ
0

�
�Cs � ��s

�
ds:

Regarding the compensator, we have

C ı
t D �P

p
ı

t=ıZ
0

�
�Cs � ��s

�
ds

D �k�k
tZ
0

dP ı
u

t�u
ıZ
0

�.x/

k�k dx ! �k�k dP 0t :

Let us compute the quadratic variation of the martingale part

˝
M ı

˛
t

�P 2
D ı

t=ıZ
0

�
�Cs C ��s

�
ds
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D 2�t C ı
t=ıZ
0

�
dNC

u C dN�
u

� t=ı�uZ
0

�.x/dx

D 2�t C ı
t=ıZ
0

dNC
u � �Cu duC dN�

u � ��udu
t=ı�uZ
0

�.x/dx

C ı
t=ıZ
0

�
�Cu C ��u

�
du

t=ı�uZ
0

�.x/dx

! 2�t
X
n�0

k�kn D
�

2�

1 � k�k
�
t

since

lim
ı!0

ı

t=ıZ
0

��
dNC

u � �Cu du
�C �

dN�
u � ��u du

�� t=ı�uZ
0

�.x/dx

D lim
ı!0

p
ı k�k �BCt C B�t

� D 0:
Therefore, we getM ı

t !
q

2�
1�k�k .�P /Bt by using the following lemma.

Lemma 1 Let M be a local martingale and < M >1WD limt!C1 < M >t .
Then

E

 
sup
t�0

M 2
t

!
� 4:E.< M >1/:

If these two quantities are finite, then M is a martingale which converges a.s.
and in L2 towards a random variableM1 as t ! C1.

Finally, the diffusive limit reads

dP 0t D
s

2�

1 � k�k
�P

1C k�kdBt :

In the case of a bivariate price model

dP i;ı
t D �Pi

p
ı
�
dN i;C

t=ı
� dN i;�

t=ı

�
�

i;˙
t D �C

tZ
0

�.t � s/dN i;�
s C

tZ
0

 .t � s/dN j;˙
s :
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The very same line of proof yields

dP i;0
t D �:�Pi :C

�
dB i

t CD:dBj
t

�
� WD

s
2�

1 � .k�k C k k/

C WD 1C k�k
.1C k�k/2 � k k2

D WD k k
1C k�k

so that the correlation coefficient of the two assets is constant

� D
D
P
1;0
t ; P 2;0

E
tphP 1;0it hP 2;0it D 2D

1CD2
:

Finally, we introduce an exogenous noise in the dynamics of the intensities
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�

i;˙
t D �C

tZ
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tZ
0
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We assume that there exists two random processes
�
M

0;˙
t ; t � 0

�
such that
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ı!0

p
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t=ıZ
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Mṡ ds DM
0;˙
t
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˝
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t
<1. Then the diffusive limit reads
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The Model with Uncertainty Zones for Ultra
High Frequency Prices and Durations:
Applications to Statistical Estimation
and Mathematical Finance

Christian Y. Robert and Mathieu Rosenbaum

1 Introduction

The goal of this note is to describe a model for ultra high frequency prices and
durations, the model with uncertainty zones developed in [27]. We also give some
results from [28] and [29] which show how it can be used in practice for statistical
estimation or in order to hedge derivatives. Before introducing this model, we briefly
recall the classical approaches of price modelling in the so-called microstructure
noise literature.

1.1 Microstructure Noise

Since the publication of the celebrated Black-Scholes article [6], continuous time
processes have become usual modelling tools in mathematical finance. Among these
processes, semi-martingales1 have a major role. Indeed, it is well known that the “no
free lunch” assumption is essentially only compatible with semi-martingale type
price dynamics, see [9]. However, since the middle of the nineties and the massive
availability of high frequency financial data (data recorded every second or even
millisecond), numerous empirical studies have shown that, over a short time period,
it is not reasonable to assume that prices are observations from a semi-martingale,
see for example [1,16]. Of course, one obvious reason for this is prices discreteness
(see Sects. 1.2 and 1.3). Thus, series of high frequency prices are not of the same
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1 To fix ideas, we have in mind in this note the case where these semi-martingales are continuous.
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nature as series of low frequency prices. Said differently, the scale invariance prop-
erty of Brownian type dynamics is only satisfied below some sampling frequency.
This phenomenon is called “microstructure noise”.

1.2 Additive Microstructure Noise

Assume here our time horizon is Œ0; 1�. A way of modelling prices enabling to take
into account this microstructure noise and to stay consistent with the mathematical
finance theory is the “additive microstructure noise approach”. This means that one
simply considers that the price Pt observed at time t D i=n; i D 0; : : : ; n is of the
form

log.Pi=n/ D log.Xi=n/C "n
i ; (1)

where X is a continuous-time semi-martingale which represents an efficient price
and "n

i is a microstructure noise term. Of course, one can always write Decomposi-
tion (1). The term “additive” means that in this approach, the statistician essentially
focuses on the properties of the noise process "t D Pt � Xt . This kind of model is
probably the most simple way to obtain:

• data close to data from a continuous-time semi-martingale in the low frequencies:
Pi=n � Pj=n � Xi=n � Xj=n as soon as .i � j /=n is large enough;

• data very different from those of a continuous-time semi-martingale in the high
frequencies, the noise term becoming important at these scales.

In the framework of model (1), simple considerations enable to deduce elementary
desirable properties for the observed price and the microstructure noise. First, recall
that

(i) Observed prices are discrete.

Indeed, market prices are on a tick grid. This is essentially incompatible with ob-
servations of a semi-martingale at exogenous sampling times. Remark that the im-
portant impact of this discretization effect on various statistical procedures has been
emphasized since the middle of the eighties, see for example [2, 8, 14]. Let us also
recall a well known stylized fact:

(ii)We observe quick oscillations of the transaction price between two values (“bid-
ask bounce”).

Consider now the quadratic variation of .logXt /t�0 and the covariation between
."t /t�0 et .logXt /t�0. These quantities are respectively defined by the following
formulae (provided they make sense):

ŒlogX�t D P- lim
n!1

nX
jD1

�
log.Xsj;n

/� log.Xsj�1;n/
�2
;

Œ"; logX�t D P- lim
n!1

nX
jD1

."sj;n
� "sj�1;n/

�
log.Xsj;n

/ � log.Xsj�1;n/
�
;
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for any deterministic sequence of partitions .0 D s0;n < s1;n < : : : < sn;n D t/

such that supj fsjC1;n � sj;ng tends to zero as n goes to infinity. Assuming that
.Pt /t�0 is a finite activity jump process, we derive

ŒlogP; logX�t D ŒlogX�t C Œ"; logX�t D 0
and

Œ"�t D ŒlogP �t � ŒlogX�t � 2Œ"; logX�t D ŒlogP �t C ŒlogX�t :
It follows that:

(iii) Œ"�t is almost surely finite.

The standard approach of microstructure modelling considers an essentially iid mi-
crostructure noise, independent of the efficient price, with a law which does not
depend on the sampling frequency n. These kind of noise is, by extension, called
additive microstructure noise. The models with additive microstructure noise have
been largely used, notably in order to build estimating procedures for the integrated
volatility of the efficient price, see in particular [3, 4, 13, 33, 35, 36]. Note that these
models have been extended in several directions: heteroskedastic noise, correlated
with the efficient price, see [24] or contamination of the efficient price through
a complex Markov kernel, see [20, 26].
Standard additive microstructure noise models are convenient for carrying out

calculations and are not so unrealistic when sampling returns at some period larger
than about five minutes. Nevertheless, they do not satisfy any of the properties (i),
(ii), (iii). Indeed, in the ultra high frequencies, errors due to price discreteness and
diurnal patterns lead to a non-linear dependence between the microstructure noise
and the efficient price and to an intricate heteroskedastic time dependence for the
noise. Thus, it is natural to consider models with rounding errors.

1.3 Model with Rounding Errors

In this section, we mention a very simple model allowing to satisfy properties (i),
(ii), (iii), together with the assumption of a semi-martingale efficient price. The idea
is to focus on properties of the observed price itself, not of the microstructure noise.
Thus, it is very natural to consider the model with rounding errors introduced in [10].
In this model, the efficient price is a Brownian diffusion Xt and we observe the
sample

.X
.˛n/

i=n
; i D 0; : : : ; n/;

where X .˛n/

i=n
D ˛nbXi=n=˛nc: Therefore, X .˛n/

i=n
is the observation of Xi=n with

rounding error ˛n (the tick size), with ˛n ! 0. In this framework, prices are dis-
crete and behave like a diffusion process in the low frequencies, the rounding effect
becoming negligible. Moreover, property (ii) and, for some specifications of ˛n,
(iii), are satisfied.
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It is shown in [30] that one can also build estimator of the integrated volatility of
the efficient price process in this model. Interestingly enough, estimators built in the
additive microstructure noise case are not robust in the rounding framework when
˛n goes to zero too slowly, see [26]. Remark also that beyond the will to reproduce
property (iii), the assumption ˛n ! 0 is necessary from a statistical point of view.
Indeed, one can not estimate the integrated volatility if ˛n is constant, see [20].

1.4 Towards a Joint Dynamic for Prices and Durations

Assuming the price is a semi-martingale observed with rounding error is not entirely
satisfying. First, such model is not realistic in the ultra high frequencies since it
produces too many jumps (because the sample path crosses an infinite number of
times each level it reaches). Mostly, durations are not modelled, only an exogenous
sampling is considered. Therefore, if the practitioner wants to use such model, the
following questions arise:

• What is the right sampling frequency to choose: 1 second? 1 minute? 5 minutes?
• What is the right price to choose? Bid price? Mid price? VWAP Price? Last
traded price?

In Sect. 2, we explain a model which is relevant and allows to avoid the preceding
questions. Statistical applications of this model are given in Sect. 3 and its use for
hedging derivatives is explained in Sect. 4.

2 Model with Uncertainty Zones

We consider in [27] a model for both prices and durations, the model with uncer-
tainty zones. This model enables to satisfy (i), (ii), (iii) and the main stylized facts
of high frequency data (see [12, 15]), in particular:

• a negative autocorrelation of the returns, which vanishes when the frequency
decreases (in calendar time and transaction time);

• intraday seasonalities and specific relations between variables. For example, the
U shape of the intraday volatility and an inverse relation between durations and
volatility.

Beyond reproducing the empirical features, we insist on the fact that a financial
model is really of interest only if the practitioner can use it. We show in Sect. 3
how the model can be used in order to estimate relevant quantities for trading and
in Sect. 4 how it enables to compute hedging errors in a microstructure context.

2.1 Description of the Model

We describe now the model with uncertainty zones for the last traded price. In an
idealistic framework, where the efficient price would be observed, market partici-
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pants would trade when the efficient price crosses the tick grid. In practice, there is
some uncertainty about the efficient price value so that market participants are reluc-
tant to price changes. Hence, there is a modification of the transaction price only if
some buyers and sellers are truly convinced that the efficient price is sufficiently far
from the last traded price. We introduce a parameter 	 that quantifies the aversion to
price changes (with respect to the tick size) of the market participants and propose
a model that takes into account this aversion.
Let .Xt /t�0 denote the theoretical, efficient price of the asset. On a rich enough

filtered probability space .˝; .Ft /t�0;P/, we assume that the logarithm of the effi-
cient price is aFt -adapted continuous semi-martingale of the form

d logXt D atdt C �t�dWt ;

where .Wt /t�0 is a standardF -Brownian motion, .at /t�0 is a progressivelymeasur-
able process with locally bounded sample paths and .�t /t�0 is a positiveFt -adapted
process with càdlàg sample paths.
The tick grid where transaction prices are bound to lie on is defined as fk˛Ik2Ng,

with ˛ the tick size. For k 2 N and 0 < 	 < 1, we define the zone Uk by Uk D
Œ0;1/� .dk; uk/ with

dk D .k C 1=2� 	/˛ and uk D .k C 1=2C 	/˛:
Thus, Uk is a band around the mid-tick grid value .kC 1=2/˛, see Fig. 1. Note that
when 	 is smaller than 1=2, there is no overlap between the zones.
We assume that the transaction price may jump from price k0˛ to price k˛ with

k0 ¤ k only once the efficient price exited down the zone Uk or exited up the zone
Uk�1 and provided that market conditions are favorable for a transaction to occur.
In a way, the transaction price only changes when the efficient price is close from
a new multiple value of ˛ and market participants want to trade. The zones .Uk/k2N

represent bands inside of which the efficient price can not trigger a change of the
transaction price. Consequently, they will be referred to as the uncertainty zones.
More specifically, let us precise the construction of the sequence .�i /i�0 of the

exit times from the uncertainty zones which will lead to a change in the transaction
price. Let �0 D 0 and assume without loss of generality that �1 is the exit time
of .Xt /t�0 from the set .dk0�1; uk0/ where k0 D X

.˛/
0 =˛, with X .˛/

0 the value of
X0 rounded to the nearest multiple of ˛. We introduce a sequence .Li /i�1 of F�i

-
measurable discrete random variables which represent the absolute value in number
of ticks of the price jump between the i -th and the .i C 1/-th transaction leading to
a price change. As explained later, the distribution of this variable will depend on
the value of some market quantities at time �i . Then define recursively �iC1 as the
exit time of .Xt /t>�i

from the set .dki�Li
; ukiCLi�1/, where ki D X

.˛/
�i
=˛, that is

�iC1 D inf
n
t W t > �i ; Xt D X .˛/

�i
�˛.Li � 1

2
C	/ or Xt D X .˛/

�i
C˛.Li� 1

2
C	/

o
:

In particular, if X�i
D dj for some j 2 N, �iC1 is the exit time of .Xt /t>�i

from
the set .dj�Li

; ujCLi�1/, and if X�i
D uj for some j 2 N, �iC1 is the exit time of

.Xt /t>�i
from the set .dj�LiC1; ujCLi

/.



208 C.Y. Robert, M. Rosenbaum

Finally, let t0 D 0 and P0 D X
.˛/
0 . We assume that the couples .ti ; Pti / satisfy

for i � 1
�i � ti < �iC1 and Pti D X .˛/

�i
:

It means that, between �i and �iC1, at least one transaction has occurred at price
Pti and ti is the time of the first of these transactions. The difference ti � �i can be
viewed as the delay caused by the reaction times of the market participants and/or
by the trading process.
We also assume that the jump sizes are bounded (what is empirically not restric-

tive) and denote by m their maximal value. For k D 1; :::; m and t > 0, let

N
.a/

˛;t;k
D
X
ti�t

If.Pti
�Pti�1/.Pti�1�Pti�2 /<0 and jPti

�Pti�1 jDk˛g

and
N

.c/

˛;t;k
D
X
ti�t

If.Pti
�Pti�1/.Pti�1�Pti�2 />0 and jPti

�Pti�1 jDk˛g

be respectively the number of alternations and continuations of k ticks. An al-
ternation (continuation) of k ticks is a jump of k ticks whose direction is op-
posite to (the same as) that of the preceding jump, see Fig. 1. We now precise
the conditional distribution of the jumps in ticks between consecutive transac-
tion prices. Let .�t /t�0 be a Ft -adapted multidimensional continuous Ito semi-
martingale with progressively measurable with locally bounded sample paths and
positive Ft -adapted volatility matrix whose elements have càdlàg sample paths.
We define the filtration E as the complete right-continuous filtration generated by
.Xt ; �t ; N

.a/

˛;t;k
; N

.c/

˛;t;k
; k D 1; : : : ; m/. We assume that conditional on E�i

, Li is
a discrete random variable on ŒŒ1; m�� satisfying

PE�i
ŒLi D k� D pk.��i

/; 1 � k � m; (2)

for some unknown positive differentiable with bounded derivative functions pk . In
practice, �t may represent quantities related for example to the traded volume, the
bid-ask spread, or the bid and ask depths. For the applications, specific form for the
pk are given in [27].

2.2 Discussion

• The model with uncertainty zones accommodates the inherent properties of
prices, durations and microstructure noise together with a semi-martingale ef-
ficient price. In particular, this model allows for discrete prices, a bid-ask bounce
and an inverse relation between durations and volatility. Moreover the usual
behaviors of the autocorrelograms and cross correlograms of returns and mi-
crostructure noise, both in calendar and tick time, are reproduced. Eventually, it
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Fig. 1 Example of trajectories of the latent price and of the observed price. The gray crosses denote
the exit points associated to the �i

leads to jumps in the price of several ticks, the size of the jumps being deter-
mined by explanatory variables involving for example the order book. Mostly,
the model with uncertainty zones is clearly validated on real data. These results
are studied in details in [27].

• As explained in the previous section, 	 quantifies the aversion to price changes
(with respect to the tick size) of the market participants. Indeed, 	 controls the
width of the uncertainty zones. In tick unit, the larger 	, the farther from the last
traded price the efficient price has to be so that a price change occurs. In some
sense, a small 	 .< 1=2/ means that the tick size appears too large to the market
participants and a large 	 means that the tick size appears too small.

• There are several other ways to interpret the parameter 	, notably from a prac-
titioner’s perspective. For example, one can think that in the very high frequen-
cies, the order book can not “follow” the efficient price and is reluctant to price
changes. This reluctancy could be characterized by 	. Another possibility is to
view 	 as a measure of the usual prices depth explored by the transaction vol-
umes.
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2.3 Properties of the Last Traded Price and Its Durations

Fig. 2 represents the volatility function used in our simulation together with the
durations between price changes. The chosen U-shaped form for the volatility is
classical and the durations have a behavior which is in inverse relation to those of
the volatility. This reproduces a usual empirical characteristic of high frequency
financial data, see for example [12, 15].
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On Fig. 3, we show the sample paths of the last traded and efficient prices over
half an hour. The commonly observed numerous and quick oscillations of one tick
of the last traded price (bid-ask bounce) are reproduced thanks to the behavior of
the semi-martingale efficient price around the uncertainty zones (	 < 1=2).
We finally draw some autocorrelation functions for the logarithmic returns on

Fig. 4. Note that the aim of such graphs is just to show that our model reproduces
the stylized facts of real data. Indeed, it is shown in [27] that very similar patterns
are observed on real data. However, one has to be cautious with their interpretation
because of stationary issues. Thanks to the uncertainty zones, we observe in our
model the stylized fact of a significative negative first order correlation between the
returns for sampling frequencies between one and thirty seconds. Moreover, in tick
time, many of the higher order autocorrelations are significant and systematically
alternate sign.
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3 Statistical Procedures

In this section, we show that the model with uncertainty zones is very convenient in
order to design statistical procedures.

3.1 Estimation of the Efficient Price

In the model with uncertainty zones, it is extremely easy to build estimators of
relevant quantities. Indeed, we have the following nice property:

X�i
D Pti � ˛

�
1

2
� 	

�
sign.Pti � Pti�1/:

Thus, we can very simply retrieve the value of the efficient price at time �i from Pti ,
Pti�1 and 	. Remark here that the Pti and Pti�1 are the transaction prices at times ti
and ti�1, hence observable. The parameter 	 can be estimated without difficulty (see
next section). Therefore, we can estimate the efficient price at time �i the following
way:

OX�i
D Pti � ˛.

1

2
� O	/sign.Pti � Pti�1 /: (3)

This relation is very important in practice: we are able to retrieve the efficient price.
Thus, any statistical procedure designed for a semi-martingale can be applied in the
microstructure context, provided one uses the OX�i

and not the Pti . Nevertheless,
one should be careful. First we do not have the exact values of the prices but only
estimations. Mostly, the price is estimated at times �i , endogenous stopping times.
This is a major difficulty in order to prove properties of estimators. Indeed, the usual
theorems essentially assume the observation times are exogenous. Thus they cannot
be used in this context.

3.2 Estimation of �

We define the estimator of 	 by

O	˛;t D
�
0 _

mX
kD1

�˛;t;ku˛;t;k

�
^ 1;

with

�˛;t;k D
N

.a/

˛;t;k
CN .c/

˛;t;kPm
jD1



N

.a/
˛;t;j CN .c/

˛;t;j

� and u˛;t;k D 1

2

 
k.
N

.c/

˛;t;k

N
.a/

˛;t;k

� 1/C 1
!
:
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The idea behind this estimator is that the u˛;t;k are consistent estimators of 	
for each k. The �˛;t;k are then natural weighting factors. Note in particular that

N
.c/
˛;t;1=N

.a/
˛;t;1 is an estimator of 2	. Consequently, if 	 is smaller than 1=2, we may

expect more alternations than continuations in the last traded price and conversely.
We assume ˛ tends to zero (which is a natural asymptotic, as in the rounding model

of Sect. 1.3). We have the following result, where
u:c:p:! denotes uniform conver-

gence in probability over compact sets included in Œ0; T �:

Theorem 3.1 As ˛ tends to 0,

O	˛;t

u:c:p:! 	:

Table 1 shows some daily estimations of 	 on assets of the CAC 40 index, the week
of 2007, January 15 (we use the usual abbreviations of the names of the companies).
These estimated values are remarkably stable within the week.

Table 1 Measures of � on CAC 40 assets, week of 2007, January 15

TICKER
O�

Day 1
O�

Day 2
O�

Day 3
O�

Day 4
O�

Day 5

AIRF 0.277 0.273 0.250 0.236 0.250
ALSO 0.189 0.215 0.199 0.199 0.194
BNPP 0.100 0.111 0.146 0.157 0.110
CAGR 0.193 0.242 0.238 0.215 0.209
DANO 0.076 0.110 0.086 0.081 0.110
EAD 0.179 0.243 0.256 0.234 0.227
FTE 0.192 0.221 0.246 0.274 0.192
RENA 0.167 0.274 0.190 0.294 0.279
SGOB 0.088 0.136 0.131 0.129 0.118
TOTF 0.048 0.058 0.083 0.065 0.069

3.3 Estimation of the Integrated Volatility

The integrated volatility of .Xt / on Œ0; t �, t � T , is defined by

IVt D
tZ
0

�2s ds:

In our framework, a natural idea for estimating this quantity is to consider the ap-
proximate realized volatility given by

bRV ˛;t D
X
ti�t

�
log. OX t

�i
/� log. OX t

�i�1
/
�2
;
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where for ti < t ,

OX t
�i
D Pti � ˛

�
1

2
� O	˛;t

�
sign.Pti � Pti�1/:

Let us now give the definition of stable convergence in law. Let Z˛ be a family of
random variables (taking their values in the space of càdlàg functions endowed with
the Skorokhod topology J1). Let ˛n be a deterministic sequence tending to zero as n
tends to infinity andI be a sub-�-field ofF . We say thatZ˛n convergesI -stably

to Z as ˛n tends to zero .Z˛n
I�L s! Z/ if for every I -measurable bounded real

random variable V , .V;Z˛n/ converges in law to .V;Z/ as n tends to infinity. This
is a slightly stronger mode of convergence than the weak convergence, see [19] for
details and equivalent definitions. Finally, we say that Z˛ convergesI -stably to Z

as ˛ tends to zero if for any sequence ˛n tending to zero,Z˛n
I�L s! Z.

Next we introduce the following notation: r1 and r2 are two .2m C 1/ valued
vectors defined by r1;1 D 1, r1;i D 0 for i D 2; : : : ; 2m C 1, r2;1 D 0 and for
i D 1; : : : ; m,

r2;2i D i C 	 � 1=2; r2;2iC1 D �i�1.i C 	 � 1=2/.i C 2	� 1/:
The processes .ft /t�0 and .�t /t�0 are defined by

ft D
tZ
0

'.�u/�
2
uX

2
udu; �t D

tZ
0

mX
kD1

2k.k � 1C 2	/
2k � 1C 2	 pk.�u/'.�u/�

2
udu;

with

'.�u/ D
0@ mX

jD1
pj .�u/j.j � 1C 2	/

1A�1 :
We are now able to state our limit theorem. Note that we are in the unusual situation
where the observation times are random and endogenous. The key idea for the proof
is to work in a modified time in which the observation times are equidistant and to
use stability properties of the convergence in law in the Skorohod space. Let DŒ0; T �
denote the space of càdlàg functions on Œ0; T � and > the transpose operator.We have
the following result:

Theorem 3.2 Let I be the filtration generated by the processes X and �. As ˛
tends to 0, we have

˛�1.bRV ˛;t �
tZ
0

�2s ds/
I�L s! .r>1 C

�t

ft

r>2 /
tZ
0

bfs
dWfs

;

in DŒ0; T �, where W is a .2mC 1/ Brownian motion which is defined on an exten-
sion of the filtered probability space .˝; .Ft /t�0;P/ and is independent of all the
preceding quantities and bs is a .2mC 1/� .2mC 1/ matrix defined in [28].
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Note that the assumptions on the efficient price are very weak. In particular, �u is
not necessarily an Ito semi-martingale as in [4] or [20]. Moreover, assuming that the
process � is observed and that we are able to estimate the functions pk (which is not
restrictive in practice, as shown in [27]), all the quantities in the asymptotic variance
can naturally be estimated. Thus, for practical use, confidence intervals can be built.

3.4 Estimation of the Integrated Covariation

We now turn to the problem of estimating the integrated covariation when two as-
sets are observed. In our context, one can not use the classical realized covariation
estimator for two reasons: the asynchronicity of the data and the presence of mi-
crostructure noise. The problem of the asynchronicity of the data has to be taken
with great care since intuitive ideas such as the previous tick interpolation may lead
to a systematic bias called Epps effect, see [18] and [34] for details. This issue has
been treated by Hayashi and Yoshida in [18]. Nevertheless, the proposed estimator
is in general not robust to microstructure noise, see [32]. We show in [28] that if
the Hayashi-Yoshida estimator is used on the estimated values of the efficient price
given by Eq. (3), it is consistent.
More precisely we consider a Ft -adapted bidimensional continuous Ito semi-

martingale .X .1/
t ; X

.2/
t / such that for j D 1; 2

Y
.j /
t D logX .j /

t D logX .j /
0 C

tZ
0

a.j /
u duC

tZ
0

� .j /
u� dW .j /

u

and

hW .1/;W .2/it D
tZ
0

�sds;

where �s is an adapted process with càdlàg sample paths such that for all s, �1 <
�s < 1. We impose the same assumptions on a.j / and �.j / as previously. The
quantities ˛.j /, 	.j /, L.j /

i , � .j /
i , t .j /

i and P .j /

t
.j /

i

are also defined in the same way as

previously. The usual Hayashi-Yoshida covariation estimator is given by

HYt D
X

t
.1/
i1
�t

X
t

.2/
i2
�t

�
log.P .1/

t
.1/
i1

/ � log.P .1/

t
.1/
i1�1

/
��
log.P .2/

t
.2/
i2

/ � log.P .2/

t
.2/
i2�1

/
�
vi1;i2

with
vi1;i2 D I

Œt
.1/
i1�1

;t
.1/
i1

�\Œt
.2/
i2�1

;t
.2/
i2

�¤˛:

Naturally, we define our estimator by

1RCV t D
X

t
.1/
i1
�t

X
t

.2/
i2
�t

�
log. OX .1/

�
.1/
i1

/ � log. OX .1/

�
.1/
i1�1

/
��
log. OX .2/

�
.2/
i2

/ � log. OX .2/

�
.2/
i2�1

/
�
vi1;i2 :
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We have the following theorem:

Theorem 3.3 Assume that for all k andm, the rank of t .m/

k
among the set of all the

t
.1/
i and t .2/j is the same as the rank of � .m/

k
among the set of all the � .1/

i and � .2/
j .

Suppose also that ˛.2/ D c˛.1/ with c > 0. As ˛.1/ tends to zero, we have

1RCV t

u:c:p:!
tZ
0

�s�
.1/
s � .2/

s ds:

Thus, the problem of estimating the integrated covariation of two assets is another
example which shows that our method consisting in estimating the values of the
efficient price is very convenient to adapt classical statistical procedures to the mi-
crostructure noise context.

4 Hedging Error and Microstructure Noise

In [29], we consider a very different problem. Indeed, we are interested in the issue
of hedging a European derivative in the context of the model with uncertainty zones.
In mathematical finance, the questions of pricing and hedging a derivative were
initially treated under the assumption of a “frictionless” market. The fundamental
conditions for such a market can be summarized as follows:

• It is possible to borrow and lend cash at a risk-free interest rate.
• The transaction price is equal to the efficient price, irrespectively of the volume
of the transaction and of its sign (buy or sell).

• One can buy or sell instantaneously and continuously.
• There are no transaction costs.
• The asset is perfectly divisible (it is possible to buy or sell any fraction of a share).
Moreover, short selling is authorized.

The failure of one of the preceding conditions makes the problem of hedging
a derivative security more complex. For example, the case of restrictions on short
selling is treated in [21] and the presence of liquidity costs is studied in [7]. The con-
sequences of transaction costs in conjunction with discrete-time hedging operations
has also been extensively studied, see among others [22, 23, 25].
In [29], we consider the model with uncertainty zones since it is quite a reason-

able model for ultra high frequency prices and durations. In particular, prices stay
on the tick grid. This has two important consequences. The first one is the impos-
sibility to buy or sell a share at the efficient price: the microstructure noise leads
to a cost (possibly negative) that can not be avoided. The second one comes from
the fact that the transaction price changes a finite number of times on a given time
period. Therefore, it is reasonable to assume that one waits for a price change before
rebalancing the hedging portfolio. Thus, we consider a framework where the second
of the preceding assumptions is no more in force and where the third one becomes
irrelevant.
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4.1 Hedging Strategies

We consider a European derivative security with expiration date T and payoff
F.XT /, where F is a regular enough payoff function2. We present in this section
our benchmark frictionless hedging strategy and two strategies adapted to our un-
certainty zone market. We assume in the remainder of the paper that all assets are
perfectly divisible and, without loss of generality, that the riskless borrowing and
lending rate is zero.

4.1.1 Benchmark Frictionless Hedging Strategy

The benchmark frictionless hedging strategy is those of an agent deciding (possi-
bly wrongly) that the volatility of the efficient price at time t is equal to �.t; Xt /,
for a regular enough function �.t; x/. If true, such an assumption on the volatility
enables to build a self-financing replicating portfolio of stocks and riskless bonds
whose marked to model price at time t is of the form C .t; Xt /. The function C
satisfies

PCt .t; x/C 1

2
�2 .t; x/ x2 RCxx .t; x/ D 0; C .T; x/ D F .x/

with PCt .t; x/ D @C .t; x/ =@t , RCxx .t; x/ D @2C .t; x/ =@x2.
Suppose the agent implements this strategy in a frictionless market. It leads to

a benchmark frictionless hedging portfolio whose value˘t satisfies

˘t D C .0; X0/C
tZ
0

PCx .u;Xu/ dXu:

Note that, if the model is misspecified,˘t is different from C .t; Xt/, see [11].
Finally, we assume that for someM > 0, there exists a sequence of closed sets

Sn 	 Œ0;M �, such that that the function C .t; x/ satisfies

j@
�CˇC .t; x/

@t�@xˇ
j < C1;

for all .t; x/ 2 fŒ0; T � 1=n/� Œ1=n;C1/g[ ˚ŒT � 1=n; T ��fŒ1=n;C1/= ıS ng
�
,

and
�n D inffT � 2=n � t � T;Xt 2 Sng

is such that PŒ�n > T � ! 1, with the convention inff;g D C1. Remark that for
example, if the benchmark frictionless hedging portfolio is built thanks to the Black-
Scholes model, the preceding assumption holds for a European call with strike K
takingSn D ŒK � 1=n;K C 1=n�.
2 This is a simplifying, slightly incorrect, framework since we should consider a payoff F .PT /.
However, the order of magnitude of the difference is clearly negligible in our context.
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4.1.2 Hedging Strategies in an Uncertainty Zone Market

We assume the real market is a model with uncertainty zones, with, for simplicity,
ti D �i for all i and where one can buy and sell at the last traded price, irrespec-
tively of the volume of the transaction and of its sign. So, we naturally impose
that the times when the hedging portfolio may be rebalanced are the times where
the transaction price moves3. Thus, we assume that the hedging portfolio can only
be rebalanced at the transaction times �i . Therefore, the trading strategies are here
piecewise constant. In this setting, we consider strategies such that, if �i is a re-
balancing time, the number of shares in the risky asset at time �i is PCx

�
�i ; X�i

�
.

In the next section, we consider two hedging strategies: (i) the hedging portfolio is
rebalanced every time that the transaction price moves, (ii) the hedging portfolio is
rebalanced only once the transaction price has varied by more than a selected value.

4.2 Asymptotic Results for the Hedging Error

In order to study the hedging error, we develop an asymptotic approach, in the spirit
of [5], [17] et [31]. In our setting, the microstructural hedging error is due to:

• discrete trading: the hedging portfolio is rebalanced a finite number of times;
• microstructure noise on the price: between two rebalancing times, the variation
of the market price (multiple of the tick size) differs from the variation of the
efficient price.

We analyze this microstructure hedging error in two steps. First we assume that there
is no microstructure noise on the price although the trading times are endogenous
(for all i , P�i

D X�i
): we expect more or less similar results as in [5], [17] and [31]

where exogenous trading times are considered. Second we assume the presence of
the endogenous microstructure noise and discussed the two hedging strategies.

4.3 Hedging Error Without Microstructure Noise on the Price

We first study the effect of discrete trading. Thus we assume here there is no mi-
crostructure on the prices, that is P�i

D X�i
. Let �.t/ D supf�i W �i < tg. The

hedging error can be written

L
.1/
˛;t D

tZ
0

Œ PCx.u;Xu/ � PCx.�.u/;X�.u//�dXu;

and we show the following result in [29]:

3 The agent is supposed to be price follower, which means that the transaction price never moves
because of its own trading.
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Theorem 4.1 As ˛ tends to 0,

N
1=2
˛;t L

.1/
˛;t

I�L s! L
.1/
t WD f

1=2
t

tZ
0

c
.1/
fs
dW .1/

fs
;

where W .1/ is a Brownian motion defined on an extension of the filtered probability
space .˝; .Ft /t�0;P/ and independent of all the preceding quantities, and c.1/

s is
such that

.c.1/
s /2 D 1

6
RC 2xx

�

s; X	s

�
�4
�
�	s

�
:

We see that the variance of the hedging error is proportional to reciprocal of the
number of rebalancing transactions and depends on the local volatility gamma of
the derivative security.

4.4 Hedging Error with Microstructure Noise

In the presence of microstructure noise on the price, the transaction prices differ
from the efficient prices. The hedging error is now given by

L
.2/
˛;t D

tZ
0

PCx .u;Xu/ dXu �
tZ
0

PCx.� .u/ ;X�.u//dPu:

Let


a .�t / D lim
˛!0

E E�i˛
ŒIf�X�i˛

�X�i˛�1
<0g� D

mX
kD1

k

2k � 1C 2	pk .�t /

be the asymptotic conditional probability that the next price change at time t is due
to an alternation and let

��1;a .�t / D lim
˛!0

E E�i˛
Œ˛�1j�X�i˛

jIf�X�i˛
�X�i˛�1

<0g�

D
mX

kD1

k.k � 1C 2	/
2k � 1C 2	 pk .�t /

be the asymptotic conditional expectation of the absolute value of the normalized
price change at time t when the price change is due to an alternation. We have the
following result:
Theorem 4.2 As ˛ tends to 0,

L
.2/
˛;t

I�L s! L
.2/
t WD

tZ
0

a
.2/
fs
ds C

tZ
0

b
.2/
fs
dXs C

tZ
0

c
.2/
fs
dW .2/

fs
;

in DŒ0; T �, where W .2/ is a Brownian motion defined on an extension of the filtered
probability space .˝; .Ft /t�0;P/ and independent of all the preceding quantities,
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and a.2/
s , b.2/

s and c.2/
s are such that

a.2/
s D �.1 � 2	/ RCxx

�

s ; X	s

�
��1;a

�
�	s

�
'
�
�	s

�
b.2/

s D .1 � 2	/ PCx

�

s ; X	s

�
��1;a

�
�	s

�
'
�
�	s

�
.c.2/

s /2 D .1 � 2	/2 PC 2x
�

s; X	s

�
'
�
�	s

� �

a

�
�	s

�
'�1

�
�	s

� � .��1;a ��	s

�
/2
�
:

It is worth noticing that the microstructural hedging error process is not renormal-
ized as in the previous case. It means that the hedging error does not vanish even if
the number of rebalancing transactions goes to infinity. However, if 	 D 1=2, the
changes of the transaction prices coincide with the changes of the efficient prices
at the exit times of the uncertainty zones (�P�i

D �X�i
) and the error due to the

microstructure noise on the price vanishes.
The first two components of the asymptotic hedging error are quite unusual in this

kind of asymptotic distribution theories. The first term can be interpreted as a bias
due to implicit transaction costs linked to bid-ask bounce. The second one is due to
the asymmetry between alternations and continuations. Indeed, when an alternation
occurs, �P�i

� �X�i
D .1 � 2	/sign.�X�i

/ while, when a continuation occurs,
�P�i

��X�i
D 0. Moreover, remark that the quadratic variation of the asymptotic

hedging error is

.1 � 2	/2
tZ
0

PC 2x .s; Xs/ 
a .�s/ dfs :

It now depends on the local volatility delta of the derivative security and on the pro-
portion of alternations. Consequently, the variance of the microstructural hedging
error increases with the position delta and the proportion of alternation in the price.
Indeed, compared with the previous case, one now faces an additional microstruc-
tural hedging error of the first order.

4.5 Optimal Rebalancing Level in the Presence of Microstructure
Noise

We now build strategies where the portfolio is rebalanced when the price moves
“significantly”. It is probably more natural than a timely based rebalancing strategy
and should reduce the impact of the microstructure noise. So we now assume that
the hedging portfolio is rebalanced only once the price changes of l˛ ticks. For
simplicity we assume here that m D 1. We choose l˛ such that l˛ ! 1 and
˛l˛ ! 0, as ˛ ! 0. In this way hedging errors due respectively to microstructure
noise on the price and discrete-time rebalancing will disappear as the tick goes to
zero. The hedging error is now given by

L
.3/
˛;t D

tZ
0

PCx.u;Xu/dXu �
tZ
0

PCx.�
.l/.u/;X�.l/.u//dPu:
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with �.l/.t/ D supf� .l/
i W � .l/

i < tg and the � .l/
i are the stopping times associated to

moves of l˛ ticks. We have the following result:

Theorem 4.3 Let l˛ D b˛�1=2c. As ˛ tends to 0,

.N˛;t/
1=4L

.3/
˛;t

I�L s! L
.3/
t WD .f

.l/
t /1=4

�
� tZ
0

a
.3/

f
.l/

s

ds C
tZ
0

b
.3/

f
.l/

s

dXs C
tZ
0

c
.3/

f
.l/

s

dW .3/

f
.l/

s

�
;

where W .3/ is Brownian motion defined on an extension of the filtered probability
space .˝; .Ft /t�0;P/ and independent of all the preceding quantities, and b.3/

s

and c.3/
s are such that

a.3/
s D �.1 � 2	/ RCxx.
s ; X	s

/

b.3/
s D .1 � 2	/

2
PCx.
s ; X	s

/

.c.3/
s /2 D .1 � 2	/2

4
PC 2x.
s; X	s

/C 1

6
RC 2xx.
s; X	s

/:

This optimal strategy (in term of choice of l˛) allows to reduce significantly the
hedging error in the presence of microstructure noise. Interestingly, the quadratic
variation of the asymptotic hedging error now depends both on the delta and on the
gamma of the derivative security.

4.6 One Numerical Study

We give in this section numerical results about the hedging errors of a European
call with strike K D 100 and maturity T D 1. We consider the following model
for the underlying asset for the trading period. The efficient price is given by the
Black-Scholes dynamics

dXt D �XtdWt ; x0 D 100; t 2 Œ0; T �;
where � D 0:01 and we take ˛ D 0:05, 	 D 0:05 andm D 1. These parameters are
chosen to be in agreementwith real data, see [27]. Finally, we assume the benchmark
strategy of the agent is the Black-Scholes strategy with � D 0:01. We give here
statistics for the number of rebalancings (NR) and the histogram of the hedging

Table 2

Average of NR Standard Deviation of NR

Every price move rebalancing 3487 108
5 ticks rebalancing 20.22 3.55
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Fig. 5 Histograms ofL
.i/

˛;T , for i D 1 (in green, error due to discrete trading times), 2 (in red, error
due to discrete trading times and microstructure noise), 3 (in grey, error in the case of “optimal”
rebalancing)

error for the different strategies over 1000 Monte-Carlo simulations (Fig. 5). Note
that L.3/

˛;T is computed for price moves of 5 ticks.
We clearly see that rebalancing the portfolio each time the price changes induces

a strong negative bias in the hedging error. Rebalancing less frequently enables to
significantly improve the hedging error, which is in agreement with the theoretical
results.
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Exponential Resilience and Decay
of Market Impact

Jim Gatheral, Alexander Schied and Alla Slynko

Abstract. Assuming a particular price process, it was shown by Gatheral in [6], that
a model that combines nonlinear price impact with exponential decay of market im-
pact admits price manipulation, an undesirable feature that should lead to rejection
of the model. Subsequently, Alfonsi and Schied proved in [2] that their model of the
order book which has nonlinear market impact and exponential resilience, is free
of price manipulation. In this paper, we show how these at-first-sight incompatible
results are in reality perfectly compatible.

1 Two Different Generalizations of the Obizhaeva
and Wang Model

We begin by reviewing the models presented in [6] and [1] respectively, both of
which turn out to be (different) generalizations of the model of [8]. In what follows,
we work in continuous time and consider only absolutely continuous strategies. Al-
though this restriction might at first seem very limiting, one can think of approxi-
mating any trading strategy (which may even include block trades) by a sequence of
interval VWAP trades.

1.1 The Gatheral (JG) Model

In [6], the stock price St at time t is given by

St D S0 C
tZ
0

f .vs/G.t � s/ ds C
tZ
0

� s dZs (1)
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where vs is our rate of trading in dollars at time s < t , the instantaneous market
impact function f .vs/ represents the impact of trading at time s and the decay kernel
G.�/ is a convex monotonic decreasing function of its argument. Z is a Brownian
motion. St thus follows an arithmetic random walk with a drift that depends on the
accumulated impacts of previous trades.
Expression (1) may be regarded as a generalization of processes previously con-

sidered by [4], [5] and [8].
Assuming the price process (1), the cost CJ G.X/ associated with an absolutely

continuous trading strategy X is given by

CJ G.X/ D
TZ
0

vt dt

tZ
0

ds f .vs/G.t � s/ (2)

with vt D PXt .

1.2 A Version of the Alfonsi–Fruth–Schied (AFS) Model
in Continuous Time

[1] and [2] assume a continuous ask price distribution for available shares in the limit
order book: the number of shares offered at a price x greater than the current stock
price is given by '.x/ dx where '.�/ (assumed continuous) is the density of the
limit order book. All trade executions are assumed to be with market orders. Each
time a market (buy) order arrives, it eats into the order book; limit order arrivals
replenish the order book, up to the original target density '.x/. The volume impact
Et quantifies the size of the resulting hole in the order book at time t . The increase
in Et resulting from the arrival of market orders is offset by the decrease in Et

resulting from the arrival of limit orders into the order book.
In the discrete time model of [1] and [2], as illustrated in Fig. 1, when a trade of

size �t is placed at time t , Et changes to EtC D Et C �t . Following the assumption
of exponential resilience of the order book, the size of the hole at time u > t is
modeled as

Eu D e�% .u�t/EtC D e�% .u�t/ .Et C �t / :
By induction, we see that

Eu D
X
t<u

e�% .u�t/ �t :

In an obvious generalization of this discrete time model to continuous time and from
exponential to arbitrary resilience, we describe the evolution of the volume impact
process by

Et D
Z

Œ0;t/

 .t � s/ dXs
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Order density ϕ(x)

ϕ(Dt)
ϕ(Dt+)

Et+ − Et = ξEt

Price level

Fig. 1 Schematic of the order book in the AFS model. When a trade of size � is placed at time t ,
Et changes toEtC D Et C � andDt D F �1.Et/ toDtC D F �1.EtC/ D F �1.Et C �/

where the strategy X may consist of both block-trades and periods of continuous
trading, and  .�/ is the resilience function.
The spread Dt at time t is given by

Dt D F �1.Et /

where F.x/ is the cumulative density of orders and given by the antiderivative of
'.�/:

F.x/ D
xZ
0

'.y/ dy:

The price process is then given by

St D S0t CDt D S0t C F �1.Et /; (3)

where S0 is the unaffected price process. It can be taken as S 0t D S0 C
R t

0 �s dZs

as in (1).
To compute the expected cost of a trading strategy X , consider the purchase of

a block of � shares. Once again, as illustrated in Fig. 1, when a trade of size � is
placed at time t , Et changes to EtC D Et C � andDt D F �1.Et / to

DtC D F�1.EtC/ D F �1.Et C �/:
The corresponding expected cost increment is

DtCZ
Dt

x '.x/ dx D
F �1.EtC/Z

F�1.Et /

x '.x/ dx D
EtCZ
Et

F �1.x/ dx D H.EtC/ �H.Et /



228 J. Gatheral et al.

where

H.x/ D
xZ
0

F�1.x/ dx:

For a sequence of block trades ¸ D .�1; :::; �N / we get as total expected execution
costs:

C .¸/ D
NX

nD1
ŒH.EnC/ �H.En/� :

When passing to the limit, in the case that execution strategy X is absolutely con-
tinuous with PXt D vt , this quantity converges to

TZ
0

H 0.Et / dXt D
TZ
0

H 0.Et / vt dt:

Hence, in the Alfonsi–Fruth–Schiedmodel, the expected execution costs of the strat-
egy X are:

CAF S .X/ D
TZ
0

vt dt F
�1
0@ tZ
0

 .t � s/ dXs

1A : (4)

By comparing (2) and (4), we see that in some sense, decay of price impact and
order book resilience are dual to each other.

2 Price Manipulation in the Gatheral and Alfonsi–Fruth–Schied
Models

We begin with a proposition generalizing the result proved in [6] that exponential
decay of market impact is compatible only with linear market impact. It turns out
that any model with a nonlinear market impact function f .�/ and a decay kernel
G.�/ that is nonsingular at time zero admits price manipulation.
Proposition 1 Assuming the price process (1), consider a model with a general
nonlinear instantaneous market impact function f .�/ and a nonincreasing decay
kernel G.t/ with G.0/ WD limt#0G.t/ < 1. Then, such a model admits price
manipulation.

Proof. We can assume without loss of generality thatG.0/ D 1. Continuity of this
decay kernel at t D 0 means that

8" > 0; 9� > 0 such that 8t with jt j < �; jG.t/ �G.0/j < ": (5)

To construct the desired round trip we follow Sect. 3.2. of [6]. Thus we first choose
v1; v2 > 0 such that
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2" WD f .v1/v2 � f .v2/v1
2v2f .v1/

> 0: (6)

With " given, we then take the corresponding � > 0 from (5). Then we consider
the strategy where shares are purchased at the (positive) constant rate v1 and then
liquidated at the (positive) constant rate v2 over the time horizon Œ0; ��. Therefore,PXt D v1 for t 2 Œ0; 
�� and PXt D �v2 for t 2 .
�; ��.
To compute the expected cost of this trading strategy, we use formula (3) in [6]

and derive

C .X/ D v1f .v1/

	�Z
0

dt

tZ
0

G.t � s/ds C v2f .v2/
�Z

	�

dt

tZ
	�

G.t � s/ds

�v2f .v1/
�Z

	�

dt

	�Z
0

G.t � s/ds

� v1f .v1/

	�Z
0

dt

tZ
0

ds C v2f .v2/
�Z

	�

dt

tZ
	�

ds

Cv2f .v1/." � 1/
�Z

	�

dt

	�Z
0

ds

D v1f .v1/

2�2

2
C v2f .v2/

��2 � 
2�2
2

� .
�2 � 
2�2/
�

Cv2f .v1/." � 1/�2
.1� 
/;
where we get the inequality by using the fact that G.�/ � 1 in order to estimate the
first two terms and the fact that �G.t/ � " � 1, in order to estimate the last one.

Then, from the definition of a round trip, it follows that


 D v2

v1 C v2
and we obtain

C .X/ D v1f .v1/
�2

2

v22
.v1 C v2/2 C v2f .v2/

�2

2
C v2f .v2/�

2

2

v22
.v1 C v2/2

�v2f .v2/�2 v2

v1 C v2 C "v2f .v1/�
2 v2v1

.v1 C v2/2 � v2f .v1/�
2 v2v1

.v1 C v2/2

D f .v1/�
2
n v1v

2
2

2.v1 C v2/2 C "
v1v

2
2

.v1 C v2/2 �
v1v

2
2

.v1 C v2/2
o

Cf .v2/�2
nv2
2
C v32
2.v1 C v2/2 �

v22
v1 C v2

o
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D f .v1/�
2
n�v1v22 C 2"v1v22

2.v1 C v2/2
o
C f .v2/Q"2

n v21v2

2.v1 C v2/2
o

D Q"2
2.v1 C v2/2

n
2"f .v1/v1v22 � f .v1/v1v22 C f .v2/v2v21

o
: (7)

From (6) it follows that

2"f .v1/v1v22 � f .v1/v1v22 C f .v2/v2v21 < 0: (8)

It follows from (7) that C .X/ < 0, and so X is a price manipulation strategy. �

The following special case of the preceding proposition should be compared with
the result of [6] mentioned at the beginning of this section.

Corollary 1 A model with price process (1), f .�/ nonlinear, and G.�/ D e�% � for
some % > 0, admits price manipulation.

Thus, a JG model with nonlinear market impact and exponential decay always
admits price manipulation. On the other hand, it has been shown in [2] that an AFS
model with resilience function  .�/ D e�% � for some % > 0, does not admit price
manipulation.

Remark 1 It is shown in [7] that in the special case of linear instantaneous market
impact, convexity of a nonincreasing decay kernel G.�/ is sufficient to ensure that
a JG model does not admit price manipulation. Moreover, in this case, the optimal
execution strategy consists of trades of only one sign: an optimal buy execution
consists of only buy orders.

3 VWAP-equivalent Models

At first sight, the expression (4) for the cost of trading in the Alfonsi–Fruth–Schied
model seems to be incompatible with expression (2) for the cost of trading in the
Gatheral model: The JG and AFS models are different. Nevertheless, in this section,
we find conditions under which the JG and AFS models generate identical estimates
for the cost of VWAP executions characterized by PXt D v, with a given constant
v 2 R. We call such models VWAP-equivalent.

Proposition 2 JG and AFS models are VWAP-equivalent if and only if f .v/ / vı

for some ı > 0,

G.t/ D A@t

0@ tZ
0

 .t � s/ ds
1Aı

D Aı  .t/
� tZ
0

 .s/ ds
�ı�1

for some positive constant A and

F �1.x/ D Axı :
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Proof. We require CAF S .X/ and CJ G.X/ to be equal for all completion times
T > 0, so by (2) and (4), we must have

F �1
0@ tZ
0

 .t � s/ v ds
1A D tZ

0

ds f .v/G.t � s/ (9)

for all t and all v. Differentiating with respect to t and v respectively gives

F�10
0@ tZ
0

 .t � s/ v ds
1A v  .t/ D f .v/G.t/

and

F �10
0@ tZ
0

 .t � s/ v ds
1A 8<:

tZ
0

ds  .t � s/
9=; D f 0.v/

tZ
0

G.t � s/ ds:

Eliminating the factor F�10.�/ between these last two equations gives

v f 0.v/
f .v/

D G.t/

 .t/

R t

0 ds  .t � s/R t

0 G.t � s/ ds
from which we conclude that the models can be VWAP-equivalent only if f .v/ /
vı for some ı> 0. In this case we also get

ı
 .t/R t

0 ds  .t � s/
D G.t/R t

0 G.t � s/ ds
which has the solution

ı log

tZ
0

ds  .t � s/ D log
tZ
0

G.t � s/ ds C const.

This last equality can be rearranged to obtain

G.t/ D A@t

0@ tZ
0

ds  .t � s/
1Aı

for some positive constant A. Finally, from (9)

F �1.x/ D Axı

as required. �
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Example 1 (Exponential resilience) Put A D 1 and take
 .�/ D % e�% � for % > 0:

Then the JG and AFS models are VWAP-equivalent only if

G.t/ D @t

0@ tZ
0

ds % e�% s

1Aı

D ı % e�% t

.1 � e�% t /1�ı

and also
F �1.x/ D xı I f .v/ D vı :

Thus in the JG model VWAP-equivalent to the AFS model of [1], decay of market
impact is exponential for large times % t 
 1 but power-law for small times % t � 1.
In particular, exponential resilience of the order book seems not to imply exponential
decay of market impact.

Example 2 (No resilience)When A D 1 and
 .�/ D 1;

we must have

G.t/ D @t t
ı D ı

t1�ı
;

for the JG and the AFS models to be VWAP-equivalent. That is, power-law decay
of market impact is equivalent (in some sense) to no order book resilience.

Example 3 (Power-law resilience)When A D 1 and

 .�/ D 1

��

for some 0 < � < 1, we must have

G.t/ D @t

�
t1��

1 � �
�ı

D ı .1 � �/
.1 � �/ı

1

t1�ı .1��/

for the JG and the AFS models to be VWAP-equivalent.We see that power-law book
resilience is equivalent (in some sense) to power-law decay of market impact.

Remark 2 According to [6], price manipulation is possible if the sum of the ex-
ponent ı of the power-law of instantaneous market impact and the exponent of the
power-law of decay of market impact sum to less than one. We see from Example 3
that in the JG model VWAP-equivalent to an AFS model with power-law resilience,
we have

ı C 1 � ı .1 � �/ D 1C ı � > 1
and the lower bound derived in [6] is not violated.
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3.1 When Are VWAP-equivalent Models Identical?

For a JG model and an AFS model to give identical costs for any given absolutely
continuous strategy, we would need

F �1
0@ tZ
0

 .t � s/ vs ds

1A D tZ
0

ds f .vs/G.t � s/

for arbitrary vs . Imposing conditions we derived in the previous paragraph for the
models to be VWAP-equivalent, we obtain0@ tZ

0

 .t � s/ vs ds

1Aı

D
tZ
0

ds vı
s @s

0@ sZ
0

du .s � u/
1Aı

:

By (for example) considering the special case  .�/ D 1; vs D s, we find that we
must have ı D 1 in which case, equivalence of the two formulations holds trivially.
Moreover, in the linear case, G.�/ D  .�/.
Thus, both the order book model of [1] and the price process of [6] are gen-

eralizations of the model of [8] with linear market impact and exponential decay.
However, they are quite different generalizations. The two formulations give identi-
cal predictions for the cost associated with any given absolutely continuous trading
strategy only when market impact is linear.

Example 4 (Square-root market impact with square-root resilience) Consider
the two VWAP-equivalentmodels with F �1.x/ D p

x, .�/ D 1=p� , f .v/ D p
v

and

G.�/ D @�

�
2
p
�
�1=2 D 1

2
p
2

1

�3=4
:

By substitution into (2) and (4), it is easy to verify that for a VWAP execution with
constant trading rate v and time to completion T ,

CJ G D CAF S D 4

5

p
2 v3=2 T 5=4:

and in both models, for t < T , the expected stock price is given by

St � S0 D
p
2 v t1=4:

However, after completion of the execution, the expected stock price differs in the
two models. In the JG model, the expected stock price is given for t > T by

SJ G
t � S0 D

TZ
0

p
v G.t � s/ ds D p

2 v
n
t1=4 � .t � T /1=4

o
: (10)
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Fig. 2 With T D 1 and v D 1, graphs of SAFS
t � S0 (the dashed line) and SJG

t � S0 (the
dotted line). VWAP-equivalent JG and AFS models generate identical expected price paths before
completion of a VWAP execution but very different price paths after completion

In the VWAP-equivalent AFS model, the expected stock price is given for t > T by

SAF S
t � S0 D

vuuut TZ
0

v  .t � s/ ds D p
2 v

�p
t �pt � T

�1=2
: (11)

For t > T then, SJ G
t and SAF S

t have very different behaviors as illustrated in Fig. 2.

4 Compatibility with the Square-root Formula

The square-root formula has the following form:

Cost D Spread termC c �
r
n

V

where n is the number of shares to be traded, � is the volatility of the stock (in
daily units), and V is the average daily volume of the stock. One could think of
the spread term as representing VWAP slippage and the second square-root term as
representing price impact.
As previously discussed in [6], the square-root formula has been widely used for

many years to generate a pre-trade estimate of transactions cost; there is ample em-
pirical evidence that this formula does indeed generate a reasonable rough estimate
of transactions costs for simple execution strategies such as VWAP.
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Interestingly, the square-root formula implies that the cost of liquidating a stock
is independent of the time taken: the formula refers neither to the duration of the
trade nor to the trading strategy adopted. Fixing market volume and volatility, price
impact depends only on trade-size.
In the JG model, with

f .v/ D 3

4
�

r
v

V

and G.�/ D ��1=2, the total cost in dollars associated with a VWAP execution with
duration T is given by

CJ G D 3

4
� v

r
v

V

TZ
0

dt

tZ
0

dsp
t � s D � v

r
v

V
T 3=2

so the cost per share is given by

OC D CJ G

v T
D �

r
v T

V
:

Noting that v D n=T , we obtain

OC D �

r
n

V

which coincides with the square-root formula!
We conclude that the square-root formula is consistent with a JG model that has

both a square-root market impact function and square-root decay of market impact.
From Example 2, we see that the VWAP-equivalent AFS model is also compatible
with the square-root formula. Specifically, this AFS model has

 .�/ D 1I F �1.x/ / px
which corresponds to a linear order book profile with no resilience; the volume
impact Et is non-decreasing, increasing each time a market buy order arrives. In
particular, there is no price reversion after completion of a VWAP execution in this
VWAP-equivalent AFS model that is compatible with the square-root formula.

5 Conclusions

First in Proposition 1 we showed that, assuming the price process (1), a model that
has a nonlinear market impact function f .�/ and a decay kernel G.�/ that is non-
singular at time zero admits price manipulation. This generalizes the result of [6]
on the incompatibility of nonlinear market impact with exponential decay of market
impact.
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We then showed by explicit computation that exponential order book resilience
does not necessarily imply exponential decay of market impact. The JG model of [6]
and the AFS model of [1] are different models; even in the special case where both
models make identical predictions for the cost of a VWAP execution, predictions of
the two models for the decay of market impact post completion of the execution are
very different.
A practical corollary of this is that a large database of VWAP (or VWAP-like)

executions is not sufficient to fix a reasonable process for the impacted asset price.
In Example 4, we presented two quite different dynamical models with identical
predictions for the cost of a VWAP execution. In practice, algorithmic executions
tend to be all VWAP-like in the sense that they would not permit differentiation
between models in this way. The only way to ultimately distinguish between models
would be to keep track of the evolution of the asset price after completion of each
algorithmic execution.
Finally, we noted that there exist both JG and AFS models compatible with the

popular square-root formula for pre-trade estimation of market impact although the
AFS model predicts no price reversion after completion of the execution. On the
other hand, while the JG price process is posited as an obvious extension of pre-
viously suggested price processes, AFS models are directly motivated by a simple
model of the order book.
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Modeling the Non-Markovian, Non-stationary
Scaling Dynamics of Financial Markets

Fulvio Baldovin, Dario Bovina, Francesco Camana and Attilio L. Stella

Abstract. A central problem of Quantitative Finance is that of formulating a prob-
abilistic model of the time evolution of asset prices allowing reliable predictions
on their future volatility. As in several natural phenomena, the predictions of such
a model must be compared with the data of a single process realization in our
records. In order to give statistical significance to such a comparison, assumptions of
stationarity for some quantities extracted from the single historical time series, like
the distribution of the returns over a given time interval, cannot be avoided. Such
assumptions entail the risk of masking or misrepresenting non-stationarities of the
underlying process, and of giving an incorrect account of its correlations. Here we
overcome this difficulty by showing that five years of daily Euro/US-Dollar trading
records in the about three hours following the New York market opening, provide
a rich enough ensemble of histories. The statistics of this ensemble allows to pro-
pose and test an adequate model of the stochastic process driving the exchange rate.
This turns out to be a non-Markovian, self-similar process with non-stationary re-
turns. The empirical ensemble correlators are in agreement with the predictions of
this model, which is constructed on the basis of the time-inhomogeneous, anoma-
lous scaling obeyed by the return distribution.

1 Introduction

The analysis of many natural and social phenomena is hindered by the fact that one
cannot replicate the dynamical evolution of the system under study. This may hap-
pen, for instance, for earthquakes [1], solar flares [2], large eco-systems [3], and
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financial markets [4]. If with a single time series available we try to accommodate
the historical data within a stochastic process description, we must assume a pri-
ori the existence of some statistical quantities which remain stable over time [4].
This entitles us to sample their values at different stages of the historical evolution,
rather than at different instances of the process. For example, in the analysis of his-
torical series in Finance it is usual to assume the stationarity of the distribution of
return fluctuations and hence to detect their statistical features through sliding time
interval empirical sampling. However, the plausible [5–9] nonstationarity of these
fluctuations at intervals ranging from minutes to months would drastically alter the
relation between some of the stylized empirical facts detected in this way, and the
underlying stochastic process. In order to identify the correct model, one has to over-
come this difficulty. The breaking of time-translation invariance possibly signalled
by increments non-stationarity would represent a challenge in itself, being a genuine
manifestation of dynamics out of equilibrium, like the aging properties observed in
glassy systems [10].
In order to detect the possible presence of nonstationarity at certain time-scales

for the distribution of the increments, one would need to have access to many inde-
pendent realizations of the same process, repeated under similar conditions. Quite
remarkably, high-frequency financial time-series offer an opportunity of this kind,
in which it is possible to directly sample an ensemble of histories. In [7] it has been
proposed that when considering high-frequency EUR/USD exchange rate data as
recorded during the first three hours of the New York market activity, indepen-
dent process realizations can tentatively be identified in the daily repetitions of
the trading. This gives the interesting possibility of estimating quantities related
to ensemble, rather than time-averages. Here we profit of this opportunity by show-
ing that a proper analysis of the statistical properties of this ensemble of histories
naturally leads to the identification and validation of an original stochatic model
of market evolution. The main idea at the basis of this model is that the scaling
properties of the return distribution are sufficient to fully characterize the process in
the time range within which they hold. The same type of model has been recently
proposed by some of the present authors to underlie more generally the evolution
of financial indices also in cases when only single realizations are available [5]. In
those cases the application of the model is less direct, and rests on suitable assump-
tions about the relation between the stationarized empirical information obtainable
from the historical series and the underlying driving process.
An interesting feature of the model discussed here and in [5,6], is that the anoma-

lous scaling of the return PDF enters in its construction on the basis of a property
of correlated stability which generalizes the stability of Gaussian PDF’s under inde-
pendent random variables summation. This correlated stability was shown recently
to allow the derivation of novel, constructive limit theorems for the PDF of sums of
many strongly dependent random variables obeying anomalous scaling [11]. In this
perspective, the model we present offers a valid alternative to more standard models
of Finance based on Gaussianity and independence. At the same time, the prob-
abilistic framework provided by our modelization presents clear formal analogies
and parallels with those standard models.
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2 An Ensemble of Histories Based on the Returns
of the EUR/USD Exchange Rate

To address the above points, given the EUR/USD exchange rate at time t (t mea-
sured in tens of minutes) after 9.00 am New York time, S.t/, let us define the return
in the interval Œt�T; t� asR.t; T / � lnS.t/�lnS.t�T /, where t D 1; 2; : : :, t � T .
By storing the daily repetitions of the returns from March 2000 to March 2005, we
obtain an ensemble ofM D 1; 282 realizations ˚rl.t; T /

�
lD1;2;:::;M of the discrete-

time stochastic process R.t; T /, with t ranging in almost three hours after 9.00 am
NY time, i.e., 1 � t � 17. Below, the superscript “e” labels quantities empirically
determined on the basis of this ensemble. The first key observation is that the em-
pirical second moment me

2.t; 1/ �
PM

lD1Œr l .t; 1/�2=M systematically decreases as
a function of t in the interval considered (see Fig. 1a). This is a clear indication of
return non-stationarity of the underlying process at this time scale. In addition, an
analysis of the nonlinear momentsme

˛ of the total returnR.t; t/ D lnS.t/� lnS.0/
for t � 1,

me
˛.t; t/ �

1

M

MX
lD1

ˇ̌̌
r l .t; t/

ˇ̌̌˛
; ˛ 2 RC; (1)

shows that such a nonstationarity is accompanied by an anomalous scaling symme-
try. Indeed, to a good approximation one finds m˛.t; t/ � t˛D in this range of t ,
whereD ' 0:364 : : : is essentially independent of ˛ (Fig. 1b). Accordingly, the en-
semble histograms for the PDF’s of aggregated returns in the intervals Œ0; t �, pR.t;t/,
are consistent with the scaling collapse

tD pR.t;t/

�
tD r

� D g.r/ (2)

reported in Fig. 2. The scaling function g identified by such collapse plot is mani-
festly non-Gaussian. It may also be assumed to be even to a good approximation1.
To further simplify our formulas below, wherever appropriate we will switch to

the notations: Ri � R.i; 1/ and ri � r.i; 1/. Similarly r l
i � r l.i; 1/ will indicate

the i -th return on a 10 min-scale in the l-th history realization of our ensemble.
An important empirical fact (Fig. 1c) is that the linear correlation between returns

for non-overlapping intervals

ce
lin.1; n/ �

1
M

PM
lD1



r l
1 r

l
n

�p
m2.1; 1/ m2.n; 1/

; (3)

with n D 2; : : :, is negligible in comparison with the correlation of the absolute
values of the same returns. At this time scale also correlators of odd powers of
a return with odd or even powers of another return are negligible. Only even powers
of the returns are strongly correlated.

1 We have detrended the data by subtracting from r l .t; T / the average value
PM

lD1 rl .t; T /=M .
Data skewness can be shown to introduce deviations much smaller than the statistical error-bars in
the analysis of the correlators.
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Fig. 1 Empirical ensemble analysis of the returns. (a) The line is given by
h�2i� 


t2D � .t � 1/2D�, with h�2i� D hr21 ip D 2:3 	 10�7 and the best-fitted D D 0:358.
(b) Analysis according to the ansatz in Eq. (2). The straight line characterizes a simple-scaling
behavior with a best-fitted D D 0:364. (c) The linear correlation vanishes for non-overlapping
returns

3 Self-similar Model Process

The empirical facts listed above already enable us to suggest a very plausible model
for the stochastic process expected to generate the data. Both in physics and in Fi-
nance, a well established trend in modeling anomalous scaling is that of expressing
the scaling functions, like our g, as convex combinations of Gaussian PDF’s with
varying widths. This has clear mathematical advantages, since it is possible to ex-
press very general scaling functions with such convex combinations. In physics the
representation in terms of mixtures of Gaussians often reflects the presence of some
heterogeneity or polydispersity in the problem [12]. In Finance, the use of convex
combinations of Gaussians to represent return PDF’s is naturally suggested by the
fact that return time series show a variety of more or less long intervals characterized
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Fig. 2 Non-Gaussian scaling function g . Empty [full] symbols are obtained by rescaling pR.t;t/

[pR.t;1/] according to Eq. (2) [Eq. (8)] for t D 1; 5; 10; 17

by peculiar values of the volatility (volatility clustering). The idea that pR.t;t/ can
be represented as a mixture of Gaussians of varying widths is suggested by the same
basic motivations which lead to the introduction of stochastic volatility models in
Finance [13–16]. In the light of the empirical facts, such a representation of the scal-
ing function in the PDF of the aggregated return naturally suggests an adequate full
modelization of the process generating the successive partial returns. Let us indicate
by �.�/ a normalized, positive measure in �0;C1Œ such that we can represent g as:

g.x/ D
C1Z
0

d��.�/
e
� x2

2�2p
2
�2

: (4)

A suitable form of � can be easily identified, e.g. by matching its moments with
those of g, and by relating the large � behavior of �.�/ with the large jr j behavior
of g.r/. For instance, � may decay as a power law at large �’s if the moments of
g are expected to be infinite above a given order. These conditions enable us to
fix a number of parameters in � such that the scaling function in Eq. (4) fits the
data in the empirical collapse in Fig. 2. As discussed below, in our case the set of
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data on which we can count to construct histograms of g is relatively poor. So, our
determinations of � will be rather qualitative.
Once identified �, more ambitiously we may try to use it for a weighted repre-

sentation of the joint PDF’s of the successive elementary returns Ri , i D 1; 2; : : :
generated in the process. Indeed, we may tentatively write the joint PDF of these
returns in the following form:

pn.r1; r2; : : : ; rn/ D
C1Z
0

d��.�/

nY
iD1

exp
�
� r2

i

2a2
i

�2

�
q
2
 a2i �

2;

(5)

with n D 1; 2; : : : ; 17. The coefficients ai in the last equation have to be chosen con-
sistent with the non-stationarity of the elementary returns reported in Fig. 1a and
with the other statistical properties of the elementary and aggregated returns dis-
cussed in the previous section. It is straightforward to realize that hr2i ip D h�2i� a2i ,
while hriip D 0 and hrirj ip D 0 for i ¤ j , where h�ip denotes averages with re-
spect to the joint PDF in Eq. (5), whereas h�i� those with respect to the PDF �. Like-
wise, we immediately realize that odd-odd or odd-even correlators of the Ri ’s are
strictly zero. Assuming validity of Eq. (5) means in first place that the i -dependence
of ai must be chosen such to fit the values reported in Fig. 1a. The choice of the
i dependence of ai must be also consistent with the simple scaling of the PDF of
aggregated returns. Indeed, taking into account that R.t; t/ D R1 CR2 C � � � CRt ,
for t D 1; 2; : : : ; 17, Eq. (5) implies that for the same t values

pR.t;t/.r/ D
g

�
r=

q
a21 C a22 C � � � C a2t

�
q
a21 C a22 C � � � C a2t

: (6)

Comparing this result with Eq. (2), we see that it is necessary to choose the ai ’s such
that a21 C a22 C � � � C a2t D t2D in order to be consistent with the empirical scaling
in Eq. (2). This last requirement is satisfied if we put

ai D
q
i2D � .i � 1/2D; i D 1; 2; : : : : (7)

A first problem is then to see whether this form of the ai coefficients is compatible
with the i -dependence already implied by the non-stationarity. Eq. (7) appears to be
reasonably well compatible with the trend of the empirical mean square elementary
returns m2.i; 1/. Indeed, given h�2i� D hr21 ip D 2:3 � 10�7, the best fit in Fig. 1a
is obtained with D D 0:358 : : : in the expression for hr2i ip. The expectation value
of �2 is with respect to the � entering the integral representation (3) already chosen
for g. Remarkably, the value ofD is very close to the estimate ofD obtained above
through the analysis of the moments of pR.t;t/.
Summarizing, Eq. (5) and the above conditions on the ai ’s define a non-Marko-

vian stochastic process with linearly uncorrelated increments and a PDF of returns
satifying a time inhomogeneous scaling of the form:
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pR.t;T /.r/ D 1p
t2D � .t � T /2D g

 
rp

t2D � .t � T /2D

!
; (8)

where both t and T are understood to be integer multiples of the 10 minutes unit.
In Fig. 2 it is shown that the data collapse of both pR.t;t/ and pR.t;1/ are indeed
compatible with the same non-gaussian PDF g.
From the point of view of probability theory, the structure of our process in

Eq. (5) rests on a stability property for PDF’s of sums of dependent random vari-
ables [11]. Indeed, if we indicate by Qpn.k1; k2; :::kn/ the Fourier transform (char-
acteristic function) of the joint PDF of the first n returns (1 � n � 17), a direct
calculation yields

Qpn.k; k; :::; k/ D Qp1 �nDK
�

(9)

and
Qpn.0; ::; ki ; ::; 0/ D Qp1.aiki /; i D 1; : : : ; n: (10)

For D D 1=2 these relations have the the same form as those holding in the case
of independent variables, when Qpn.k1; : : : ; kn/ D Qp1.k1/ Qp1.k2/ : : : Qp1.kn/, and
Qp1 is a Gaussian characteristic function. However, even for D D 1=2 a general
�.�/ implies dependence of the Ri ’s. To recover the independent case one needs
further to choose �.�/ D ı.���0/. Thus, the superposition of independentGaussian
processes with different �’s in Eq. (5) implies an extension of the basic stability
properties of the independent Gaussian variables case to the dependent case. This
extension also allows to derive limit theorems for the anomalous scaling of sums of
many dependent random variables [11].

4 Correlations Structure

As discussed above, the identification of � may be used to reconstruct the joint PDF
of the returnsRi ’s as in Eq. (5). In this section we elaborate further on this point, by
performing a detailed comparison between model predictions (based on an explicit
expression for �) and empirical determinations of various two-point correlators.
Considering the data collapse of both pR.t;t/ and pR.t;1/ in Fig. 2, we propose

the following functional form for � (see also [11]):

�.�/ D A
��

d C �ı
; � 2 Œ�min;C1Œ; 0 < � < ı; (11)

where A is a normalization factor, and d > 0 is a parameter influencing the width
of the distribution g. Notice that �.�/ � ��.ı��/ for � 
 1. The rational behind
this choice for � is that one can use the exponents �; ı to reproduce the large jxj
behavior of g.x/, and then play with the other parameters to obtain a suitable fit of
the scaling function, for instance the one reported in Fig. 2.
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The first two-point correlator we consider in our analysis is

�˛;ˇ .1; n/ � hjR.1; 1/j˛ jR.n; 1/jˇ i
hjR.1; 1/j˛ip hjR.n; 1/jˇ ip

D hjr1j˛ jrnjˇ ip
hjr1j˛ip hjrnjˇ ip

; (12)

with n > 1, and ˛; ˇ 2 RC. A value �˛;ˇ ¤ 1 means that returns on non-
overlapping intervals are dependent. Using Eq. (5) it is possible to express a general
many-return correlator in terms of the moments of �. For example, from Eq. (5) we
have

hjr1j˛ jrnjˇ ip D B˛ Bˇ a˛
1 a

ˇ
n h�˛Cˇ i�; (13)

with

B˛ �
C1Z
�1

dr jr j˛ e
�r2=2

p
2


: (14)

We thus obtain

�˛;ˇ .1; n/ D h�˛Cˇ i�
h�˛i� h�ˇ i� D

B˛Bˇ

B˛Cˇ

hjr1j˛Cˇ ip
hjr1j˛ip hjr1jˇ ip : (15)

Two model-predictions in Eq. (15) are: (i) Despite the non-stationarity of the incre-
ments Ri ’s, �˛;ˇ .1; n/ is independent of n; (ii) The correlators are symmetric, i.e.,
�˛;ˇ � �ˇ;˛ D 0.
We can now compare the theoretical prediction of the model for �˛;ˇ .1; n/,

Eq. (15), with the empirical counterpart

�e
˛;ˇ .1; n/ �

PM
lD1

hˇ̌
r l
1

ˇ̌˛ ˇ̌
r l

n

ˇ̌ˇ i
1

M

PM
lD1

ˇ̌
r l
1

ˇ̌˛ PM
lD1

ˇ̌
r l

n

ˇ̌ˇ ; (16)

which we can calculate from the EUR/USD dataset. Notice that once � is fixed to
fit the one-time statistics in Fig. 2, in this comparison we do not have any free pa-
rameter to adjust. Also, since our ensemble is restricted toM D 1; 282 realizations
only, large fluctuations, especially in two-time statistics, are to be expected.
Fig. 3 shows that indeed non-overlapping returns are strongly correlated in the

about three hours following the opening of the trading session, since �e
˛;ˇ

¤ 1. In
addition, the constancy of �e

˛;ˇ
is clearly suggested by the empirical data. In view

of this constancy, we can assume as error-bars for �e
˛;ˇ

the standard deviations of
the sets f�e

˛;ˇ
.1; n/gnD2;3;:::;17. The empirical values for �e

˛;ˇ
are also in agreement

with the theoretical predictions for �˛;ˇ based on our choice for �. In this and in
the following comparisons it should be kept in mind that, although not explicitly
reported in the plots, the uncertainty in the identification of � of course introduces
an uncertainty in the model-predictions for the correlators.
In Fig. 4 we report that also the symmetry �˛;ˇ D �ˇ;˛ is emiprically verified

for the EUR/USD dataset. The validity of this symmetry for a process with non-
stationary increments like the present one is quite remarkable.
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Fig. 3 Constancy of �e
˛;ˇ
. Dashed lines are model-predictions

A classical indicator of strong correlations in financial data is the volatility auto-
correlation, defined as

c.1; n/ � hjr1j jrnjip � hjr1jip hjrnjip
hjr1j2ip � hjr1ji2p

: (17)

In terms of the moments of �, through Eq. (13) we have the following expression
for c :

c.1; n/ D B21 a1 an


h�2i� � h�i2��
a21



B2 h�2i� � B21 h�i2�

� : (18)

Unlike �˛;ˇ , c is not constant in n. The comparison with the empirical volatility
autocorrelation,

ce.1; n/ �
PM

lD1

ˇ̌
r l
1

ˇ̌ ˇ̌
r l

n

ˇ̌� � 1
M

PM
lD1

ˇ̌
r l
1

ˇ̌ PM
l 0D1

ˇ̌̌
r l 0

n

ˇ̌̌
PM

lD1
ˇ̌
r l
1

ˇ̌2 � 1
M

PM
lD1

ˇ̌
r l
1

ˇ̌ PM
l 0D1

ˇ̌
r l 0

1

ˇ̌ ; (19)
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Fig. 4 Symmetry of �e
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. Error-bars are determined as in Fig. 3

yields a substantial agreement (see Fig. 5). The error-bars in Fig. 5 are obtained by
dynamically generating many ensembles ofM D 1; 282 realizations each, accord-
ing to Eq. (5) with our choice for �, and taking the standard deviations of the results.
Again, the uncertainty associated to the theoretical prediction for c is not reported
in the plots Problems concerning the numerical simulation of processes like the one
in Eq. (5) are discussed in [11].
A further test of our model can be made by analyzing, in place of those of the

increments, the non-linear correlators of R.t; t/, with varying t . To this purpose, let
us define

K˛;ˇ .t1; t2/ � hjR.t1; t1/j˛ jR.t2; t2/jˇ i
hjR.t1; t1/j˛i hjR.t2; t2/jˇ i

; (20)

with t2 � t1. Model calculations similar to the previous ones give, from Eq. (5),

K˛;ˇ.t1; t2/ D
B

.2/
˛;ˇ
.t1; t2/

t˛D
1 t

ˇD
2 B˛Cˇ

hjr1j˛Cˇ ip
hjr1j˛ip hjr1jˇ ip

; (21)
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where

B
.2/
˛;ˇ
.t1; t2/ �

R C1
�1 dr1 jr1j˛ exp.�r21 =.2t2D1 //p

2
t 2D1R C1
�1 dr2 jr2jˇ expŒ�.r1�r2/

2=.2t2D2 �2t2D1 /�q
2
.t2D2 �t2D1 /

: (22)

According to Eq. (21), K˛;ˇ is now identified by both � and D. Moreover, it ex-
plicitly depends on t1 and t2. The comparison between Eq. (21) and the empirical
quantity

Ke
˛;ˇ .t1; t2/ �

PM
lD1

hˇ̌
r l.t1; t1/

ˇ̌˛ ˇ̌
r l .t2; t2/

ˇ̌ˇ i
1

M

PM
lD1

hˇ̌
r l.t1; t1/

ˇ̌˛i PM
lD1

hˇ̌
r l .t2; t2/

ˇ̌ˇi ; (23)

reported in Fig. 6 (the error-bars are determined as in Fig. 5) supplies thus an addi-
tional validation of our model.
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5 Conclusions

In the present work we addressed the problem of describing the time evolution of
financial assets in a case in which one can try to compare the predictions of the
proposed model with a relatively rich ensemble of history realizations. Besides the
fact that considering the histories at disposal for the EUR/USD exchange rate as
a proper ensemble amounts to a main working assumption, a clear limitation of such
an approach is the relative poorness of the ensemble itself. Indeed, the simulations
of our model suggest that in order to reduce substantially the statistical fluctuations
one should dispose of ensembles larger by at least one order of magnitude.
In spite of these limitations, we believe that the non-Markovian model we pro-

pose [5, 6, 11] is validated to a reasonable extent by the analysis of the data, espe-
cially those pertaining to the various correlators we considered. In this respect it
is important to recall that the first proposal of the time inhomogeneous evolution
model discussed here has been made in a study of a single, long time series of the
DJI index in [5]. In that context, the returns time inhomogeneity, Eq. (8), was sup-
posed to underlie the stationarized information provided by the empirical PDF of
the returns. This assumption allowed there to give a justification of several stylized
facts, like the scaling and multiscaling of the empirical return PDF and the power
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law behavior in time of the return autocorrelation function. We believe that the re-
sults obtained in the present report, even if pertaining to a different time-scale (tens
of minutes in place of days), constitute an interesting further argument in favor of
a general validity of the model.
The peculiar feature of this model is that of focussing on scaling and correla-

tions as basic, closely connected properties of assets evolution. This was strongly
inspired by what has been learnt in the physics of complex systems in the last
decades [17–19], where methods like the renormalization group allowed for the first
time systematic treatments of these properties [6]. At the same time, through the
original probabilistic parallel mentioned in Sect. 3, our model maintains an interest-
ing direct contact with the mathematics of standard formulations based on Brownian
motion, of wide use in Finance. This last feature is very interesting in the perspective
of applying our model to problems of derivative pricing [13–16, 20].
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“Fondazione Cassa di Risparmio di Padova e Rovigo” within the 2008-2009 “Progetti di Eccel-
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The von Neumann–Morgenstern Utility
Functions with Constant Risk Aversions

Satya R. Chakravarty and Debkumar Chakrabarti

Abstract. Two Arrow–Pratt measures of risk aversion indicate attitudes of the in-
dividuals towards risk. In the theory of finance often these measures are assumed
to be constant. Using certain intuitively reasonable conditions, this paper develops
axiomatic characterizations of the utility functions for which the Arrow–Pratt mea-
sures are constant.

1 Introduction

Consumers often have to make choices under conditions of uncertainty. In the con-
text of uncertainty a consumer’s preferences can be represented by a utility function
that satisfies the expected utility hypothesis, which says that the expected value of
the utility function should be maximized. A utility function satisfying the expected
utility property is known as the von Neumann–Morgenstern utility function. This
utility function has been extensively used to study an individual’s attitudes towards
risk.
Arrow (1971) and Pratt (1964) suggested two measures of risk aversion, abso-

lute and relative measures, which rely on the von Neumann -Morgenstern utility
functions. These measures have been used extensively for analyzing problems on
uncertainty. Often it is assumed that the Arrow–Pratt measures of risk aversion
are constant. Constancy of these measures has interesting implications in financial
economics. For instance, if the measure of absolute risk aversion is constant, then
the consumer’s wealth, on which the utility function is defined, is not an inferior
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good (Arrow, 1970 and Demange and Laroque,2006). However, there does not exist
any characterization of the von Neumann–Morgenstern utility functions that display
constant absolute and relative risk aversions.
In this paper we develop characterizations of the von Neumann–Morgenstern

utility functions for which the two Arrow–Pratt measures of risk aversion are con-
stant. The characterizations are based on the certainty equivalent The certainty
equivalent of an uncertain prospect with state-contingent returns, where each state
occurs with certain probability, is defined as that level of return, which if assigned
to each state of the prospect will produce the same expected utility as the prospect
itself. The certainty equivalent has a negative monotonic relationship with the cost
of risk in an uncertain prospect. The cost of risk becomes positive if the situation is
characterized by uncertainty. In the absence of uncertainty there is no cost of risk.
After presenting the preliminaries and definitions in the next section, we present

the characterization theorems in Sect. 3. Finally, Sect. 4 concludes.

2 Preliminaries and Definitions

For any uncertain prospect P there is a probability distribution on different levels
of returns on the prospect. We denote these prospective returns by r1; r2; : : : ; rn.
Suppose that the consumer assigns a probability pi to realization of the level of
return ri , 1 � i � n. The vector of probabilities .p1; p2; : : : ; pn/ is denoted by
p, while r D .r1; r2; : : : ; rn/ is the vector of probable returns on the prospect P .
Clearly, 0 � i � n for all 1 � i � n and

Pn
iD1 pi D 1. Each ri is assumed

to be drawn from the non-degenerate interval Œa; b� in the real line R. We use the
compact notation P D .p; r/ for the prospect P . The expected return

Pn
iD1 piri

on the prospect is denoted by �.p; r/.
Let U W Œa; b� ! R be a von Neumann–Morgenstern utility function. Assume

that U is twice differentiable and denote the first and second derivatives of U by U 0
and U 00 respectively. Assume further that U is increasing so that U 0 > 0. Existence
of U 0 ensures that U is continuous. Then the expected utility from the prospectP is
given by

Pn
iD1 piU.ri/. Given any two prospectsP D .p; r/ and P 0 D .p0; r 0/, the

inequality
Pn

iD1 piU.ri/ �Pn
iD1 p0iU.r 0i/ remains preserved under positive linear

transformations of U That is, if V D aCbU , where b > 0 and a are constants, thenPn
iD1 piU.ri / �Pn

iD1 p0iU.r 0i / implies that
Pn

iD1 piV.ri / �Pn
iD1 p0iV.r 0i/. That

is, the von Neumann–Morgern utility function satisfies the ‘cardinally measurable,
fully comparable’ measurability and comparability assumption (Sen, 1977).
Two questions that generally arise in the context of revelation attitude towards

risk of a decision maker are: would he prefer to receive the expected payoff from
a prospect with certainty rather than facing the prospect? How much money he
would like to give up to avoid the risk involved in the prospect? We can look at the
issue in terms of the certainty equivalent of a prospect.
The certainty equivalent of a prospect is that level of return, which if associated

with each state of the prospect will give the same level of expected utility as that
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generated by the actual prospect. That is, for any person with the von Neumann–
Morgern utility function U and for any prospect P D .p; r/, we define the certainty
equivalent re corresponding to P D .p; r/ as follows:

nX
iD1

piU.re/ D
nX

iD1
piU.ri/: .1/

Since U is increasing, re exists and is given by re D U�1
�Pn

iD1 piU.ri/
�
. Clearly,

re is an average of the state-contingent returns. It is easy to verify that re remains
invariant under positive linear transformations of U .
The Arrow–Pratt measure of absolute risk aversionRA.W / for an individualwith

utility function U and level of wealth W is defined as

RA.W / D �U
00.W /

U 0.W /
: .2/

This measure is positive, zero or negative depending on whether U is strictly
concave, linear or strictly convex. That is, for a risk averse individualRA is positive,
whereas it is zero or negative according as the individual is risk neutral or risk lover.
A higher value ofRA indicates that the person is more risk averse in absolute sense.
The Arrow–Pratt relative risk aversion measure is defined as

RR.W / D �WU
00.W /

U 0.W /
: .3/

The measureRR takes on positive, zero or negative values according as the individ-
ual is risk averse, risk neutral or risk lover. Increasingness of RR withW means that
the individual becomes more relative risk averse as his level of wealth increases.
Both RA and RR remain invariant under positive linear transformations of U .

3 The Characterization Theorems

Before we characterize the utility functions associated with constant values of RA

and RR, we demonstrate a property of the certainty equivalent.

Theorem 1 Given the probability vector p, the certainty equivalent re is a continu-
ous function of state-contingent returns.

Proof. As we have noted re can be written explicitly as re D U�1
�Pn

iD1 piU.ri /
�
.

Since each ri is drawn from the compact set Œa; b�, the domain of the functionU.ri /
is Œa; b�. Now, since U is increasing and the continuous image of a compact set is
compact (Rudin, 1976, p.89), U.ri/ takes values in the compact set ŒU.a/; U.b/�.
For a given p, continuity and increasingness of the function U implies that the av-
erage function

Pk
iD1 piU.ri / is continuous and takes values in ŒU.a/; U.b/�. Con-

tinuity and increasingness of U�1 on ŒU.a/; U.b/� now follows from Theorem 4.53
of Apostol (1974, p.95). This in turn demonstrates continuity of re . �
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For a strictly concave utility function U , by Jensen’s inequality (Marshall and
Olkin, 1979, p.454) U

�Pn
iD1 piri

�
>
�Pn

iD1 piU.ri /
�
Hence �.p; r/ � re > 0.

Given strict concavity of U , the difference

CA.p; r/ D �.p; r/ � re .4/

can be interpreted as a measure of cost of risk because uncertainty reduces the ex-
pected utility from the prospect exactly by this amount. If there is no uncertainty
in the prospect, that is, if the prospect is risk-free, then CA D 0. This difference
gives us the risk premium that the individual would be willing to pay to avoid in-
vestment in the risky prospect. Since this cost measure depends on nominal value of
the returns we call it an absolute measure.
Suppose that all state-contingent returns on an uncertain prospect increase or

decrease by the same absolute amount. Formally, the state -contingent return vector
.r1; r2; : : : ; rn/ becomes .r1 C c; r2 C c; : : : ; rn C c/, where c is a scalar and the
probabilities .p1; p2; : : : ; pn/ remain unchanged. Then the expected return on the
prospect changes by c. A cost indicator C satisfies translation invariance if its value
does not alter under a change of this type, that is, C.p; r/ D C.p; r1 C c; r2 C
c; : : : ; rn C c/ for all allowable values of c. The following theorem shows that the
only utility function for which the absolute cost measure CA satisfies translation
invariance is the one with constant absolute Arrow–Pratt measure of risk aversion.
Formally,

Theorem 2 The cost measure CA satisfies translation invariance if and only if the
underlying utility function has a constant value of the Arrow–Pratt measure of ab-
solute risk aversion.

Proof. If all the ri ’s change by the same amount c, expected return also changes
by c. Therefore, translation invariance of CA demands that it should also change
by c Using the expression for re we can write this condition as

U�1
 

nX
iD1

piU.r1 C c/
!
D U�1

 
nX

iD1
piU.ri /

!
C c: .5/

This is a quasuilinear functional equation with only continuous solution given by
U.ri / D �ae�bri , where a and b are constants (Aczel, 1966, p.153). Since U is
increasing and strictly concave we must have a > 0 and b > 0. It is easy to check
that the absolute Arrow–Pratt measure of risk aversion for this utility function is the
constant b.
Conversely,CA for the utility functionU.ri / D �ae�bri is given by .log

Pn
iD1 pi

eb.�.p;r/�ri //=b. This cost measure is translation invariant. �

While CA specifies cost of risk in difference form, we can also measure the cost
in ratio form. Thus, we can consider the following as a measure of the cost of risk:

CR.p; r/ D 1 � re

�.p; r/
: .6/
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Since CR is stated in a ratio form it is referred to as a relative measure. If the utility
function is strictly concave, CR is bounded between zero and one, where the lower
bound is attained whenever state contingent returns are the same.
The returns are stated as nominal values. Now, suppose that the currency unit of

the returns changes from euros to cents. Then since the returns remain unchanged
and their probabilities also do not change, we can argue that the cost of risk should
not alter. A cost indicator satisfying this postulate is called a scale invariant measure.
Formally, we say that a cost measure C is scale invariant if C.p; r/ D C.p; cr/,
where c > 0 is a constant. In the following theorem we show that the only utility
function for which the cost measure CR satisfies scale invariance is the one with
constant relative Arrow–Pratt measure of risk aversion. Formally,

Theorem 3 The cost measure CR satisfies scale invariance if and only if the under-
lying utility function has a constant value of the Arrow–Pratt measure of relative
risk aversion.

Proof. Observe that �.p; cr/ D c�.p; r/, where c > 0. Therefore CR will be
a relative indicator if re.p; cr/ D cre.p; r/, where c > 0. Using the expression for
re we can write this condition as

cU�1
 

nX
iD1

piU.ri /

!
D U�1

 
nX

iD1
piU.cri /

!
; .7/

where c > 0 is a scalar. The quasilinear functional equation in (7) has only one
continuous solution and it is given by

U.ri/ D
8<:aC b r

1�ˇ
i

1 � ˇ ; ˇ ¤ 1;
aC b log ri ; ˇ D 0;

.8/

where a and b are constants (Aczel, 1966, p.153). Since U is increasing and strictly
concave we must have that b > 0 and ˇ > 0 in the first expression for U.ri/ in (8).
The risk aversion measure RR for this utility function is ˇ, a positive constant.
Conversely, for the utility function given by (8) the CR measure is given by

CR.p; r/ D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂
1 �

0B@
nX

iD1
pi r

1�ˇ
i

1CA
1

.1 � ˇ/

�.p;r/
; ˇ > 0; ˇ ¤ 1;

1 �

nY
iD1
.ri /

pi

�.p; r/
; ˇ D 1:

.9/

Clearly, the CR function given (9) by satisfies scale invariance. �
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Thus, Theorems 2 and 3 uniquely identify the utility functions for which the
values of the absolute and relative measures of risk aversion are constant. In other
words, these theorems provide necessary and sufficient conditions for the utility
functions that display respectively constant absolute and relative Arrow–Pratt mea-
sures of risk aversion.

4 Conclusions

Constancy of the Arrow–Pratt measures of risk aversion is a standard assumption in
the theory of finance. While many results in the theory of finance are based on this
assumption, there have been no characterizations of the underlying utility functions.
In this paper we made an attempt to fill in this gap by developing characterizations
of these utility functions using the cost of risk involved in a risky prospect.
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Income and Expenditure Distribution.
A Comparative Analysis

Kausik Gangopadhyay and Banasri Basu

Abstract. There are empirical evidences regrading the Pareto tail of the income dis-
tribution and the expenditure distribution. We formulate a simple economic frame-
work to study the relation between them. We explain the Pareto tails in both the
distributions with a Cobb–Douglas felicity function to describe the preferences of
agents. Moreover, the Indian data suggest a thicker Pareto tail for the expenditure
distribution in comparison to the income distribution. With a uniform distribution
of taste parameters for various goods, we identify a process that can give rise to this
empirical phenomenon.We also verify our observation with appropriate simulation
results.

1 Introduction

Economics is the science of economic decisions at an individual level as well as at
a collective level. Manifold ways of individual decision making give rise to various
distributions in the aggregate population as far as economic variables are concerned.
Lack of appropriate and detailed micro-data is a constraint in analyzing the eco-
nomic decisions as made by the decision makers. Often the answer lies in the study
of distributions. As income and expenditure are integral elements for individual eco-
nomic decision making, the distribution of income is a prominent topic for study
among the economists and econophysicists. Income and wealth measure, to some
extent, potential opportunities available to a particular individual; whereas expendi-
ture is an indicator of realized opportunity of a family or individual. For a normative
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analysis of social conditions, study of income and wealth distribution is vital. For
a positive analysis of economic theory, the joint study of income and expenditure
distributions is key to exploring the savings decisions of economic decision makers.
Moreover, economic decisions are taken over dynamic considerations. An individ-
ual’s economic decisions are bound to reflect not only her present level of income,
but also expected future income levels of that individual. It is well-accepted that ex-
penditure of an individual is more robust to a present shock compared to the income.
Therefore, expenditure distribution is potentially more robust over time compared
to its income counterpart.
The present literature documents well the study of income distribution over dif-

ferent societies – Australia [1, 2], Brazil [3, 4], China [5], India [6], Japan [7, 8],
Poland [9], France [10], Germany [10], United Kingdom [11,12] and USA [13,14].
Almost all the works with some exceptions [15] document the evidence of a Pareto
tail, named after Italian economist and sociologist Vilfredo Pareto [16], at the right
end. The consensus is rather low on the lower tail in these works. Typically, income
distribution is portrayed by a log-normal distribution at the lower tail. Nevertheless,
the empirical documentation resorts to gamma, generalized beta of the second kind,
Weibul or Gompertz as some of the possibility distributaries to model the income
data. A synopsis [17] of the entire study points to various competing theories to
understand this empirical fact as a physical phenomenon [1, 11, 18]. The Pareto law
or the power law is illustrative of an extremely high magnitude of inequality for the
fact that the complementary cumulative distribution1 of the personal income (m)
diminishes exponentially. Mathematically speaking, FC .m/ � m�.1C˛/ with the
exponent ˛ lying between 1 and 2.
Even though study of expenditure distribution is somewhat mandated by the the-

oretical demands, the data are far scarce for expenditure compared to income and
even wealth. The expenditure distribution is found [19] to follow Pareto law with
an exponent of �2 by analyzing a huge point-of-scale (POS) dataset obtained from
a convenience store chain in Japan. The analysis [20] of Indian expenditure data col-
lected by the National Sample Survey Organization (NSSO) for the years of 1983–
2007 also indicates the existence of a Pareto tail. In this particular case, the expen-
diture distribution is fitted to be a mixture of log-normal and Pareto distribution at
the right tail. The weight of the Pareto tail is in the range of 10 to 20% depending
on the particular year and urban or rural nature of the data. The Pareto exponent is
in the range of 1.4 to 2.5. It is in contrast to a study [15] using the U.K. and the
U.S. data, which finds no such Pareto tail, but expenditure (and also income) dis-
tribution as a log-normal distribution. However, it is very much in resonance with
a study [21] on the asset distribution of Indian households showing a Pareto law
with the exponent ranging from 1.8 to 2.4.

1 The cumulative density function (CDF) of a random variable X is often denoted by F .x/. It is
the probability of X attaining all the values lesser than or equal to x and is given by P.X � x/.
The complementary cumulative density function (CCDF) of the random variable X at a point x is
the probability of that random variable to attain a value larger than x and is denoted by F C .x/,
which is P.X � x/.
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The present article builds a foundation between income and expenditure distri-
butions starting from an individual’s preferences. The expenditure occurs when an
individual chooses to spend over a good. Each good finds its place in the felicity
function of the consumer. In the behavioural set-up, money acts like a good in itself.
The savings propensity is modeled along this behavioural formulation [22, 23], in
which, an individual holds money for the sake of deriving utility. We derive some
properties of the income and expenditure distribution under this baseline formula-
tion. The theoretical properties are analysed and contrasted along with the empirical
findings in the literature. Moreover, the emphasis is placed to meet the perceptions
from both ends.
When the parameter values are kept constant across agents, it induces constant

savings in this standard economic environment. Therefore, any Pareto tail in the
income distribution would naturally be transformed to a similarly Pareto tailed ex-
penditure distribution under this framework. From a different perspective, we can
not have a thicker tailed expenditure distribution compared to the Pareto tail of the
income distribution. The data may indicate to this anomaly. To sort out this anomaly,
we model the taste parameters of agents following certain simple distributional as-
sumption. The resulting expenditure distribution is theoretically shown to possess
a thicker Pareto tail compared to the corresponding income distribution. We simu-
late our model with a fixed income for all agents to find that the resulting expenditure
distribution indeed possesses a Pareto tail.
In the next section, the theoretical framework is discussed along with pertinent

assumptions on agents’ tastes and preferences. In Sect. 3, we discuss various cases
arising out of our theoretical framework. The simulation results are thereby elabo-
rated. Finally, we conclude our discussion in Sect. 4.

2 Theoretical Framework

Let an agent consume � goods. All the goods are available in the market with prices
p1, p2, . . . , p� , respectively. The consumed quantities of these goods are denoted by
g1, g2, . . . , g� . Moreover, the agent has felicity for saving money. The agent’s sav-
ings, noted by the random variable s, is another input argument in the utility function
of the agent. We make the following assumptions on the agent’s preferences.

Assumption The agent’s preferences are continuous.

The definition of continuity means the following. Given a sequence of pairs of bun-
dles, .xn; yn/, if first bundle is always (weakly) preferred over the later throughout
the sequence, i.e. xn 
 yn for all n, then this property is preserved in the limit as
well. In other words, there is no sudden jumps in the agent’s preferences, which is
considered somewhat intuitive as far as the preferences are considered. If the prefer-
ences are continuous, the utility function must be continuous.Moreover, any contin-
uous function could be approximated by a suitable polynomial. A utility function is
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a cardinal concept and therefore could be positive without violating any fundamen-
tal premises of the utility theory. We conclude that the utility function is a positive
polynomial. The contribution of different inputs to this function is related to sub-
stitutability of various inputs. A benchmark case is illustrated with Cobb–Douglas
utility function. In this particular case, the substitutability of the inputs is propor-
tional to the relative prices of the inputs. We write the mathematical form of the
utility function as,

u .g1; g2; : : :; g� ; s/ D gı1
1 � gı2

2 � � �gı�
� � sıs ; (1)

where ı1, ı2, . . . , ı� are parameters indicating the significance of each of the goods
in the felicity function of the agent. The savings propensity parameter is denoted
by ıs. We assume that 1 > ıi > 0 for all i D 1; 2; : : :; � and for i D s. This
assumption is totally innocuous. If ıj < 0 for some j , it means that j th good is not
preferred and less of the good is better. Therefore that particular good would not be
consumed and we can exclude it from our consideration. Without loss of generality,
we can assume that ıs CP�

iD1 ıi D 1.2
In a particular case, with with two goods and no savings (i.e. � D 2 and ıs D 0)

[24], where all agents are endowed with different types of goods and agents have
a preference for consumption of all the goods, the mechanism of trade occurs like
a kinetic exchange model for gases. The income distribution of agents with the pro-
posed utility function is found to follow a Pareto upper tail under suitable restrictions
on the values of parameters. Our effort goes for a more general scenario where the
occurrence of trade can be modeled with the same utility function including expen-
diture and savings.
The economic environment is static in nature. The holding of money addresses

the concern for the dynamic necessities to a certain extent. An agent holds
money [23] not only for static considerations, but also as an asset against future
uncertainties. An agent receives an income of size m and maximizes her utility de-
scribed by Eq. (1) subject to the following budget constraint,

p1 � g1 C p2 � g2 C � � �p� � g� C s � m (2)

where s is the agent’s savings as specified. The agent chooses g1, g2, . . . , g� as
well as s and maximizes her utility. The utility function is increasing in all these
arguments. Therefore, an agent shall choose more and more of all the goods and
savings if she has a free hand. And, that is where the budget constraint described
in Eq. (2) becomes pertinent. Due to the constraint on resources imposed by the
total income, the agent is compelled to consume limited amount of resources of
each kind. She has to consume different goods in such a manner that consumption
of each good, quantity-wise, deserves the due importance of the good placed in the
utility function. In other words, the agent solves an optimization exercise, which is
based on the principle that on the margin, equal amount of money spent on each

2 If ıs CP�
iD1 ıi is not equal to 1, we can normalize the ıi s through division of all the ıis by

this sum. It will not change any of the results to be obtained from the model.
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good should bring about same change in utility. The marginal utility of the i th good
is the change in utility per additional unit of good i consumed, when an infinitesimal
amount of i th good is consumed to the current consumption bundle. The agent pays
an amount of pi per unit of i th good for that matter. Therefore the change in utility
per unit of money is the marginal utility of the i th good divided by pi for the agent.
To maximize utility, the agent should choose such a consumption bundle that the
marginal utility of the i th good divided by pi is same for all the goods.
The equilibrium of this model is defined as a bundle of commodities and a sav-

ings decision for the agent that maximizes her utility subject to the budget constraint
noted in Eq. (2). This decision is contingent on the values of the taste parameters,
for example, ı1, ı2, . . . , ı� , and ıs of the agent as well as the income of the agent,m.
In other words, the equilibrium of the model is best described as a function, which
is mapped from the domain of the space of parameters, ı1, ı2, . . . , ı� , ıs , and m to
the range of space of consumption bundles for all the commodities.
Mathematically speaking, letmui be the marginal utility of the i th good in equi-

librium. This can be calculated by considering the derivative of the utility function
of the agent with respect to the quantity of i th good consumed,

mui D @u

@gi

D g
ı1
1 � gı2

2 � � � ıig
ıi�1
i � � �gı�

� D ıi � u .g1; g2; : : :; g� /

gi

: (3)

If
mui

muj

>
pi

pj

then the consumption pattern is such that marginal utility from the

i th good is more than its price when compared to the j th good. Economic effi-
ciency demands that the consumer find it suitable to consume more of the i th good
relative to the j th good and consequently the marginal utility of i th good falls to

the extent that
mui

muj

becomes equal to pi

pj
. Similarly if

mui

muj

<
pi

pj

, the consumer

increases the consumption of the j th good and eventually the equality is restored.
In equilibrium, we observe the equality when the consumer maximizes her utility.
If we use this equality along with the expression of mui from Eq. (3), we obtain

that
pi gi

ıi

D pj gj

ıj

. Moreover, this equality holds valid for any arbitrary i and j .

Moreover, the way savings has been introduced in the utility function, the savings
of an agent, s, acts also like a commodity with unit price. Therefore, the following
equation is satisfied in equilibrium:

p1 g1

ı1
D p2 g2

ı2
D � � � D p� g�

ı�

D s

ıs

: (4)

As marginal utility of each of the goods in positive amount is positive, the budget
constraint (2) holds with equality in equilibrium. We additionally use (4) to obtain
the consumption of each of the goods in equilibrium. The main result could be
summarized as follows:

Proposition The agent uses ı1, ı2, . . . , and ı� fractions of the total income m for
purchasing goods 1, 2, . . . ,and � . Moreover, the agent saves remaining ıs fraction
of the total income.
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This proposition comes directly from the first order condition in (4). It demands an
observation that the proportions in (4) are all equal to another fraction, which is
formed by adding all the numerators of the proportions divided by all the denomi-
nators. The numerator, thus formed, is equal to the total income m by appealing to
the budget constraint noted in (2). The denominator of the fraction is ıs CP�

iD1 ıi ,
which is equal to unity by dint of our model.

3 Comparison of Income and Expenditure Distribution

In this section, we compare the income and expenditure distribution, in particular
the Pareto tails. We analyse how likely it is the case of Pareto tail from a theo-
retical viewpoint. If there is a bunch of possible alternative theories which predict
the Pareto tail, the valid ones may be sorted out from the empirical analysis of the
distributions.

3.1 The Case of Same Parametric Value for Agents

As a simple case, we consider the situation, in which the parameters of the eco-
nomic environment is constant across different agents. For example, savings deci-
sion is a constant ıs in the economic environment presented above. Additionally, we
assume the following with strong empirical support.

Assumption The distribution of income has a Pareto tail.

In our economic environment, income is exogenous. This assumption, if added to
that economic environment, awards a structure to the income distribution. It is quite
consistent with our framework as the current framework models from a consumer’s
viewpoint irrespective of the income to be earned.

Proposition The expenditure distribution is exactly similar to the income distribu-
tion under these assumptions.

In other words, if x% of the population follow income distribution at the upper tail
of the income distribution, it is the same x% who will be in the Pareto tail of the
expenditure distribution. How consistent is this with the data? Study with expendi-
ture distribution is rather limited. Analysis of India income data yields a Pareto tail
of 5–10% [6] in contrast to the expenditure distribution with the Indian data depict-
ing [20] a tail of 10–20%. Therefore there is a considerable diversion between the
two distributions.3

3 It should be mentioned that these two estimates of Pareto tails come from two different sources.
With the exception of a study [15] there is no such empirical comparison. The relevant study finds
both the distribution to be lognormal without any significant Pareto tail, in dealing with the data
from USA and UK.
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It is natural to ask the question that under what conditions it is possible to find
such an empirical result. Obviously, the assumption of same parameter values for
all agents has to be dropped and should be replaced with agents be distributed. We
illustrate a case where expenditure distribution could have a Pareto tail without the
income distribution having Pareto tail. A benchmark model is studied where the
income is constant for all the individuals.

3.2 Asymptotic Case with No Savings and One Dominant Good

Without loss of generality, we can assume that good 1 represents the basic necessi-
ties of life. The importance of each good is denoted by the corresponding parameter
in the utility function. If good 1 is the pre-dominant good, compared to all the other
goods put together, the sum of values of parameters ı2, ı3, . . . , ı� is small compared
to ı1. Further, we assume that the savings propensity, ıs , is equal to zero.

c D p1 g1 C p2 g2 C � � �p� g�

D p1 g1

�
1C ı2

ı1
C � � � C ı�

ı1

�
: (5)

Since good 1 represents the basic necessities of life, the variance in consumption
of this good is rather small across individuals and we can replace it with a constant,
�. We incorporate this in 5 to gather,

c D �

�
1C ı2

ı1
C � � � C ı�

ı1

�
:

Taking logarithm of both the sides and using the rule of approximation that log.1C
�/ Ñ �, where j�j is sufficiently small, we arrive at,

log c Ñ log � C ı2 C ı3 C � � � C ı�

ı1
; (6)

where ı2 C ı3 C � � � C ı� is sufficiently small compared to the value of ı1.
According to the tastes and priorities of individuals, the values of the parameters

ı2, ı3, . . . , ı� differ. In general, we can treat
ı2
ı1
, ı3

ı1
, . . . , ı�

ı1
as random variables and

assume that they are identically and independently drawn from a distribution with
a finite mean and finite variance. If � is sufficiently large, we appeal to the Cen-

tral Limit Theorem to conclude that
�

ı2
ı1
C � � � C ı�

ı1

�
follows a normal distribution.

From (6), it is noted that c follows a lognormal distribution.
In a more general scenario, the number of goods itself is a random variable.

With the assumption that � is geometrically distributed, c follows a double Pareto
distribution as proved in [25]. The double Pareto distribution has both its upper and
lower tails following a Pareto distribution with different parameters (say, ˛ and ˇ).
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The standard form of a double Pareto density function is given by:

fdp.x/ D

8̂̂̂<̂
ˆ̂:

˛ˇ

˛ C ˇx
ˇ�1 for 0 < x � 1

˛ˇ

˛ C ˇx
�˛�1 for x > 1 :

(7)

A related possibility occurs when the population is divided into two strata, com-
prising 
 and 1 � 
 fractions. The second fraction is the poorer section consum-
ing only the necessary items whereas the affluent class, the first section, consumes
a relatively higher number of goods – both necessary and luxury items. It is quite
reasonable to assume that the total number of necessary items consumed is fixed and
as explained above, the expenditure distribution for the poorer section should follow
a log-normal distribution. However, the number of luxury items consumed can be
treated as a random variable, so that the expenditure distribution of the affluent class
can be modeled as a double Pareto confined to the upper tail, which is nothing but
a Pareto distribution. This is consistent with the fact that higher end of the expendi-
ture distribution should follow a Pareto law, similar to the income distribution. The
overall expenditure distribution is then given by a mixture of lognormal and Pareto
distribution. The probability density function of such a distribution is expressed as,

fm.x/ D 
 � fp.x/C .1 � 
/ � fln.x/; (8)

where fln.�/ and fp.�/ are the probability density functions for the log-normal and
Pareto distribution with 
 as the relative weight. More explicitly,

fln.x/ D 1p
2
� x

e
� .logx��/2

2�2

fp.x/ D �
x�
0

x�C1 � 1x>x0

(9)

where � and �2 are the parameters associated with the log-normal distribution. It
may be noted that expectation of the Pareto distribution exists if and only if � > 1.
The value of this Pareto exponent, �, is an important parameter along with x0, the
cut-off of the Pareto tail.

3.3 A Simulation Study

We elaborate our intuition with a simulation study. The simulation study assumes
that there are � goods. A suggested number for � is 10000 as considered in the
conducted study. The consumption of each good i is determined by the taste (ıi ) of
an agent. There are two strata from which agents come from. The first stratum is
the so-called “poor” stratum. The persons belonging to this stratum consume only
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(a) Baseline Case

10
0.15

10
0.17

10
0.19

10
0.21

10
0.23

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Expenditure

C
om

pl
em

en
ta

ry
 C

D
F

 

 

Simulated Data
Log−normal Distribution

(b) More Weight on the “Rich” Stratum
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(c) More Number of Goods for “Poor”
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(d) Less Number of Expected Goods for “Rich”

Fig. 1 Simulation Study: This study uses one million agents. The agents’ expenditure is plotted
against the Complementary Cumulative Distribution Function (CCDF) in the log–log scale. The
solid line indicates the simulated data; whereas the dotted line shows the CCDF of the log-normal
distribution with the mean and variance same as that of the simulated data. The baseline case is
when 
 = 0.3, �0 = 100 and Expected value of � = 1100. The second graph depicts a case with 

= 0.70. The third case is achieved when �0 equal to 500. The expected value of � is 600 for the
fourth case. All the agents possess the same income. However the savings rate or the expenditure
is different as the taste of agents differ. All the panels reveal the existence of a Pareto tail in the
expenditure distribution. The magnitude of the Pareto tail depends on the values of parameters

first �0 goods, which is equal to 100 for the study. The parameters of ı1; ı2; : : :; ı�0

are chosen from a uniform distribution between 0 and �. � denotes the maximum
possible share of a good in the income.We pick � such that the total money spent for
all �0 goods together do no exceed 90% of an agent’s income. The other stratum is
known as the “rich” stratum. In this particular stratum, agents can consume a random
number of goods upto � . The minimum number of �0 goods are consumed always.
The additional number of goods consumed is drawn from a geometric distribution.
The weights of the “poor” and the “rich” strata is given by 1 � 
 and 
 , respect-
ively.
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We would like to point out that even if we are not explicitly modeling the savings
decision, it is quite imbibed in the model. The proportion of savings is chosen out
of the expenditure decision. The value of ıs actually varies between 1 � � and 1.
The expenditure is a random variable and savings is the part of income which is
not going to the expenditure. Therefore, the savings parameter is also a random
variable. The income is constant. And, therefore whatever Pareto tail we could find
in the expenditure distribution, it is definitely coming out of the preferences of the
consumers.
The illustrations show that we can obtain a power tail law in the distribution of

expenditures. The length of the Pareto tails depends on the values of the various
parameters. The baseline case assumes that the weight of the “rich” strata is 30%
represented by the parameter 
 . The other parameter is average number of goods
consumed for this strata. It is the expected value of � for the rich stratum. In the
baseline case, it is taken to be 1100 as opposed to the 100 goods consumed by the
members of the “poor” strata.
The other cases are somewhat similar to the baseline case with the exception of

the value of one parameter. The comparative statics is intuitive and could be figured
out from the illustrations. The case of more consumers in the “rich” strata could be
obtained with a high value of 
 , say, 70%. Obviously, this helps the Pareto tail to
become fatter. On the other hand, if we increase the total number of goods consumed
by the “poor” strata, the Pareto tail moves to be slimmer as illustrated here with �0
equaling 500. The last experiment is about expected number of goods consumed by
the rich strata. It shows that with an expected number of goods of 600, the Pareto
tail is still prominent with small reductions.

4 Discussion

We have experimented with a simple model about agents’ tastes. In particular, an
agent’s felicity function is modeled as Cobb–Douglas. The question is what kind
of restrictions do we need on the parameters to obtain a Pareto tail for the expen-
diture distribution? And secondly, if we do get a Pareto tail out of the expenditure
distribution, when agents behave in accordance with this felicity function, what is
the magnitude of that Pareto tail with respect to the magnitude of the Pareto tail in
the income data? Could it be bigger than the income data?
For any model with agents having Cobb–Douglas felicity functions, we have

found that the expenditure distribution possesses the Pareto tail as much as the in-
come distribution. We look for more assumptions in the model to develop the case
for magnitude wise a greater Pareto tail of the expenditure distribution compared to
the income distribution. We assume that agents have heterogenous preferences for
goods. In particular, if agents’ preferences vary uniformly within a given range, it
may lead to a log-normal distribution. We add to this model in two ways. First, there
are two strata in the society – “poor” and “rich”. The “poor” stratum consumes only
a fixed number of goods. The members of the “rich” stratum consume more number
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of goods compared to the “poor” stratum. Secondly, the number of goods consumed
by the members of the “rich” stratum follows a geometric distribution.
We predict that we can obtain a lognormal expenditure distribution with a Pareto

tail with these assumptions, even if we start with constant income across agents. The
simulation results confirm our theoretical prediction. The role of different parame-
ters are also analysed. Thereby we resolve the anomaly of the Indian data portaying
a greater Pareto tail in expenditures compared to the income distribution. In this
process, we implicitly assume that not all members of the society have access to all
the resources. The two strata are identified in the model by available opportunities
rather than income or tastes. There is a significant difference between the opportu-
nities available to rural and urban segments of Indian population which justifies the
assumption of discrepancy in opportunities for the individuals. This also explains
the difference in the Pareto cut off in the expenditure distribution of the urban and
rural population [20]. Indeed our attempt is towards a general theory of preferences
which may be taken care of while studying the distribution analysis for the related
study of income and expenditure.

References

1. A. Banerjee, V.M. Yakovenko and T.Di. Matteo, Physica A 370 (2006) 54–59
2. T.Di. Matteo, T. Aste, S.T. Hyde, Exchanges in compex networks: income and wealth distri-
butions in The Physics of Complex Systems, eds. F. Mallamace and H. E. Stanley, IOS Press
Amsterdam (2004), 43

3. F.A. Cowell, F.H.G. Ferreira, J.A. Litchfeld, J. Income Distr. 8 (1998) 63–76
4. N.J. Moura Jr and M.B. Rebeiro, Eur. Phys. J. B 67 (2009) 101–120
5. D. Chotikapanich, D.S. Prasada Rao, K.K. Tang, Rev. Incom. and Wealth 53 (2007) 127–147
6. S. Sinha, Physica A 359 (2006) 555–562
7. H. Aoyama et al., Fractals 8 (2000) 293–300
8. Y. Fujiwara et al. Physica A 321 (2003) 598–604
9. P. Lukasiewicz, A. Orlowski, Physica A 344 (2004) 146–151
10. C. Quintano and A. D’Agostino, Rev. of Income and Wealth 52 (2006) 525–546
11. A. Dragulescu and V.M. Yakovenko, Physica A 299 (2001) 213–221
12. A. Harrison, Rev. of Econ. Studies, 48 (1981) 621–631
13. A. Christian Silva, V.M. Yakovenko, Europhys. Lett. 69 (2005) 304–310
14. A. Dragulescu and V.M. Yakovenko, Eur. Phys. J. B. 20 (2001) 585–589
15. E. Battistin, R. Blundell, and A. Lewbel, Journal of Political Economy Vol. 117, No. 6:

pp. 1140–1154, 2009
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Two Agent Allocation Problems
and the First Best

Manipushpak Mitra

Abstract. We consider a general class of two agent allocation problems and iden-
tify the complete class of first best rules. By first best rules we mean allocation rules
for which we can find efficient, strategyproof and budget balanced mechanisms. We
show that the only first best rules are the fixed share allocation rules.

1 Introduction

We consider a general class of allocation problems in a two agent setting and in the
presence of money. Allocation of indivisible goods in the presence of money has
been analyzed extensively (see Fujinaka and Sakai [3], Miyagawa [6], Ohseto [7],
[9], [10], Sakai [11], Svensson and Larsson [12], Tadenuma and Thomson [13]).
Allocation of divisible goods in the presence of money has also been analyzed (see
Back and Zender [1], Wilson [15], Yang and Hajek [16]).
In this paper we consider a situation where a good or a set of goods (divisible

or indivisible) needs to be allocated among two agents and that agents’ preferences
are quasilinear in the allocated good and money. Assuming unknown types of the
agent we ask the following question: can we find allocation rules for which we can
find efficient, strategyproof and budget balanced mechanisms? Such allocation rules
are called first best rules. We show that the only first best rules are the fixed share
allocation rules.

2 The Framework

Let N D f1; 2g be the set of agents to whom a good or a set of goods needs to be
allocated. Let Ui .di ; ti I 
i / D di
i C ti where di is the amount allocated to agent i ,
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i 2 <C is the type (or valuation) of agent i and ti is the monetary transfer to
agent i . In this paper we assume that the type of the agent is unknown. Since the total
amount to be allocated is fixed, d1Cd2 D m. An allocation of the good can be done
in many ways. We assume thatD represents the set of possible allocations. Note that
a generic element of the set D is d � .d1; d2/ with d1 C d2 D m. An allocation
rule is a mapping d W <2C ! D that specifies for each profile 
 D .
1; 
2/ 2 <2C an
allocation vector d.
/ D .d1.
/; d2.
// 2 D.
A transfer rule is a mapping t W <2C ! <2 that specifies for each profile 
 2 <2C

a transfer vector t.
/ D .t1.
/; t2.
// 2 <2. While an allocation rule is concerned
with the distribution of good(s), the transfer rule is concerned with the distribution
of money.We assume that the type of any agent is private information and introduce
the notion of a direct revelation mechanism that deals with the allocation of good(s)
as well as the allocation of money in order to elicit this private information.
A direct revelation mechanism (or simply a mechanism) .d; t/ constitutes of

an allocation rule d and a transfer rule t . Under a direct revelation mechanism
agents announce their types simultaneously and given the announcement of the
agents the mechanism specifies the allocations and transfers. Fix an allocation rule
d W <2C ! D. Given this allocation rule consider a mechanism .d; t/. The mecha-
nism specifies that given an announcement 
 0 D .
 01; 
 02/ 2 <2C the utility of agent i
with true type 
i is given by Ui .di .


0/; ti .
 0/; 
i / D di.

0/
i C ti .
 0/.

Definition 1 A mechanism .d; t/ is efficient if for each 
 2 <2C, d.
/ D .d1.
/;

d2.
// 2 argmaxd2D.d1
1 C d2
2/.
Definition 2 Amechanism .d; t/ is strategyproof if for all 
1; 
 01 2 <C and all 
2 2
<C, U1.d1.
1; 
2/; t1.
1; 
2/; 
1/ � U1.d1.
 01; 
2/; t1.
 01; 
2/; 
1/ and U2.d2.
1; 
2/;
t2.
1; 
2/; 
2/ � U2.d2.
1; 
 02/; t2.
1; 
 02/; 
2/ for all 
2; 
 02 2 <C and all 
1 2 <C.
Proposition 1 A mechanism .d; t/ is strategyproof only if

(ND1) d1.
1; 
2/ is non-decreasing in 
1 and
(ND2) d2.
1; 
2/ is non-decreasing in 
2.

Since Proposition 1 is a very standard result we omit its formal proof.

Definition 3 A mechanism .d; t/ is budget balanced if for all 
 2 <2C, t1.
/ C
t2.
/ D 0.
Definition 4 An allocation rule d W <2C ! D is implementable if there exists
a mechanism .d; t/ that satisfies efficiency of decision and strategyproofness.

Definition 5 Amechanism .d; t/ is aVCG mechanism, if for all 
 D .
1; 
2/ 2
<2C,

ti .
/ D dj .
/
j � hi .
j /; hi W <C ! <; 8 i; j 2 N; i 6D j: (1)

Proposition 2 Any allocation rule d W <2C ! D is implementable uniquely by the
class of VCG mechanisms.
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Proposition 2 states that all allocation rules d W <2C ! D are implementable.
Moreover, the associated mechanism must be a VCG mechanism (see Vickrey [14],
Clarke [2] and Groves [4]). Proposition 2 follows directly fromHolmström [5] since
domain of preferences specified in this paper satisfy Holmström’s definition of “con-
vex” domains.

3 The Result

Our main result deals with first best implementable allocation rules.

Definition 6 An allocation rule d W <2C ! D is first best implementable if there
exists a mechanism .d; t/ that satisfies efficiency of decision, strategyproofness and
budget balancedness.

We show that the only first best rules are the fixed share allocation rules.

Definition 7 An allocation rule d W <2C ! D is a fixed share allocation rule if
the set D is a singleton, that is, if there exists a real number r such that d.
/ D
.d1.
/ D r; d2.
/ D m � r/ for all 
 D .
1; 
2/ 2 <2C.
Theorem 1 An allocation rule d W <2C ! D is first best implementable only if it is
a fixed share allocation rule.

To prove Theorem 1 we will use the following lemma which shows that an alloca-
tion rule is first best implementable only if it satisfies an ‘appropriate’ symmetry
condition.

Lemma 1 An allocation rule d W <2C ! D is first best implementable only if for
all 
 D .
1; 
2/ 2 <2C with 
1 6D 
2, d.
1; 
2/ D d.
2; 
1/.

Proof. Using condition (1) (given by the VCG mechanism) and using budget bal-
ancedness it follows that an allocation rule d W <2C ! D is first best imple-
mentable only if we can find function hi W <C ! < for i D 1; 2 such that for
all 
 D .
1; 
2/ 2 <2C,

d1.
1; 
2/
1 C d2.
1; 
2/
2 D h1.
2/C h2.
1/: (2)

Since from (2) it follows that d1.1; 1/C d2.1; 1/ D h1.1/C h2.1/ D m, by setting

1 D 
2 D x 2 <C in (2) and then using d1.x; x/Cd2.x; x/ D m D h1.1/Ch2.1/
we get

h1.x/C h2.x/ D h1.1/x C h2.1/x; 8 x 2 <C: (3)

An immediate consequence of (3) is that

h1.x/ D h1.1/x CK.x/ and h2.x/ D h2.1/x �K.x/; 8 x 2 <C (4)

where K.x/ is any real valued function. Using (2) and (4) for states 
 D .
1; 
2/

and 
 0 D .
 01 D 
2; 

0
2 D 
1/ we obtain the following.
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(A) d1.
1; 
2/
1 C d2.
1; 
2/
2 � h1.1/
2 � h2.1/
1 D K.
2/�K.
1/ and
(B) d1.
2; 
1/
2 C d2.
2; 
1/
1 � h1.1/
1 � h2.1/
2 D K.
1/�K.
2/.
Summing (A) and (B) and then using h1.1/C h2.1/ D m we get

Œd1.
1; 
2/C d2.
2; 
1/ �m�
1 C Œd2.
1; 
2/C d1.
2; 
1/�m�
2 D 0: (5)

Substituting m D d1.
1; 
2/ C d2.
1; 
2/ in the first term of (5) and substituting
m D d1.
2; 
1/C d2.
2; 
1/ in the second term of (5) we get

Œd2.
2; 
1/� d2.
1; 
2/�.
1 � 
2/ D 0: (6)

From (6) it follows that d2.
1; 
2/ D d2.
2; 
1/ for all 
1 6D 
2. Moreover, substi-
tuting d2.
2; 
1/ D m � d1.
2; 
1/ and d2.
1; 
2/ D m � d1.
1; 
2/ in (6) we also
get

Œd1.
1; 
2/� d1.
2; 
1/�.
1 � 
2/ D 0: (7)

From (7) it also follows that d1.
1; 
2/ D d1.
2; 
1/ for all 
1 6D 
2. �

Proof of Theorem 1. Consider any state 
 D .
1 D x; 
2 D x/ with x 2 <C. We
first show that (i) di .x; x/ D di .y; x/ D di .x; y/ for all y 2 <C and for i D 1; 2.
Consider y > x. From (ND1) it follows that d1.y; x/ � d1.x; x/) m�d2.y; x/ �
m � d2.x; x/ ) d2.x; x/ � d2.y; x/ D d2.x; y/ where the last equality follows
from Lemma 1. Since (ND2) gives d2.x; y/ � d2.x; x/, it follows that d2.x; x/ �
d2.y; x/ D d2.x; y/ � d2.x; x/ implying d2.x; x/ D d2.x; y/ D d2.y; x/. Since
d1.
/ C d2.
/ D m for all 
 2 <2C, we also get d1.x; x/ D d1.x; y/ D d1.y; x/.
For y < x a very similar kind of argument with inequalities in the opposite direction
gives di .x; x/ D di .y; x/ D di .x; y/ for i D 1; 2.
Consider any state 
 0 D .
 01 D z; 
 02 D z/ with z 2 <C and z 6D x. Applying

steps similar to those used for proving (i) above, it follows that (ii) di .z; z/ D
di .y

0; z/ D di .z; y
0/ for all y0 2 <C and for i D 1; 2. Finally by substituting

y D z in (i) and by substituting y0 D x in (ii) we get (iii) di.x; x/ D di .x; z/ D
di .z; x/ D di .z; z/ for i D 1; 2. Applying (i), (ii) and (iii) it follows that if in any
state O
 D . O
1 D x; O
2 D x/, d. O
/ D .d1. O
/ D r; d2. O
/ D m � r/ where x 2 <C
and r is any arbitrary real number then for all 
 2 <2C, d.
/ D .d1.
/ D r; d2.
/ D
m � r/ and the result follows. �

4 Conclusions

We have restricted our search of mechanisms to direct revelation mechanisms only.
This is without loss of generality due to The Revelation Principal (see Myerson [8]).
The class of allocation problems for which Theorem 1 is valid is quite broad since
the set of possible allocations D is very general as it allows for the allocation of
one or more than one divisible or indivisible good(s). Our result is a negative one
since the only first best rules are the fixed share allocation rules for which the set D
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is a singleton. Hence for such allocation rules efficiency and strategyproofness are
trivially satisfied and there is no need for agent specific transfers. The type space is
common to both agents is a crucial assumption. In the absence of this assumption
Lemma 1 is not valid.

Acknowledgements The author is thankful to Satya Ranjan Chakravarty, Conan Mukherjee and
Arunava Sen for their comments and suggestions.
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Opinion Formation in a Heterogenous Society

Marie-Therese Wolfram

1 Introduction

Opinion formation and opinion leadership has attracted a lot of research among so-
ciologists and physicists in the last decades. The first concept of opinion leadership
goes back to Lazarsfeld et al. [8] in 1944. Larzarsfeld et al. found out that dur-
ing the presidential elections in 1940 interpersonal communication showed greater
influence than direct media effects. In their theory of two-step flow communication
opinion leaders, who are active media users, select, modify and transmit information
from the media to the less active part of the community. In later models sociologists
gained a different view of opinion leadership by introducing the notion of public in-
dividuation. Public individuation describes how people want to differentiate and act
differently from other people, see [9]. This attitude is a necessary prerequisite for
an opinion leader, since she or he has to stand out against the masses. Characteristic
features of opinion leaders are their high self esteem and confidence as well as their
ability to withstand criticism. Although new technologies like the internet, blogs
or instant messaging changed the way of communication and information dissem-
ination globally, opinion leadership still plays a critical role in opinion formation
processes.
Social and political networks are another important factor. Traditional social net-

works include sport clubs or religious groups, but nowadays online networks like
Facebook or Twitter connect more people than ever before. The importance of these
social and political networks in the process of opinion formation can not be un-
derestimated. Within these networks information is disseminated much faster than
outside the network.
In the last years physicists got more interested in the mathematical modeling of

opinion formation. They established a new research field, known as sociophysics.
This notion was motivated by the pioneering work of Galam et al. [7]. For further
information we refer to the work by Cominiciolo et al. [3] and Galam [10].
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Various approaches can be found in the literature like cellular automata, mean-
field type models (leading to partial differential equations) or kinetic models. Ki-
netic models were introduced by Toscani [13] in 2006. The general idea is that the
behavior of a sufficiently large number of interacting individuals in a society can
be described by methods of statistical physics just as the collision of gas molecules
in a container. In kinetic models the exchange of opinion between individuals is
defined by pairwise, microscopic interactions. Then the whole society evolves by
a certain macroscopic opinion distribution, which depends on the specific micro-
scopic interactions.
In this work we present a kinetic model for opinion formation. It includes several
aspects of opinion formation: self-thinking and compromise processes [4, 14]. Self
thinking describes the diffusive way, in which individuals change their opinion de-
pending on information sources like the media. Furthermore people tend to reach
a compromise after exchanging opinions. Toscani introduced a opinion formation
model in [13] which includes both processes. Here opinion is exchanged between
individuals through pairwise interactions. These interaction laws lead to a partial
differential equation of Fokker–Planck type in a suitable scaling limit. Similar dif-
fusion equations were obtained in [11] as a mean field limit the Sznajd model [12].
A similar kinetic approach has been proposed by Boudin et al. [1,2] using different
microscopic interaction laws.
Our work is based on Toscani’s model [13] and the later generalizations of opin-

ion formation processes in the presence of strong leaders by Cominciolo et al. [3]
and Düring et al. [5]. We present a generalization of this model for a society, in
which individuals are connected via social or political networks. Our approach is
a simplification of the complex reality, therefore it has its limitations. The statistical
description is only valid for a large number of individuals. Furthermore we assume
that an individual can be a member of one network only. Nevertheless the proposed
model is a first step to a better understanding of opinion leadership and social net-
works.
This paper is organized as follows. In Sect. 2 we review Toscani’s model for

opinion formation and present our generalized approach. Sect. 3 is devoted to the
limiting Fokker Planck system. Finally we present numerical examples in Sect. 4.

2 Kinetic Approaches for Opinion Formation

We start with a review of Toscani’s model [13], discuss the motivations and under-
lying assumptions and continue with our extend approach.

Toscani’s Model
Toscani’s model is based on binary interactions between two individuals. Here the
opinion is represented by the continuous variable w 2 I with I D Œ�1; 1�. The
endpoints of the interval I , i.e. w D ˙1, correspond to extreme opinions. Let v
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and w denote the pre-interaction opinion for two individuals and v� and w� their
post-interaction opinion. Then the post-interaction opinions are given by

v� D v � �P.jv �wj/.v � w/C 	1D.v/; (1a)

w� D w � �P.jw � vj/.w � v/C 	2D.w/: (1b)

Here � 2 .0; 12 / is the constant compromise parameter, the quantities 	1 and 	2
denote random variables with zero mean and variance �2. The self thinking process
of each individual due to the global access to information, e.g. through the press,
television or internet, is modeled via random diffusion by the parameters 	i , i D
1; 2. The functionsP.�/ andD.�/model the local relevance of compromise and self-
thinking for a given opinion. Both functions have to satisfy additional constraints to
guarantee that the post-interaction opinions stay in the intervalI .

2.1 A Kinetic Model with Several Groups

Based on Toscani’s approach we would like to present a model that describes opin-
ion formation among several groups or networks. This approach is a further exten-
sion of the work of Düring et al. [5], which studied opinion formation between two
groups of individuals, namely ’strong opinion leaders’ and ’ordinary people’. We
extend this approach for several groups, i.e. ’strong opinion leaders’ and groups or
networks of ’ordinary people’. Here we make the hypothesis that several groups in
the human society are strongly connected via networks, societies or simply their
age. Furthermore we assume that an individual can be a member of a single network
only and that individuals among one group share a common compromise parameter.
Let N denote the number of groups or networks in a society, the N -th group

always denotes the strong opinion leaders. The interaction rules between different
groups are given by:

• If two individuals from groups i and j with either i; j < N or i; j D N meet,
then their interaction rule is given by

v� D v � �ijPij .jv �wj/.v � w/C 	ijD.v/; (2a)

w� D w � �ijPij .jv �wj/.v � w/C 	ijD.v/: (2b)

This means that if two individuals from the groups of ordinary people or two
strong leaders meet, their post interaction opinion is determined by Toscani’s
model (1).

• If an individual from the i-th group of ordinary people with opinion v (with i <
N ) meets a strong opinion leader with opinion w their post-interaction opinions
are given by

v� D v � �iNPiN .jv � wj/.v � w/C 	iND.v/; (2c)

w� D w: (2d)
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Here the post-interaction opinion of the strong leader does not change, while
the post-interaction opinion of the ordinary person is influenced by the opinion
leader. This reflects the assumption that opinion leaders promote opinions, show
high self confidence and withstand criticism.

We reiterate that the parameter �ij denotes the constant compromise parameter,
which describes the willingness to make a compromise between two opinions. The
quantity 	ij are random variables with zero mean and variance �2 modeling self-
thinking via diffusion.
Let fi D fi .w; t/, i D 1; : : : ; N denote the distribution function for each group,

which depends on the opinion w 2 I and time t 2 R
C. Then the time-evolution of

opinion distribution satisfies a system of Boltzmann-like equations, given by

@

@t
fi .w; t/ D

NX
jD1

1

�ij

Qij .fi ; fj /.w/; for i D 1; : : : ; N � 1 (3a)

@

@t
fN .w; t/ D 1

�NN

QNN .fN ; fN /.w/: (3b)

The parameters �ij are suitable relaxation times which allow to control the inter-
action frequencies between the different groups. The Boltzmann-like collision op-
erators can be derived by standard methods of kinetic theory, considering that the
change in time of fi .w; t/ due to binary interaction.
Let h�i denote the mean operator with respect to the random quantities 	ij . Then

the collision operator in weak form is given byZ
I

Qij .fi ; fj /.w/�.w/ dw

D 1

2

*Z
I 2

�
�.w�/C �.v�/ � �.w/ � �.v/�fi .v/fj .w/ dv dw

+
;

(4)

for all smooth test function �.w/.

3 The Limiting Fokker–Planck System

To understand the behavior of solutions for large times, i.e. close to the steady state,
we study the quasi-invariant opinion limit (�ij ; �ij ! 0 and �2ij =�ij D �ij ) by
formal asymptotics. This approach is well known in kinetic theory and has been
introduced by Toscani for opinion formation processes, see [13]. We introduce for
�ij � 1 the transformation

� D �ij t; gi .w; �/ D fi .w; t/; i D 1; : : : ; N;
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which implies fi .w; 0/ D gi .w; 0/: The mass of each group is given by Mi DR
gi dv for i D 1; : : : ; N . Then the limiting Fokker–Planck system is given by
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where ci i D 2 for all i; j D 1; : : : N and cij D 4 if i ¤ j . The convolution
operatorsKij are given by

Kij .w; �/ D
Z
I

Pij .jw � vj/.w � v/gi .v; �/ dv; for i D 1; : : : ; N: (6)

System (5) is supplemented with the following no flux boundary conditions atw˙1
(which result from the integration by parts)

NX
jD1

�
1

�ij

Kij .w; �/gi .w; �/C �1jMj

cij �1j

@

@w

�
D2

ij .w/gi .w; �/
�	 D 0; (7a)

1

�NN

KNN .w; �/gN .w; �/C �NNMN

cNN �NN

@

@w

�
D2

N .w/gN .w; �/
� D 0; (7b)

and

D2
i .w/gi .w/ D 0 on w D ˙1 for all i D 1; : : : N � 1: (7c)

To ensure that the post interaction opinions v� and w� in (2) stay in the intervalI
we assume that D.˙1/ D 0. Therefore condition (7c) is automatically satisfied, if
the solution gi , i D 1; : : : ; N are sufficiently regular.

4 Numerical Simulations

We consider a heterogenous society with different age groups. Here we assume
that people within an age group are better connected than outside their group. For
example, senior citizens are more likely to discuss current issues with other seniors
and have a different opinion formation behavior than young people. We would like
to understand the behavior of our mathematical model for different parameter sets.
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As a very simple example we divide the ’ordinary’ people into three different age
groups – young people (15–25 years), workers (25–60 years) and senior citizens (>
60 years).
We model the diffusion of opinion by the function

Di .w/ D D.w/ WD .1 �w2/˛: (8)

for i D 1; : : : ; N with ˛ > 1=2. The compromise propensity Pi .�/ for i D 1; : : : N
by

Pi .jv �wj/ D 1jv�w j�ri
; (9)

where 1A denotes the indicator function on the set A and ri denotes the interaction
radius. The following parameters are fixed throughout this section, if not mentioned
otherwise:

• relaxation times: �ij D 1I for i; j D 1; : : : ; N ;
• ratio of normal people to opinion leaders:

PN�1
iD1 Mi D 0:95 andMN D 0:05I

• exponent of the diffusion function in (8): ˛ D 2:
The initial datum for every group of normal people is given by a Gaussian

gi .w; 0/ D 1p
2
�1

e
� .w��1/2

2�2
i for i D 1; : : : ; N � 1; (10)

with �i D 0:1 and weights
Pm

kD1 pk D 1. The opinion leaders are initially dis-
tributed as

gN .w; 0/ D
nX

kD1

qkp
2
�N

e
� .w��k/2

2�2
N (11)

with weights
nP

kD1
qk D 1.

4.1 Monte Carlo Simulations

We performed a series of kinetic Monte Carlo simulations for the presented Boltz-
mann model (2) to understand the influence of the model parameters and compare
the results to the behavior of the limiting Fokker–Planck system (5). This kind of
simulations are known as direct simulation Monte Carlo (DSMC). Pairs of indi-
viduals are chosen randomly and non-exclusively for binary collisions, where they
exchange opinion according to the rule under consideration. We denote by Ni ,
i D 1; : : : ; N the number of individuals in every single group. Furthermore we
average over M D 20 time steps to obtain an approximate steady state opinion
distribution. Each simulation is carried out for 106 time steps, where one time step
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corresponds to
PN

iD1Ni interactions. We choose N1 D 1000 young individuals,
N2 D 2000; working people,N3 D 1750 senior citizens andN4 D 250 strong lead-
ers. The parameter � is set to 0:02. The random variables 	ij are chosen such that
they assume only values ˙� D ˙0:01 with equal probability. The initial distribu-
tions are given by the discrete analogues of (10) and (11).

4.2 Numerical Solution of the Fokker–Planck System

To illustrate the long-time behavior of the proposed model we discretize the non-
linear Fokker–Planck system (5) using a hybrid discontinuousGalerkin (DG)method
introduced by Egger and Schöberl in [6]. This hybrid DG method was initially de-
veloped for convection diffusion equations and yields stable discretizations for con-
vection dominated problems. We consider the following semi-implicit (in time) dis-
cretization of the Fokker–Planck system (5), which fits into the framework of [6].
Note that the method is conservative, which is consistent with the assumption that
the initial mass of the Fokker–Planck system is preserved in time.
We choose a partition of the time interval Œ0; T �; with 0 D t0 < t1 < : : : < tk <

: : : < tm D T , and define�tk D tkC1 � tk . Then the semi-discrete scheme is given
by
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Here gk
i , i D 1; : : : ; N denotes the solution at time t D tk . We choose an equidistant

mesh of mesh size h D 1
400 to discretize the interval I D Œ�1; 1�. The time steps

�tk are set to 0:01.

4.3 Numerical Examples

In our first example we would like to simulate a simple opinion formation process.
Two groups of opinion leaders are located at w ˙ 0:5. Every age group is given
by a Gaussian (10) with � D 0. In this example we assume that the interaction
radius between senior citizens and other age groups are much smaller than the radii
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of workers. Young people have larger interaction radii. The interaction radii in our
first example are given in Table 1. The evolution and the stationary solutions of the
Boltzmann and Fokker–Planck system are depicted in Fig. 1.

Table 1 Interaction radii – the value left of the backslash corresponds to the interaction radius of
the individual in the left colum, the value right to the individual in the top row

young workers senior leaders

young 0.75 0.5 0.4 0.5n0
workers 0.5 0.5 0.5 0.5n0
senior 0.4 0.4 0.4 0.4n0
leaders 0n0.5 0n0.5 0n0.4 0.4

In our second example we decrease the interaction radii of the senior citizens
even further(see Table 2) and increase the groups of opinion leaders (located at
w D ˙0:25 and w D ˙0:75 with weight qk D 0:25 for k D 1; : : : ; 4). All
age groups are initially distributed around �i D ˙0:5 with weight pk D 0:5 for
k D 1; 2 in (10). Furthermore we set the parameter ˛ in (8) to 0:75.

Table 2 Interaction radii

young workers senior leaders

young 0.75 0.5 0.2 0.5n0
workers 0.5 0.75 0.5 0.5n0
senior 0.2 0.2 0.2 0.2n0
leaders 0n0.5 0n0.5 0n0.2 0.2

The evolution and the stationary solutions of the Boltzmann and Fokker–Planck
system are depicted in Fig. 2. We observe that the smaller diffusivity coefficient ˛
causes a greater spread in the different age groups as well as the opinion leaders. The
groups of opinion leaders at w ˙ 0:25 diffuse and merge during the time evolution.
Therefore we can only observe two peaks in the stationary profiles of all age groups.
If we increase the interaction frequencies within the networks �i i D 0:1 for

i D 1; : : : ; 4, the interaction with the strong opinion leaders loose their influence in
the opinion formation process. The evolution of the Fokker Planck system is shown
in Fig. 3. Young people and workers merge at the center w D 0, while retired
individuals remain centered around the initial datum (due to the small interaction
radii of senior citizens).

5 Conclusions

We introduced and discussed a nonlinear kinetic model for a heterogenous society.
We assume that this society includes several different groups or social networks as
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Fig. 1 (a)–(d) Time evolution of the Fokker–Planck solution, (e)–(h) Stationary solution of the
MC simulation and the Fokker–Planck system
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Fig. 2 (a)–(d) Time evolution of the Fokker–Planck solution, (e)–(h) Stationary solution of the
MC simulation and the Fokker–Planck system
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Fig. 3 (a)–(d) Time evolution of the Fokker–Planck solution

well as a group of strong opinion leaders. The evolution of opinion is described
by a system of Boltzmann-like equations, where collisions describe the binary ex-
change of opinion and self-thinking. For suitably large times the system of Boltz-
mann equations is well approximated by the nonlinear Fokker–Planck system. We
discuss the behavior of the Boltzmann type system as well as the Fokker–Planck
system for various model parameters in different examples.
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Opinion Formation in the Kinetic Exchange
Models

Anirban Chakraborti and Bikas K. Chakrabarti

Abstract. We review the minimal multi-agent model (LCCC) for the collective dy-
namics of opinion formation in the society, which was based on the kinetic exchange
dynamics studied in the context of income, money or wealth distributions in a so-
ciety. This model has an intriguing spontaneous symmetry breaking transition to
polarized opinion state starting from non-polarized opinion state. We also briefly
review the simple variants and extensions of this model that have been proposed
recently.

1 Introduction

It has only been a few decades that physicists have started studying social phenom-
ena and dynamics, leading to the growth of the interdisciplinary field of “Socio-
physics” [1]. One of the problems is of “opinion formation”, which is a collective
dynamical phenomenon, and as such is closely related to the problems of compet-
ing cultures or languages [2,3]. It deals with a “measurable” response of the society
to e.g., political issues, acceptances of innovations, etc. Numerous models of com-
peting options have been introduced to study this phenomenon, e.g., the “voter”
model (which has a binary opinion variable with the opinion alignment proceeding
by a random choice of neighbors) [4], or the Sznajd-Weron discrete opinion for-
mation model (where more than just a pair of spins is associated with the decision
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making procedure) [5]. There have been other studies of systems with more than
just two possible opinions [6], or where the opinion of individuals is represented by
a “continuous” variable [7–9] using real numbers. Also, since opinion formation in
a human society is mediated by social interactions between individuals, such social
dynamics has been considered to take place on a network of relationships (see [2]
for recent review on such models).
A two body exchange dynamics has already been developed in the context of

modelling income, money or wealth distributions in a society [10–14]. The general
aim was to study a many-agent statistical model of closed economy (analogous to
the kinetic theory model of ideal gases) [15], whereN agents exchange a quantity x,
that may be defined as wealth. The states of agents are characterized by the wealth
fxi g; i D 1; 2; : : : ; N , such that xi > 0; 8i and the total wealth W D P

i xi

is conserved. The question of interest is: “What is the equilibrium distribution of
wealth f .x/, such that f .x/dx is the probability that in the steady state of the
system, a randomly chosen agent will be found to have wealth between x and x C
dx?” The evolution of the system is carried out according to a prescription, which
defines the trading rule between agents. The agents interact with each other through
a pair-wise interaction characterized by a “saving” parameter �, with 0 � � � 1.
The dynamics of the model (CC) is as follows [15]:

x0i D �xi C �.1 � �/.xi C xj / ;

x0j D �xj C .1 � �/.1 � �/.xi C xj / ; (1)

where � .0 � � � 1/ is a stochastic variable, changing with time. It can be noticed
that in this way, the quantity x is conserved during the single transactions: x0i C
x0j D xi C xj , where x0i and x0j are the agent wealths after the transaction has
taken place. In general, the functional form for steady state distribution f .x/ is seen
to be close to the � -distribution [16, 17]. As a further generalization, the agents
could be assigned different saving propensities and the steady state distribution f .x/
show Pareto-like power-law behavior asymptotically [18,20]. This model (CCM) is
described by the trading rule

x0i D �ixi C �Œ.1 � �i /xi C .1 � �j /xj � ;

x0j D �jxj C .1 � �/Œ.1 � �i /xi C .1 � �j /xj � : (2)

One of the main features of this model, which is supported by theoretical consid-
erations [19–21], is that the wealth distribution exhibits a robust power-law in the
asymptotic limit of x. Detailed analytical structure of the collective dynamics in
these models are now considerably well-developed [21, 22].
Earlier, Toscani [23] had introduced and discussed kinetic models of (contin-

uous) opinion formation involving both exchange of opinion between individual
agents and diffusion of information. Based on this model, During et al [24] pro-
posed another mathematical model for opinion formation in a society that is built
of two groups, one group of “ordinary” people and one group of “strong opinion
leaders”. Starting from microscopic interactions among individuals, they arrived at
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a macroscopic description of the opinion formation process. They discussed the
steady states of the system, and extended it to incorporate emergence and decline of
opinion leaders.
Here, we review the studies of the minimal model (LCCC) for the collective

dynamics of opinion formation in the society, based on kinetic exchanges, and its
variants or extensions.

2 Model for Opinion Formation and Results

2.1 Homogeneous Multi-agent Model

Following the CC model described in the earlier section, we present a minimal
model [25, 26] for the collective dynamics of opinion Oi .t/ of the i -th person in
the society, consisting of N (N �! 1) persons. We assume that any particular
person can discuss (interact) only with one other person each time (time increases
discretely by unity after each such discussion). A two-person “discussion” is viewed
here as a simple two-body scattering process in physics (depicted schematically in
Fig. 1. Persons in the society may bump onto each other randomly and exchange
opinions through such random two-person discussions. In general, a person i could
have any opinionOi between two extreme polarities denoted byC1 and �1. In any
discussion at time t C 1, a person retains a fraction of his/her older opinion Oi .t/,
determined by his/her “conviction”, parameterized by �i . This parameter value is
characteristic of a person and does not change with time t . Additionally, the person
i is “influenced” stochastically by the other person j during the discussion hav-
ing the “influence” parameter equal to his/her conviction parameter �j . We further
assume for simplicity that all agents are homogeneous – have the same conviction
parameter �. Mathematically the dynamics may be represented by

Oi .t C 1/ D �.Oi .t/C �tOj .t// ;

Oj .t C 1/ D �.Oj .t/C �0tOi.t// ; (3)

where the opinion�1 � Oi .t/ � 1 for all agents i and time t , the conviction param-
eter 0 � � � 1 is quenched (does not change with time), and the stochastic parame-
ters �t and �0t are annealed variables (changewith time) – uncorrelated random num-
bers uniformly distributed between zero and unity. Note that the equations are linear,
but non-linearity is introduced in this model by imposing that �1 � Oi.t/ � 1 for
all agents i and times t .
The question we are interested is that if such social dynamics continually take

place, can any consensus be reached or polarity evolve after a long time? Mathe-
matically, we are interested in the steady state distribution of O and other statistical
properties. It is noteworthy that unlike in the market models, here we have no con-
servation of opinion. Rather, the steady state of value of NO.t/ D .1=N/j˙iOi .t/j
represents the order of the average opinion in the society after a long time t . We
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study the relaxation dynamics in the society: the relaxation and fluctuation of NO,
the steady state value of NO.t/ for t > � , the relaxation time.
Remarkably, we find there is appearance of “polarity” or consensus, starting

from initial random disorder (where Oi ’s are uniformly distributed with positive
and negative values). In the language of physics, there is a “spontaneous symme-
try breaking” transition in the system: starting from NO.0/ D 0 the system evolves
either to the “para” state with NO � NO.t > �/ D 0 (where all individual agents
have the opinion 0) for � � 2=3, or (continuously) to the “symmetry broken” state
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NO � NO.t > �/ ¤ 0 (where all individuals have either positive or negative opinions)
for � � 2=3 (see Fig. 2) for times t > � . We note, however, that the fluctuation in
NO does not diverge, and shows a cusp near �c (see inset of Fig. 2). We also study
the relaxation behavior of NO.t/ and the critical divergence of the relaxation time �
near � D �c D 2=3 (see Sect. 2.3, Fig. 5).

2.2 Random Multiplier Map

The basic nature of transition produced by Eq. (3), can perhaps be reproduced by
the following simple iterative map

O.t C 1/ D �.1C �t /O.t/ (4)

with the restriction that O.t/ � 1, which is ensured by assuming that if O.t/ � 1,
O.t/ is set equal to 1. As usual, �t is a stochastic variable ranging between 0
and 1 (assumed to be uniformly distributed in our case). In a mean-field ap-
proach, the above equation reduces effectively to a multiplier map like O.t C 1/ D
�.1 C h�i/O.t/, where h�i D 1=2. Clearly for � � 2=3, O.t/ converges to zero.
The initial valueO.0/, is assigned either a positive or negative value. If it starts from
a positive (negative) value, O.t/ remains positive (negative). We note that there are
subtle differences in the dynamics of Eq. (3) and Eq. (4). Apart from the absence of
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Fig. 3 Numerical results for the variation of the average opinion NO.t/ for large t (steady state
value of NO) against �, following dynamics of Eq. (4). (Inset) Numerical results for the variation

of the variance .�O/2 
 .O � NO/2 against �, following dynamics of Eq. (4)
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“spontaneous symmetry breaking” of the multi-agent model (from ˙Oi .0/ values
to all positive or all negative transition beyond �c), the nature of the phase tran-
sition (singularity) in the iterative map is also slightly different. The critical value
�c D exp f�.2 ln 2 � 1/g � 0:6796 has an analytical derivation [27], but for most
numerical studies done here, we take �c D 0:68. The time variation of the aver-
age opinion NO.t/ D .1=N/˙i jOi .t/j, where i refers to different initial realizations
and N refers to the total of all such realizations, and its fluctuations are studied
numerically (see Fig. 3). We study the relaxation behavior of NO.t/ and the critical
divergence of the relaxation time � near � D �c D 0:68 (see Sect. 2.3, Fig. 6).
We note again that the fluctuation in NO does not diverge, and shows a cusp near
�c D 0:68 (see inset of Fig. 3). We also note that the steady state fluctuation �O
near �c , is generally much higher in magnitude for the map case.

2.3 Results and Analyses

For both the multi-agent model and the iterative map, we study the variation (with
�) of the fraction p of the agents having Oi D ˙1 at any time t in the steady state
(t > �). This parameter p gives the average “condensation” fraction (of people in
the society having extreme opinions jOi j D 1) in the steady state. The growth of p,
as shown in Fig. 4, is seen to be similar to that of NO. The inset shows that the growth
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Fig. 4 Numerical results for the variation of the average condensate fraction p.t/ for large t
(steady state value ofp) against �, following dynamics of Eq. (3) in black diamonds, and dynamics
of Eq. (4) in gray circles. (Inset) Numerical results for the growth of p, following dynamics of
Eq. (3) in black diamonds, and dynamics of Eq. (4) in gray circles, close to �c
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behavior for p above (respective) �c , for both the multi-agent model and map, are
identical.
We studied the relaxation behavior of NO and p, for both the multi-agent model

and map. In each case, the relaxation time is estimated numerically from the time
value at which NO or p first touches the steady state value within a pre-assigned error
limit. We find diverging growth of relaxation time � (for both NO and p) near � D �c

(see Fig. 5 and Fig. 6). The values of exponent z for the divergence in � � j���cj�z

have been estimated numerically for both the multi-agent model and the map (for

-0.02 0 0.02 0.04 0.06
0

50000

1e+05

1.5e+05

2e+05

0.0001 0.001 0.01 0.1
1000

10000

1e+05

1e+06

c/

j c j

-0.05 -0.04 -0.03 -0.02 -0.01 0
0

10000

20000

30000

40000

0.0001 0.001 0.01 0.1

10000

c/

j c j

Fig. 5 Numerical results for relaxation time behaviors � versus � � �c , for (top) multi-agent
model with NO and (bottom) multi-agent model with p. (Insets) Determination of exponent z from
numerical fits of � � j�� �c j�z
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Fig. 6 Numerical results for relaxation time behaviors � versus ���c , for (top) map with NO and
(bottom) map withp. (Insets) Determination of exponent z from numerical fits of � � j���c j�z

both � > �c and � < �c , wherever accurate data were obtained). For the multi agent
model, the fitting values for exponent z corresponding to NO and p, respectively, are
z � 1:0˙ 0:1 and z � 0:7˙ 0:1. For the map case, the fitting values for exponent
z corresponding to both NO and p, turn out to be the same: z � 1:5˙ 0:1.
For the iterative map Eq. (4), we study carefully the time evolution of the con-

densation fraction p of jOj D 1 in different realizations at different values of �. The
variation of the steady state value p against � is shown in Fig. 3. It may be noted
that while the steady state value of NO starts to grow from � � 2=3 (see Fig. 3), the
steady state value of p starts growing at � � 0:68 (see Fig. 4). Numerical results for
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the growth of the relaxation time � for both NO and p, against � are shown in Fig. 6.
Both diverge at � � 0:68. This clearly indicates that p, rather than NO, is the order
parameter for the transition.
An approximate analysis of the above transition for � closer to unity can be done

for the iterative map Eq. (4) as follows. In Fig. 7, we give the numerical results
for the steady state distribution opinion, P.jOj/ for three different values of �; we
observe roughly a bi-modal nature of the distribution as �! 1: one mode is the uni-
form distribution within the range jOminj < jOj < 1 (and jOminj � �) and another
a delta function at jOj D 1. We therefore approximate the steady state distribu-
tion of opinion by assuming that opinionO.t/ is distributed uniformly starting from
a minimumOmin upto unity with (integrated) probability .1� p/, and a ı-function
at exactly unity with probability p. Then

NO D .1 � p/Oav C p:1; (5)

where Oav D .Omin C 1/=2. We have assumed that the value O.t/ stays in those
two regions (from � to 1 and exactly at 1) with probability .1 � p/ and p. Hence,
the corresponding equations are

O.t C 1/ D �.1C �/O.t/ with probability 1 � p;
and

O.t C 1/ D 1 with probability p:

Note that the first equation is realized only if �.1C �/O.t/ < 1 or � < �max D
1

�Oav
� 1: This cut-off implies that .1 � p/ D R �max

0 d� D 1
�Oav

� 1, since
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Fig. 7 Numerical results for for the steady state distribution opinion, P.jOj/, for three values
� D 0:8; 0:85; 0:9 showing bi-modal distributions in each case. (Inset). The same steady state
distribution P.jOj/, for three values � D 0:8; 0:85; 0:9, but close to jOj D 1
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Fig. 8 Fit of the approximate theoretical calculation Eq. (6) (in gray squares) with the numerical
simulations for � ! 1, following dynamics of Eq. (4) (in black circles)

� �uni[0,1]. By substitutingOav and p in Eq. (5), we derive the result that

NO D 5�C 2�2 � �3 � 2
2�.1C �/ (6)

which is compared with the numerical simulations for �! 1 in Fig. 8. It is evident
that the approximation holds well, only for �! 1.

3 Discussion and Extension

Above, we proposed a minimal model for the collective dynamics of opinion forma-
tion in the society, by modifying kinetic exchange dynamics studied in the context
of markets. The multi-agent model (dynamics given by Eq. (3)) and its map ver-
sion (dynamics given by Eq. (4)) have kinetic exchange like linear contributions
from random two-person discussions or scattering processes, though the saturation
of jOi j � 1 induces non-linearity in the dynamics. This model has an intriguing
spontaneous symmetry breaking transition to polarized opinion state starting from
non-polarized opinion state. Specifically, in the multi-agent model, we see that for
� > �c D 2=3, starting from random positive and negative Oi values (or for that
matter any arbitrary state), at t D 0, the system eventually evolves to a state at
t > � where all Oi are either positive or negative, with j NOj determined by the �
value! This is similar to the growth of spontaneous magnetization in Ising mag-
nets (where starting from arbitrary up and down spin states, a preferred direction
is chosen by fluctuation), with magnetization determined by the temperature below
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its transition value. The appearance of spontaneous symmetry breaking in this sim-
ple kinetic opinion exchange model is truly remarkable. It appears to be one of the
simplest collective dynamical model of many-body dynamics showing non-trivial
phase transition behaviour. Indeed, it may be noted that for � � �c , at t > � , all
Oi ’s become identically zero (without any fluctuation), while for � > �c,Oi ’s have
fluctuations but the average has a steady state value depending on the value of �.
We have only one absorbing state in our model and, as such, the nature of the phase
transition in this model is quite different and does not fit to the commonly studied
two absorbing state models (see e.g., [28]). In order to understand the nature of the
transition, we also studied a simple iterative map and derived approximate result
for the order parameter variation under certain limits, which compares quite well
with the numerical simulations. Specifically, we find that the fraction p of people
with extreme opinion jOi j D 1, and its fluctuations determine the nature of the
phase transition in our model and locate the critical point accurately (from numer-
ical studies). With the two mode distribution (uniform and delta) of O , valid close
to � ! 1 (see Fig. 7), we could develop an approximate analysis of the variation
of the steady state mean opinion j NOj against � as in Eq. (6). In any case, further
investigations are necessary for understanding this phase transition. Also, the study
of this phase transition behavior for an extended model with separate“conviction”
and “influence” parameters in Eq. (3), has recently been reported [29], which we
briefly discuss below. We also briefly summarize below, the lattice version of the
above model and non-equilibrium relaxation in these systems, as studied by Biswas
et al [30]. Additional studies for the heterogeneous conviction factors �i ’s, in influ-
ence of “field terms” that represent the external influence of media, etc. are indicated
below.

3.1 Two Parameter Model: Sen

In [29], Sen generalised the model to incorporate two parameters, �, to represent
conviction and �, to represent the influencing ability of individuals.
In the model, letOi .t/ be the opinion of the i th individual at time t ; then after an

interaction of the i th and j th agents, the opinions of the two individuals are changed
according to

Oi .t C 1/ D �iOi .t/C �1�jOj .t/ (7)

Oj .t C 1/ D �jOj .t/C �2�iOi.t/ (8)

where �1 and �2 are independent random variables ranging from zero to one. Mak-
ing �i D �i , one gets back the LCCC model [25, 26]. The opinions of both the
individuals are changed at the same time, and the interacting individuals are chosen
randomly. In the simplest case they keep the two parameters � and � independent
of the agents, i.e, assume a homogeneous population having identical � and �.
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In the steady state, the condition for nonzero solutions of hxi i is obtained as,
.1 � �/2 D h�1�2i �2: (9)

Since �1 and �2 are independent random variables with mean value equal to 0.5, and
as �;� cannot exceed 1, the above condition reduces to

� D 1 � �=2: (10)

In the simulations with N individuals whose opinions are randomly distributed
initially, they first investigated the steady state behaviour and found that indeed,
there is a threshold phenomena as the average opinions shows spontaneous sym-
metry breaking above a phase boundary occurring in the � � � plane (the phase
boundary obtained numerically matches exactly with (10). For � D 1, they found
that the final state is not only ordered, but it is completely polarised in the sense that
the opinions of all the individuals are equal and exactly 1 (or �1), irrespective of
the value of �. Therefore, there is a line in the ordered phase where the fluctuations
vanish completely. The effect of � for other values of � is not irrelevant; for any
� ¤ 1, the nature of the phase is dictated by both � and �. The phase diagram is
shown in Fig. 9. They investigated the nature of the transition at different points on
the phase boundary, by varying the parameters close to the transition points (�c; �c )
on the phase boundary, which could be done in several ways in a two dimensional
plane. They chose two trajectories: path A, where � is kept fixed at �c and � is
varied, and path B, where � is fixed at �c and � is varied. In some special cases,
all possible trajectories could not be explored, e.g., for �c D 1; �c D 0, the path
A does not exist.
They also studied the behaviour of some quantities close to the phase transi-

tion point. The equilibrium value of the order parameter m showed a power law
behaviour with .� � �c/,

m / .� � �c/
ˇ (11)

0.5

1.0

1.0μ

λ
B

0

A

SP

SBP

Fig. 9 The phase boundary obtained by numerical simulation coincides exactly with that given in
Eq. (10). SP denotes the symmetric phase and SBP the symmetry broken phase. The paths A and
B are possible trajectories along which the different studies can be made. Along the dashed line
� D 1, the opinions of all the agents are equal and take extreme values in two possible ways, either
xi D 1 or xi D �1 for all i . Courtesy P. Sen [29]



Opinion Formation in the Kinetic Exchange Models 301

 0.5

 1

 0.001  0.01  0.1

m

λ - λc

μc=0.4

μc=2/3

μc=0.9

Fig. 10 The equilibrium value of order parameter as a function of � � �c is shown for different
values of �c along path A for N D 256. The exponent is seen to be appreciably dependent on
�c . Courtesy P. Sen [29]

where ˇ is quite strongly dependent on the point on the phase boundary, e.g., ˇ D
0:079˙ 0:001 at �c D 0:4 and ˇ D 0:155˙ 0:001 at �c D 0:9 (shown in Fig. 10).
This result shows that the phase transition is non-universal.
In summary, in this model a phase boundary given by � D 1 � �=2 is obtained

separating the symmetric and symmetry broken phases. The phase transition along
the boundary is shown to be non-universal as the exponents have different at dif-
ferent points on the boundary. The time scale diverges near the phase boundary in
a power law manner and the order parameter also shows a power law behaviour.

3.2 Lattice Version and Non-equilibrium Relaxation Studies:
Biswas et al.

In [30], the authors study the lattice version of the model (LCCC) [26], where the
agents are arranged on a 1D lattice, and a randomly chosen nearest neighbor pair
update their opinions according to Eq. (3), such that an agent only exchange opin-
ion with one of its two nearest neighbors. Then they study the non-equilibrium re-
laxation, using the non-equilibrium relaxation technique proposed in [31]. In non-
equlibrium relaxation the simulation is started from a fully ordered state. Away from
the critical point, the order parameter shows an exponential relaxation, while at the
critical point the relaxation is a power law.
In the original version of the LCCC model, the order parameter p decays as p �

t�ı , where ı D 1:2˙ 0:1. The critical point was estimated to be �c � 0:66659˙
0:00002. For the lattice version, however, the critical point changes slightly to �c D
0:66679˙ 0:00001 (N D 1200). The critical exponent ı D 1:15˙ 0:01.
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Fig. 11 Variation of order parameters O and p with � for the 3 models. Courtesy A. Chatter-
jee [30]

A simpler model (C) was also proposed. There, the dynamics was

Oi .t C 1/ D �Oi .t/C �Oj .t/

Oj .t C 1/ D �Oj .t/C �0Oi .t/: (12)

The critical point, using a mean field approach, was found to be �c D 1� h�i. In
the case of a uniform distribution of �, the critical point is �c D 1=2.
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They also studied the effect of adding a feedback of the global opinion in the
LCCC model (G). The dynamics follows

Oi .t C 1/ D �ŒOi .t/C �Oj .t/�C �0 NO.t/
Oj .t C 1/ D �ŒOj .t/C 	Oi .t/�C 	0 NO.t/ (13)

where �, �0, 	, 	0 are drawn randomly from an uniform distribution.
From a mean-field approach, it is easy to estimate the critical point at �c D 1=3.

It was also verified numerically.
The phase diagram is shown in Fig. 11 for the three models using the order

parameter p, as well as NO .

3.3 Heterogeneous Multi-agent Model

Following the CCM model, described in the introduction, we could extend the min-
imal model [25] for the collective dynamics of opinion Oi .t/ of the i -th person in
the society of N (N �!1) persons, as:

Oi.t C 1/ D �iOi .t/C �t�jOj .t/ ;

Oj .t C 1/ D �jOj .t/C �0t�iOi .t/ ; (14)

where �1 � Oi .t/ � 1 for all i and t , and 0 � �i � 1’s are quenched variables (do
not change with time, but vary from person to person), and �t and �0t are annealed
variables (changing with time), that are random numbers uniformly distributed be-
tween zero and unity. As before, nonlinearity is kept in this model by assuming that
�1 � Oi .t/ � 1 for all agents i and times t , by ensuring the bound on Oi .t/: if
Oi .t/ � �1 orOi .t/ � 1, thenOi .t/ D �1 or 1 respectively. Here, we assume �i ’s
to be uniformly spread in the interval [0,1) (equivalent to the CCMmodel for market
dynamics). We study similarly, starting from “symmetric” states (with random pos-
itive and negative values of Oi .0/, the evolution of the system. The dynamics here
leads collectively to the “Polarized” or “Symmetry broken” state (Oi .t/ are either
all positive or all negative, for all i , and times t > � ) only. The “indifferent” states
(with Oi .t/ D 0 for all i , for times t > �) disappear in the large system size limit,
although this is clearly a fixed point of the dynamics given by Eq. 14.
It may be noted that the above dynamics can be considerably modified by the

presence of “polarizing field” terms hi (fixed over time t but dependent on person
i ), added linearly to the dynamical equations Eq. 14 of Oi .t/. Such “fields” can be
provided by the “influences” of the media in the society. Detailed analyses of the
field terms, etc. will be reported elsewhere [32].

Acknowledgements The authors acknowledge F. Abergel, A. Chatterjee, A. Jedidi, K. Kaski,
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Panel Discussion

In this brief section, we compile some of the remarks and comments made during
the panel discussion session that took place during the conference.
A general theme that was addressed in a recurrent fashion was that of the quality

of financial data: as a matter of fact, the study of financial markets as a physical
phenomenon is made possible – and only up to a point - thanks to the possibility
offered by the gigantic data sets one can use to analyze, model and simulate the
properties of markets. However, it is clear that data made available to researchers
do not always contain the right amount of information one would love to have. For
instance, the identity of the agent (a market member) sending a given order is not
always available – and some very interesting results – due to Fabrizio Lillo and
co-workers – show that an a priori knowledge of the type of agents one considers
plays a definite role in interpreting some seemingly purely statistical results such as
the order flow autocorrelation. Going further down this alley, one would obviously
want some information on the final investor when there is one, thereby allowing the
researcher to account separately for effects that come from broker-style best execu-
tion routines and for those related to actual investment strategies, both at high and
low frequencies. To rephrase it a bit more generally, there was a general impression
that statistical models of market, no matter how large the calibration set seems to be,
still need to incorporate some behavioural knowledge in order to offer a satisfactory
representation of real markets.
Another related point that was discussed is the question of whether models

should – and could – stay simple, thereby explaining in a satisfactory fashion a par-
ticular phenomenon but at the risk of reproducing only very partially the whole of
the market, or whether one should accept more complexity in the models, and hence,
rely more on numerical simulations. From an application-minded point of view, it
is clear that more robust, more general models are in order, and the numerical tools
available to the scientific and industrial world are obviously powerful enough to
allow realistic simulations of a financial market. But the extent to which such an
approach may help one understand the various competing effects influencing the
behaviour of markets is debatable. Models should help one have a clear representa-
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tion of the financial markets, but they should also aim at mimicking and predicting
their behaviour in a realistic fashion. Sometimes, these two targets require very dif-
ferent approaches
Below are two contributions to this panel discussion, kindly sent by their respec-

tive authors.
The first one is by Tobias Preis:

• Econophysics research has been addressing a key question of interest: quanti-
fying and understanding large (and small) stock market fluctuations. Previous
work has focused on the challenge of quantifying the behavior of the probability
distributions of large fluctuations of relevant variables such as returns, volumes,
and the number of transactions. Sampling the far tails of such distributions re-
quire a large amount of data. A very large amount of precise historical financial
market data has already been collected, many orders of magnitude more than for
other complex systems.

• In the meantime, we get very positive feedbacks from physics and economet-
rics (especially econometrics) as well as from FINANCIAL INDUSTRY (trading
companies, hedge funds, banking institutions). Not only IDEAS stemming from
“Econophysics” are (more and more) accepted . . . In addition, TECHNOLOGY
aspects used in statistical physics are becoming mainstream in financial market
trading systems (algorithmic trading). That refers to GPU-Computing which was
successfully used, e.g., forMonte Carlo Simulations of the Ising model in statisti-
cal physics (see T. Preis et al., J. Comp. Phys. 228, 4468 (2009)) -> An example
for the efficient usage of GPUs to analyze financial market time series can be
found in T. Preis et al., New J. Phys. 11, 093024 (2009).

The second one is by Sitabhra Sinha:
The fifth of the series of Econophys-Kolkata meetings is a rare opportunity to

take stock of what is by all measures a remarkable series of meetings. From the first
workshop in 2005 which focused on income and wealth distributions to the present
one with its emphasis on order-drivenmarkets, these meetings have provided an op-
portunity for physicists and some economists to discuss several important themes
in the rapidly evolving field of econophysics. In view of the economic and financial
turmoil that the world has undergone in the past few years, the advent of econo-
physics has taken on an especially pertinent role in providing possible alternative
foundations to the study of economic phenomena. Indeed, just as the last decade
of the previous century saw the collapse of one of the dominant economic ideolo-
gies, i.e., centralized planning characteristic of many erstwhile socialist countries,
we may hope that the tribulations at the end of the first decade of the first century
will strike a similar death-blow to another much-vaunted economic ideology, that of
neo-liberal free-market capitalism.
Much of the problemwith mainstream economics appears to stem from its obses-

sion with axiomatic principles in the tradition of mathematics. Indeed, economics as
it is practised today should more aptly be titled “econo-mathematics” rather than the
study of empirical phenomena [1]. Econophysics provides a refreshing alternative to
this view by considering economics as a natural science (along the lines of physics)
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where theory is driven by experimental observations. Thus, we need to seek areas in
economics where there exist a set of established empirical “laws” (based on rigorous
observations and analysis) that we can seek to explain. It is this approach that pri-
marily differentiates econophysics frommainstream economics, the latter in general
having little connection to reality (save the few attempts by game theorists to verify
certain results in behavioral economics through controlled experiments which have
met with only mixed success).
The two main themes of econophysics, that of financial markets and affluence

distribution, illustrates this need for a well-established body of facts upon which
theory can be based. The availability of large quantities of empirical data about
markets at both the gross (trade data) and finer (order book) levels, and the ability to
process them using high-performance computers, has initiated a series of discover-
ies of universal features in such systems. Similarly, the use of income tax and other
related data for various countries to measure the distribution of affluence (as mea-
sured by wealth or income) of individuals and organizations, has rejuvenated work
in the puzzle of why inequality seems to be universal across societies - a question
that had been first raised by Vilfredo Pareto more than a century earlier. Indeed,
newer discoveries seem to show the near-ubiquity of the power-law distribution that
characterizes inequality in society, so much so, that we may ask whether one can
also observe it in primate societies.
However, despite the advances made in these two areas, the reason they have not

yet made significant impact among mainstream economists is because neither are
central themes in the traditional discipline of economic science. What are then the
emerging new areas of econophysics that can shake up conventional economists?
As a result of the ongoing financial crisis, the study of economic networks have re-
cently emerged as a major challenge in the general scientific consciousness [2]. The
empirical studies of inter-bank money transfer networks in the US and European
settings have shown how liable these systems are to cascading failures [3–5]. The
connection between network topology and dynamical stability that had earlier been
carried out in the context of eco-systems [6–9] suggests that we are in the threshold
of achieving a profound understanding of why large systemic collapses occur in the
economy. Just as there are several empirical “laws” establishing scaling behavior
between ecological variables (e.g., the celebrated relation between area and num-
ber of species), one can look for similar stylized facts in the context of economic
networks.
How about the two central themes of contemporary economics, viz., (a) develop-

mental economics or the theory of economic growth and (b) sustainable economies?
The studies of Hidalgo et al. on how trajectories in the abstract product space by
different countries can be analyzed to understand growth provides a glimpse of the
new viewpoint that physics-based approaches provide to study this problem [10].
The other area of how to foster a sustainable economy has taken on a fresh urgency
in view of the catastrophic state that our planet has been pushed to by the relent-
less push for economic development [11]. Economists now are coming round to the
viewpoint that the traditional input-output (or “throughput”) model of the economy
may need to be replaced by a more efficient closed-cycle model more along the lines
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of how nature recycles nutrients. The zero-growth economy of Japan has been pro-
posed as a possible model of how we can have a desirable living standard without
sacrificing the well-being of future generations in the process. The future challenge
to econophysicists is to establish solid theoretical foundations of such a economic
model, possibly based on analogies in ecological or environmental sciences. One
hopes that future editions of the Econophys-Kolkata meetings will focus on one or
more of these themes.
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