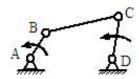
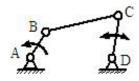
механизм;

3624y_Ru_Æyani_Yekun imtahan testinin sualları

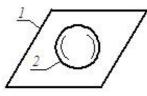

Fənn: 3624y Maşın və mexanizmlər nəzəriyyəsi-1

1 Как называется звено рычажного механизма, образующее поступательную кинематическую пару со стойкой?	
○ K	ползун; кулиса. кривошип; коромысло; патун
2 Как назы вокруг сто	ывается звено рычажного механизма, которое может совершать только неполный оборот ойки???
) () ()	юромысло шатун кулиса. ползун фивошип
	ывается звено, которому сообщается движение, преобразуемое механизмом в требуемое других звеньев?.
	ведущее звено. начальное звено ведомое звено. выходное звено; входное звено
4 Как называется звено, совершающее движение, для выполнения которого предназначается механизм??	
	ведомое звено входное звено ведущее звено. начальное звено; выходное звено
5 Как называется подвижная направляющая ползуна рычажного механизма?.	
© K	ползун. кулиса патун. кривошип;
6 Как называется система тел, предназначенная для преобразования движения одного или нескольких твердых тел в требуемое движение других твердых тел?	
О к	кинематическая цепь кинематическое соединение. кинематическая пара;


7 Как наз	вывается звено рычажного механизма, которое может совершать полный оборот вокруг
	кулиса. коромысло кривошип;
000	ползун; шатун;
8 Как наз	вывается машина, преобразующая любой вид энергии в механическую?.
00000	технологическая машина транспортная машина генератор. информационная машина. двигатель;
 Как наз 	вывается машина, перемещающая материалы??
0.000	генератор; транспортная машина информационная машина. двигатель; машина;
10 Как на	азывКак называется подвижное соединение двух соприкасающихся звеньев??
0.000	кинематическое соединение. кинематическая пара; кинематическая цепь. механизм; машина;
11 Как на энергии?	азывается машина, преобразующая механическую энергию в любой другой вид
0000	генератор; информационная машина. двигатель.) технологическая машина
12 Как на	азывается связанная система звеньев, образующих друг с другом кинематические пары. ?
00000	машина; кинематическое соединение. механизм; кинематическая цепь кинематическая пара;.
	азывается устройство, выполняющее механические движения для преобразования материалов и информации с целью замены или облегчения физического и умственного ювека?.
0000	кинематическая цепь машина; механизм; кинематическая пара;

С кинематическое соединение.
14 Как называется машина, преобразующая размеры, формы и свойства материалов?.
 генератор; транспортная машина двигатель. информационная машина механическая машина
15 Какое из нижеприведенных выражает силы, действующие на материальных точек системы??
 силы активные и реакции силы реакции и тяжести силы тяжести и инерции силы активные и инерции силы инерции и реакции
16 Сколько видов имеет силы, действующие на материальные точки системы?
 5 2 3 1 4
17 Чему равняется сила тяжести с массой 0,1 кг (измерение с N-ом)
 4,9N. 98,1N 981N; 0,981 N; 9,81N;
18 Как называется данный рычажный механизм?.
A B B C A C A C A C A C A C A C A C A C
 кривошипно- коромысловый кулисный. кривошипно-ползунный двухкоромысловый; двухкривошипный;
19 Как называется данный рычажный механизм??

- Двухкоромысловый;кривошипно-ползунныйкривошипно- коромысловыйдвухкривошипный;кулисный.
- 20 Как называется данный рычажный механизм?..


- С кулисный.
- 🔵 двухкривошипный;
 - хривошипно- коромысловый
- О двухкоромысловый;
- кривошипно-ползунный;
- 21 Как называется данный рычажный механизм???

- кривошипно-коромысловый
- хулисный.
- О двухкривошипный;
- **О** двухкоромысловый
- О кривошипно-ползунный
- 22 Сколько подвижностей имеет данная кинематическая цепь?..

- \bigcirc 3
- \bigcirc 2
- Ŏ 1
- $\tilde{\bigcirc}$ 5
- \bigcirc 4
- 23 Сколько подвижностей имеет данная кинематическая цепь???

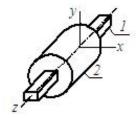
- \bigcirc 4
- $\tilde{\bigcirc}$ 2

24 Сколі	ько подвижностей имеет данная кинематическая цепь. ?
Q	<u> </u>
1>	
00000	3 1
Ŏ	5
\sim	4
\cup	
25 Как н механиз	азывается первая производная от угла поворота звена по обобщенной координате ма?
	аналогом угловой скорости;
\circ	ускорением.
\sim	аналогом линейной скорости; аналогом линейного ускорения;
\sim	аналогом углового ускорения;
26 Как н	азывается вторая производная от угла поворота звена по обобщенной координате ма???
\bigcirc	аналогом угловой скорости;
	аналогом углового ускорения
\circ	ускорением.
\bigcirc	аналогом линейной скорости.
27 Какое поверхно	е трение скольжения имеет место между непосредственно соприкасающимися остями?.
\circ	полусухое.
\odot	чисто сухое
\circ	жидкостное;
\circ	полужидкостное;
\cup	граничное.
	е трение скольжения имеет место, если соприкасающиеся поверхности отделены друг от оем смазывающей жидкости??
\circ	граничное
	жидкостное;
\circ	чисто сухое
\sim	полужидкостное; полусухое;
\cup	nonycy xoc,
29 Какое имеется	е трение скольжения имеет место, если между соприкасающимися поверхностями тонкий слой смазывающей жидкости толщиной 1 микрометр и менее?.
\bigcirc	жидкостное;
<u></u>	граничное
\odot	чисто сухое
\sim	полусухое. полужидкостное;
$\overline{}$	полужиджествес,

30 Какое трение скольжения имеет место, если несмотря на наличие достаточного слоя

смазыва	ющей жидкости их отдельные выступы непосредственно соприкасаются друг с другом??
	полужидкостное;
Ŏ	граничное.
\bigcirc	чисто сухое
\bigcirc	полусухое;
\circ	жидкостное;
	е трение скольжения имеет место, если между соприкасающимися поверхностями менно происходит чисто сухое трение (преимущественно) и граничное?.
одповре	
\circ	чисто сухое;
Ō	граничное.
Õ	жидкостное
Q	полужидкостное;
	полусухое;
32 От че	его не зависит трение скольжения. ?
\circ	от действующей нормальной силы;
\bigcirc	от материалов и состояния трущихся поверхностей
\circ	от состояния трущихся поверхностей
\bigcirc	от материалов соприкасающихся поверхностей;
	от площади соприкасаемых поверхностей;
33 От че	его зависит трение скольжения?.
	материалов трущихся поверхностей;
$\tilde{\bigcirc}$	площади соприкасающихся поверхностей и нормальной нагрузки;
$\widetilde{\bigcirc}$	площади соприкасающихся поверхностей и их материалов.
$\widetilde{\bigcirc}$	площади соприкасающихся поверхностей
$\tilde{\circ}$	относительной скорости трущихся поверхностей
34 От че	его зависит трение скольжения?.
	площади соприкасающихся поверхностей и их состояния.
\sim	площади соприкасающихся поверхностей;
\sim	относительной скорости трущихся поверхностей;
	состояния трущихся поверхностей
Ö	площади соприкасающихся поверхностей и нормальной нагрузки
	ом состоянии будет находится тело на плоскости, если действующая на нее прующая сила будет направлена вдоль образующей конуса трения???
	в покое или прямолинейном равномерном движении;
\circ	в ускоренном движении
\circ	в неопределенном движении
\circ	в покое.
36 В как	ом состоянии будет находится тело на плоскости, если действующая на нее
	рующая сила проходит внутри конуса трения. ? (первично тело находится в движении).
\circ	в ускоренном движении
\bigcirc	в покое.
\bigcirc	в неопределенном движении
	в замедленном движении
\circ	в покое или прямолинейном равномерном движении

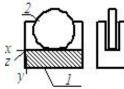
37 В каком состоянии будет находится тело на плоскости, если действующая на нее результирующая сила проходит вне конуса трения? (первично тело находится в движении).	
00	в покое или прямолинейном равномерном движении в покое.
	в ускоренном движении
\bigcirc	в неопределенном движении
\bigcirc	в замедленном движении;
38 Чему	равно число условий связи в одноподвижной кинематической паре???
\circ	1
	5
Ō	3
0000	2
\circ	4
39 Чему	равно число условий связи в трехподвижной кинематической паре. ?
\bigcirc	1
00000	4
<u> </u>	3
\circ	5
\circ	2
40 Чему	равно число условий связи в пятиподвижной кинематической паре?.
\circ	6
0000	1
\bigcirc	3
\bigcirc	2
\circ	4
41 Чему	равно число условий связи в двухподвижной кинематической паре??
\circ	5
00000	1
	4
\bigcirc	2
\circ	6
	кривые описывают точки прямой при ее перекатывании без скольжения по кной окружности???
\bigcirc	эллипе;
$\tilde{\bigcirc}$	окружность;
$\widecheck{\odot}$	эвольвента окружности
	эпициклоида;
\bigcirc	гипоциклоида;
43 Какой	окружностью ограничивается эвольвентный профиль зубьев одним концом?.
	начальной.
$\widetilde{\mathcal{C}}$	выступов зубьев
) основной
Ŏ	впадин зубьев
Ŏ	делительной;


44 Какой окружности колеса касается нормаль, проведенная к эвольвентному профилю зубьев?.	
 выступов зубьев основной начальной делительной; впадин зубьев; 	
45 На какой окружности колеса лежат центры кривизны эвольвентного профиля зубьев?.	
 делительной; выступов зубьев основной; впадин зубьев начальной. 	
46 Как называется отношение диаметра делительной окружности колеса к числу ее зубьев z?	
 модуль; шаг; ширина впадин зубьев толщина зубьев линия зацепления; 	
47 Как называется окружность зубчатого колеса, соответствующая стандартному модулю. ?	
основная окружность. окружность впадин зубьев окружность выступов зубьев начальная окружность делительная окружность;	
48 Какой геометрический параметр зубчатого колеса является основным?	
 модуль; шаг; профильный угол угол зацепления число зубьев; 	
49 Чему равна высота головки зуба ha нормального цилиндрического колеса?. (m – модуль зубьев)	
 2,25m. 1,25m; 1,0m 0,5m 0,75m 	
50 Как располагается делительная окружность отрицательного зубчатого колеса при ее нарезании долбяком??	
касается делительной прямой инструмента; не касается делительной окружности инструмента пересекает делительную прямую инструмента пересекает делительную окружность инструмента не касается делительной прямой инструмента	

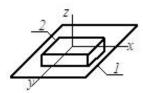
51 Какой	величиной является работа силы???
000	векториальной скалярной постоянной регулярной не регулярной.
52 Как вы	ыражается мощность??
	деление силы на время производной силы от времени, называется мощностью производной полученной от работы силы по времени деление силы на массу умножения силы на время
	сих условий определяется постоянные интегрирования решая дифференциальное е движения материальной точки?
	из любых условий движения из условий дифференциального уравнения эти постоянные изначально известны из начальных условий движения из последних условий движения.
54 Може	г ли, зависеть действующая сила на материальную точку от ее скорости?.
	зависит только от ускорений материальной точки не может быть зависит только от времени может быть может быть только постоянной
55 Какой	формулой выражается элементарный импульс силы?.
	m 0 (mV) mo (F) mV. F·dt F·dr.
	равняется момент количества движения относительно оси, если момент от действующей осительно оси равняется нулю, $(my(F)=0)$
	не регулярная не постоянная равняется нулю Постоянная регулярная
57 Как можно назвать центр масс системы другими словами??	
	центр движения системы центр тяжести системы центр гравитации системы инерционный центр системы центр середины системы

58 Чему равняется значение момент количества движения относительно центра, если момент действующей силы относительно центра равняется нулю?.	
00000	постоянная регулярная. равняется нулю не регулярная непостоянная
59 Какое	решение имеет уравнение??
00000	$x=asinkt$ $x=sin(kt+\alpha)$ $x=a(kt+\alpha)$ $x=asin(kt+\alpha)$ $x=asin(kt+\alpha+\beta)$
60 Какое	из нижеследующих уравнений показывает гармоническую колебанию движения??
0000	$x = a \sin kt$ $x = a \sin (kt + \alpha)$ $x = \sin (kt + \alpha)$ $x = a \sin (kt + \alpha + \beta)$
61 Что б	ывает, известны у активных силах??
000000	только направление значение ровняется нулю ничего не известно значение и направление только значение
62 Укажі	ите единицу измерения количества движения??
0.000	кг*м/сек2 кг*м/сек Н сек кг. м2 Н . м
63 Чему равняется главный момент внутренних сил к данному центру действующие к материальной точки?.	
00•00	главному вектору внешних сил главному вектору внешних сил со знаком минус нулю сумме значении внутренних сил не равняется нулю
64 Какое из нижеследующих выражает внутренние силы материальной системы. ?	
00•00	только силы тяжести точки системы силы материальных точек вне системы действующие на эту систему силы взаимодействия материальных точек системы силы тяжести точек вне системы Силы взаимодействия материальных точек вне системы

65 Чему	равно число условий связи в двухподвижной кинематической паре??
00000	3 1 2 4 5
66 Чему	равно число условий связи в четырехподвижной кинематической паре?
0.000	4 2 3 1 5
67 Какие	отностиельные движения звеньев возможны в данной кинематической паре?.
	$\frac{y}{2}$
\circ	поступательное вдоль х, вращателшьное вокруг z
	поступательное вдоль оси z
Q	поступательные вдоль осей х и у;
\circ	поступательное вдоль z, вращательное вокруг z
\bigcirc	поступательные вдоль х и z.
68 Какие	отностиельные движения звеньев ограничены в данной кине¬мати ческой паре???
	поступательные вдоль x, y; вращательные вокруг x, y, z
Ō	поступательные вдоль x, z; вращательные вокруг x, y;
Q	поступательные вдоль х, у и z.
\circ	поступательные вдоль у, z; вращательные вокруг x, у
\bigcirc	поступательное вдоль z, вращательные вокруг x, y
69 Какие паре??	отнКакие относительные движения звеньев ограничены в данной кинематической
B	$\frac{1}{2}$
\circ	поступательные вдоль у, z; ращательное вокруг, у;
	поступательные вдоль х, у; вращательные вокруг х, у;
Ō	поступательные вдоль x, y ;вращательные вокруг x, y, z .
Ō	поступательное вдоль z , вращательные вокруг $x, y;$
\circ	поступательные вдоль х, у и z;
70 Какие	отностиельные движения звеньев ограничены в данной кинемати ческой паре???


70

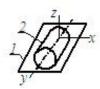
\bigcirc	поступательные вдоль y, z; вращательные вокруг x, y
\bigcirc	поступательные вдоль x,z ;вращательные вокруг x,y
\bigcirc	поступательные вдоль х, у и z.
\frown	TO OTHER TO THE TOTAL TO


□ поступательное вдоль z, вращательные вокруг x, y
 □ поступательные вдоль x, y; вращательные вокруг x, y, z

71 Какие отностиельные движения звеньев ограничены в данной кинематической паре??

\bigcirc	поступательные вдоль x, y ; вращательные вокруг x, y, z
\bigcirc	поступательные вдоль x, y ; вращательные вокруг x, y .
\bigcirc	поступательные вдоль х, у и z.
\bigcirc	поступательное вдоль z; вращательные вокруг x, y
	поступательные вдоль у, z; вращательные вокруг x, y;

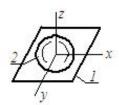
72 Какие отностиельные движения звеньев ограничены в данной кинематической паре?..



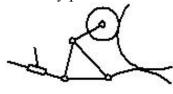
_	
\bigcirc	поступательные вдоль x , вращательные вокруг y и z .
\bigcirc	поступательные вдоль х və y; вращательные вокруг х и у
\bigcirc	поступательные вдоль у и z; вращательные вокруг x и y;
\bigcirc	поступательные вдоль х и у; вращательные вокруг х, у, z
	поступательное вдоль z, вращательные вокруг x и y;

73 Какие отностиельные движения звеньев ограничены в данной кинематической паре?..

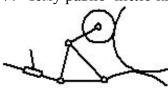
\bigcirc	поступательное вдоль z, вращательное вокруг z;
	поступательные вдоль х, у и z
\bigcirc	вращательные вокруг х и у;
\bigcirc	поступательное вдоль z, вращательное вокруг x;
\bigcirc	поступательное вдоль у, вращательное вокруг у;


74 Какие отностиельные движения звеньев ограничены в данной кинематической паре??

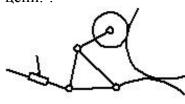
\bigcirc	поступательное вдоль у;
\bigcirc	поступательное вдоль z; и вращательное вокруг у

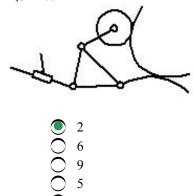

- поступательные вдоль x , y и z.
- вращательные вокруг х и у;
- поступательное вдоль z, вращательное вокруг x

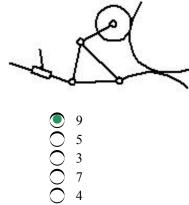
75 Какие отностиельные движения звеньев ограничены в данной кинематической паре?.

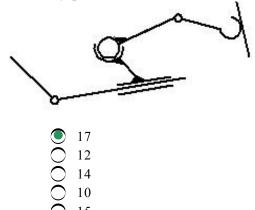


- поступательные вдоль х, у и z.
- - поступательное вдоль z
- поступательное вдоль у.
- поступательное вдоль z, вращательное вокруг x;
- вращательные вокруг х и у;

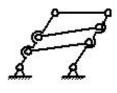

76 Чему равно число подвижных звеньев в данной плоской кинематической цепи???


77 Чему равно число кинематических пар в данной плоской кинематической цепи???

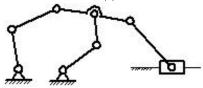

78 Чему равно число кинематических пар низшего класса в данной плоской кинематической цепи. ?


79 Чему равно число кинематических пар высшего класса в данной плоской кинематической цепи?.

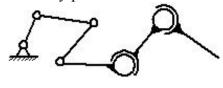

80 Чему равно подвижность данной плоской кинематической цепи???


81 Чему равна подвижность данной пространственной цепи?

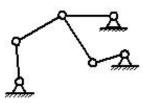
82 Чему равно число одноподвижных кинематических пар в данном плоском механизме?



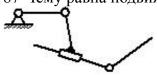
83 Сколько подвижностей имеет данная плоская система?...


- 2-
- $\tilde{\bigcirc}$
- \bigcirc 1

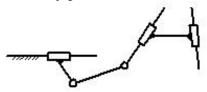
84 Сколько подвижностей имеет данный плоский механизм?


- O -2
- \bigcirc 2
- $\bigcap_{i=1}^{n} 0$

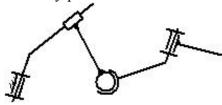
85 Чему равна подвижность данного манипулятора?


- **O** 8
- \bigcirc
- 10
- <u>5</u>
- \bigcirc 6

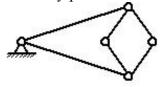
86 Чему равна подвижность данного плоского механизма?


- \bigcirc 2
- 1
- O -1

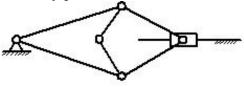
87 Чему равна подвижность данного плоского механизма?


- \bigcirc \bigcirc \bigcirc 2 \bigcirc 1
- $\tilde{\bigcirc}$

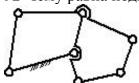
88 Чему равна подвижность данного плоского механизма?


- \bigcirc -2
- \bigcirc
- 5

89 Чему равна подвижность данного механизма?

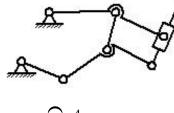

- \bigcirc 3
- \bigcirc
- \bigcirc 1

90 Чему равна подвижность данного плоского механизма. ?


- \bigcirc 4
- \bigcirc 3
- $Oldsymbol{i}$

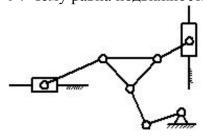
91 Чему равна подвижность данного плоского механизма. ?

- 0
- \bigcirc 2
- \bigcirc 3 \bigcirc -1


92 Чему равна подвижность данного плоского механизма?..

4 1 2

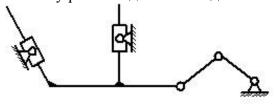
 $\frac{1}{3}$


93 Чему равна подвижность данного плоского механизма. ?

 \bigcirc 4 \bigcirc 3

0 1

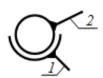
94 Чему равна подвижность данного плоского механизма?



 \bigcirc 0

34

 $\bigcap_{i=1}^{n}$


95 Чему равна подвижность данного плоского механизма?

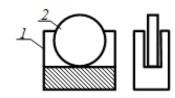
 $\begin{array}{c} 1 \\ 2 \\ 0 \\ 4 \\ \end{array}$

\bigcirc 0
96 Сколько избыточных подвижностей имеет данный плоский механизм?
 ○ -1 ○ 2 ○ 0 ○ 1 ○ 4 ○ 3
97 Сколько избыточных связей имеет данный плоский механизм. ?
 ○ 0 ○ 3 ○ 1 ○ 2 ○ 4
98 Чему равно число условий связи qi плоского механизма если его подвижность $w=1$, число подвижных звеньев $n=4$, одноподвижных кинематических пар $p1=6$ и двухподвижных пар $p2=0$??
1 2 0 0 -2
99 Чему равно число условий связи qi плоского механизма если его подвижность $w=1$, число подвижных звеньев $n=3$, одноподвижных кинематических пар $p1=4$ и двухподвижных пар $p2=0$?
3 1 0 0 2 -1
100 Чему равно число условий связи qi плоского механизма если его подвижность w=1, число подвижных звеньев n=5, одноподвижных кинематических пар p1=8 и двухподвижных пар p2=0. ?
↓ 4♠ 2♠ 0

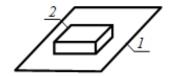
101 Сколько подвижностей имеет данная кинематическая цепь?

- \bigcirc 4
- $\bigcap_{i=1}^{n} 2^{i}$
- \bigcirc 3

102 Сколько подвижностей имеет данная кинематическая цепь?


- 1
- \bigcirc
- Ŏ
- \bigcirc 5

103 Сколько подвижностей имеет данная кинематическая цепь?

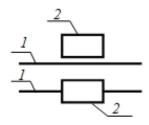

- •
- $\tilde{\bigcirc}$:
- \tilde{Q}^{2}
- 0 1

104 Сколько подвижностей имеет данная кинематическая цепь?



- \bigcirc 3

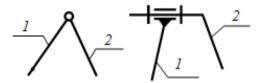
- \bigcirc 5
- 105 Сколько подвижностей имеет данная кинематическая цепь?



106 Условное обозначение какой кинематической пары приведено на схеме?

- одноподвижная винтовая
- одноподвижная поступательная
- одноподвижная вращательная
- двухподвижная цилиндрическая
- трехподвижная сферическая

107 Условное обозначение какой кинематической пары приведено на схеме?

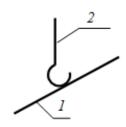


- двухподвижная цилиндрическая
- одноподвижная вращательная
- одноподвижная поступательная
- одноподвижная винтовая
- трехподвижная сферическая

108 Условное обозначение какой кинематической пары приведено на схеме?

- трехподвижная сферическая одноподвижная поступательная
- одноподвижная винтовая
 - одноподвижная вращательная
- двух подвижная цилиндрическая

109 Условное обозначение какой кинематической пары приведено на схеме?

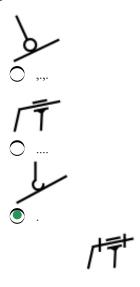

_	
\bigcirc	двухподвижная цилиндрическая
	одноподвижная вращательная
\bigcirc	одноподвижная поступательная
\bigcirc	одноподвижная винтовая
	трехподвижная сферическая

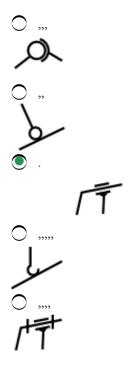
110 Условное обозначение какой кинематической пары приведено на схеме?

\bigcirc	двухподвижная цилиндрическа:
	одноподвижная поступательная
\bigcirc	одноподвижная вращательная
\bigcirc	одноподвижная винтовая
\bigcirc	трехподвижная сферическая

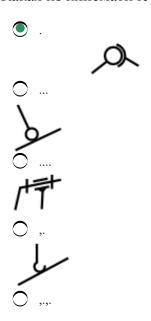
111 Условное обозначение какой кинематической пары приведено на схеме?

двухподвижная цилиндрическая
 одноподвижная вращательная
 одноподвижная поступательная
 четырехподвижная цилинрическая
 трехподвижная сферическая


112 Как называется данный рычажный механизм?

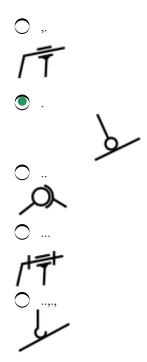

кулисныйкривошипно-коромысловыйдвухкривошипныйдвухкоромысловыйкривошипно-ползунный

113 Какая из кинематических пар является одноподвижной?



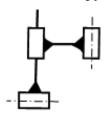
114 Какая из кинематических пар является двухподвижной?

115 Какая из кинематических пар является трехподвижной?



116 Какая из кинематических пар является четырехподвижной?

117 Какая из кинематических пар является пятиподвижной?


118 Какая из формул является формулой Сомова-Малышева?

$$\bigcirc ,,
 w = 3n - 2p_2 - p_1;$$

119 Какая из формул является формулой Чебышева?

$$\begin{array}{c} \bigcirc \ \, , \\ w = 3n + 2p_1 + p_2 \, . \\ \bigcirc \ \, , \\ w = 6n - 5p_5 - 4p_4 - 3p_3 - 2p_2 - p_1 \, ; \\ \bigcirc \ \, . \\ w = 6n - 5p_1 - 4p_2 - 3p_3 - 2p_4 - p_5 \, ; \\ \bigcirc \ \, . \\ w = 3n - 2p_1 - p_2 \, ; \\ \bigcirc \ \, . \\ w = 3n - 2p_2 - p_1 \, ; \end{array}$$

120 Какая группа Ассура приваедена на схеме?

- 2-го класса 4-го вида
- 2-го класса 1-го вида;
- 2-го класса 2-го вида;
- 2-го класса 3-го вида;
- не является группой Асура;

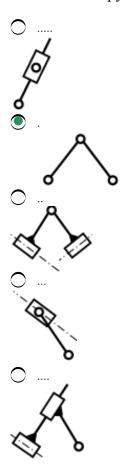
121 Какая группа Ассура приваедена на схеме?

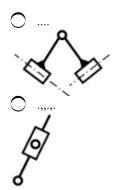
- трехповодковая 5-го класса.
- трехповодковая 3-го класса;
- четырех поводковая 3-го класса;
- 🔘 двухповодковая 4-го класса;
- трехповодковая 4-го класса;

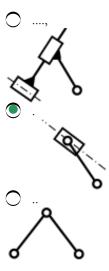
122 Что за группа Ассура приведена на схеме?

- трехповодковая 4-го класса;
- трехповодковая 3-го класса;
- Двухповодковая 4-го класса;
- трехповодковая 5-го класса.

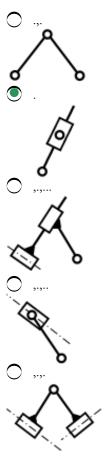
123 Что за группа Ассура приведена на схеме?


четырехповодковая 3-го класса;

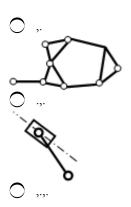

- четырехповодковая 3-го класса;
 трехповодковая 3-го класса;
 трехповодковая 5-го класса.
 трехповодковая 4-го класса;
 двухповодковая 4-го класса;
- 124 Что за группа Ассура приведена на схеме?

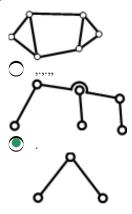


- Трехповодковая 5-го класса.
 четырехповодковая 3-го класса;
 трехповодковая 3-го класса;
 двухповодковая 4-го класса;
 трехповодковая 4-го класса;
- 125 Какая из этих групп Ассура второго класса является 1-ым видом?

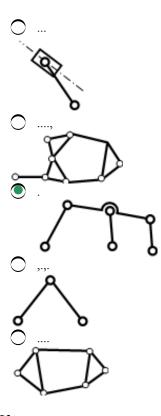


126 Какая из этих групп Ассура второго класса является 2-ым видом?

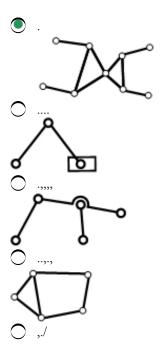




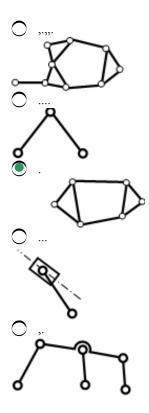
127 Какая из этих групп Ассура второго класса является 3-ым видом?



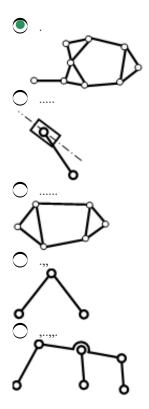
128 Какя из этих кинематических цепей является группой Ассура 2-го класса 2-го порядка 1-го вида?



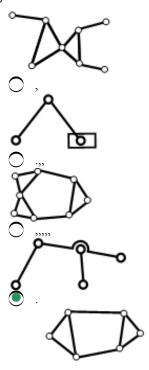
129 Какя из этих кинематических цепей является группой Ассура 3-го класса?



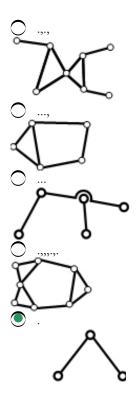
130 Какя из этих кинематических цепей является группой Ассура?



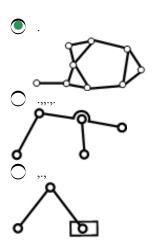
131 Какя из этих кинематических цепей является группой Асура 4-го класса?



132 Какя из этих кинематических цепей является группой Асура 5-го класса?

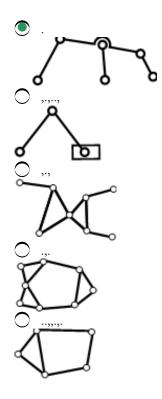


133 Какя из этих кинематических цепей является группой Ассура?

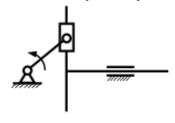




134 Какя из этих кинематических цепей является группой Ассура?



135 Какая из этих кинематических цепей является группой Ассура?

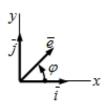


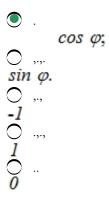
136 Какая из этих кинематических цепей является группой Ассура?

137 Какому классу относится данный плоский механизм?

- 2
- \sim
- \bigcirc
- \bigcirc 4

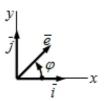
138 Какому классу относится данный плоский механизм?


- Ŏ:
- 3

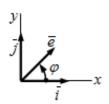

139 Какому классу относится данный плоский механизм?		
 5 1 3 2 4 		
140 Какому классу относится данный плоский механизм?		
© 2 ○ 3 ○ 4 ○ 5		
\bigcirc 1		
141 Как называется вторая производная радиус-вектора точки по обобщенной координате механизма?		
аналогом угловой скорости;		
аналогом линейной скорости;		
ускорением.		
аналогом углового ускорения		
аналог линейного ускорения;		
142 Как называется первая производная радиус-вектора точки по обобщенной координате механизма?		
аналогом угловой скорости;		
аналогом линейной скорости;		
ускорением.		
аналогом углового ускорения;		
аналогом линейного ускорения;		
143 Как называется первая производная от угла поворота звена по обобщенной координате механизма?		
ускорением.		
аналогом линейной скорости;		
аналогом угловой скорости;		
аналогом линейного ускорения;		
аналогом углового ускорения;		
144 Как называется вторая производная от угла поворота звена по обобщенной координате механизма?		
ускорением.		
аналогом линейной скорости;		
аналогом угловой скорости;		

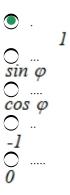
- О аналогом линейного ускорения;
- аналогом углового ускорения;

145.

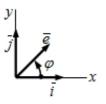

Чему равно скалярное прооизвендение $\bar{i}\cdot \bar{e}\,$ двух единичных ваекторов?

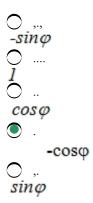
146.


Чему равно скалярное прооизвендение $\bar{i}\cdot\bar{j}$ двух единичных ваекторов?



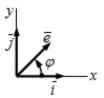
147.

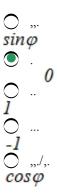

Чему равно скалярное прооизвендение $\bar{j}\cdot \bar{e}$ двух единичных ваекторов?



149.

Чему равно скалярное прооизвендение $\bar{e}'' \cdot \bar{i}$ двух единичных ваекторов?




150 .

151.

Чему равно скалярное прооизвендение $\bar{e} \cdot \bar{e}'$ двух единичных ваекторов?

152.

Какя существует зависимость между линейным ускорением точки (а) и ее аналогом (w)? (ω_l и ε_l – угловые скорость и ускорение входного звена).

$$\bigcirc \dots \\ a = \omega_I \cdot w$$

$$\bigcirc \dots \\ a = \omega_I^2 \cdot w - \varepsilon_I \cdot u$$

$$\bigcirc \dots$$

$$a = \omega_I^2 \cdot w + \varepsilon_I \cdot u$$

$$\bigcirc \dots \\ a = \omega_I^2 \cdot w$$

$$\bigcirc \dots \\ a = \varepsilon_I \cdot w$$

153 Как называется вторая производная радиус-вектора точки по обобщенной координате механизма?

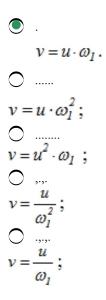
- аналогом линейной скорости; аналогом угловой скорости;
- аналог линейного ускорения;
 - аналогом углового ускорения

Какая существует зависимость между угловой скоростью (ω_i) и ее аналогом (φ_i')?

$$\bigcirc \dots \dots$$

$$\omega_i = \varphi_I \cdot \varphi_i'$$

$$\bigcirc \dots \dots$$


$$\omega_i = \omega_I (\varphi_i')^2$$

11.05.2016

$$\begin{aligned} \boldsymbol{\omega}_i &= \left(\boldsymbol{\omega}_I \cdot \boldsymbol{\varphi}_i'\right)^2 \\ \bigcirc & \dots \\ \boldsymbol{\omega}_i &= \boldsymbol{\omega}_I^2 \cdot \boldsymbol{\varphi}_i' \\ \bigcirc & \dots, \\ \boldsymbol{\omega}_i &= \boldsymbol{\omega}_I \cdot \boldsymbol{\varphi}_i' \end{aligned}$$

155.

Какая сущзествует звависимость между линейной скоростью (v) и ее аналогом (u)? $(\omega_l - \text{угловая скорость входного звена}).$

156.

Чему равна нормальное ускорение a^n точки звена, вращающегося с углолвой скоростью $\omega = 4\frac{l}{s}$, угловым ускорением $\varepsilon = 2\frac{l}{s^2}$ и находящегося на расстоянии r = 0,l m от оси вращения?

157

Какая существует зависимость между угловым ускорением (ε) и его аналогом ($\varphi_{i}^{"}$)?

$$\bigcirc ,...,$$

$$\varepsilon_i = \omega_i^2 \cdot \varphi_i'.$$

11.05.2016

158 Чему равно тангенсальное ускорение точки равномерно вращающегося звена?

159 Чему равно тангенсальное ускорение точки неравномерно вращающегося звена?

160.

Чему равно кориолисовое ускорение точки a^k при сложном движение если ее переносная скорость $\omega_k = 3\frac{l}{s}$ и относительная скорость $v_n = 2\frac{M}{c}$?

● .

$$12 \text{ m/c}^2$$
;
○
6 m/c^2 ;
○
 4 m/c^2 ;
○

$$9_{\rm M}/{\rm c}^2$$
;
 $\bigcirc ,...$
 $l, 5_{\rm M}/{\rm c}^2$

161 Чему равно полное ускорение точки вращающегося звена?

$$\bigcirc \dots$$

$$a = r\sqrt{\omega^4 + \varepsilon^4} .$$

$$\bigcirc \dots \dots$$

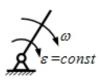
$$a = r\sqrt{\omega^2 + \varepsilon^2} ;$$

$$\bigcirc \dots$$

$$a = r\sqrt{\omega^2 + \varepsilon} ;$$

$$\bigcirc \dots$$

$$a = r\sqrt{\omega^2 + \varepsilon^4} ;$$


$$a = r\sqrt{\omega^4 + \varepsilon^2} ;$$

162.

Чему равна линейная скорость v точки звена, вращающегося с угловой скоростью $\omega = 4\frac{l}{s}$, угловым ускорением $\varepsilon = 2\frac{l}{s^2}$ и находящегося на расстоянии $r = 0.1\,\mathrm{m}$ от оси вращения?

163.

Как движется данное вращающееся звено?

неравномерно замедлено.
равномерно;
равномерно ускоренно;
равномерно замедлено;
неравномерно ускоренно;

1	64	

\bigcirc	неравномерно замедлено.
	равномерно замедлено;
\bigcirc	равномерно;
\bigcirc	равномерно ускоренно;
	неравномерно ускоренно:

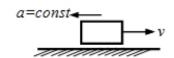
Как движется данное вращающееся звено?

\bigcirc	неравномерно замедлено.
	равномерно;
Ŏ	равномерно ускоренно;
$\check{\bigcirc}$	равномерно замедлено;
Ŏ	неравномерно ускоренно;

166.

Как движется данное вращающееся звено?

\bigcirc	неравномерно замедлено.
\bigcirc	равномерно;
\bigcirc	равномерно ускоренно;
\bigcirc	равномерно замедлено;
	неравномерно ускоренно;


167.

Как движется данное вращающееся звено?

	неравномерно замедлено:
	перавномерно замедлено.
\bigcirc	равномерно ускоренно;
\bigcirc	равномерно замедлено;
\bigcirc	неравномерно ускоренно;
\bigcirc	равномерно;

Как движется данное поступательно движущееся звено?

равномерно	замеллено	
равномерно	замедлено	,

о равномерно;

равномерно ускоренно;

перавномерно замедлено.

неравномерно ускоренно;

169 .

$\overline{}$		
	неравномерно	замедлено

о равномерно;

равномерно ускоренно;

равномерно замедлено;

неравномерно ускоренно;

170 .

$$v_B \cdot \frac{\sqrt{2}}{2}$$

$$v_B \cdot \frac{\sqrt{3}}{2}$$
;

.

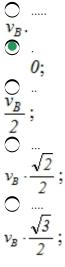
$$\mathcal{V}_{\mathcal{B}}$$
 .

0; \(\int_{\nu_{\nu}}\)

 $\frac{v_B}{2}$;

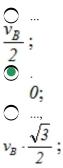
171.

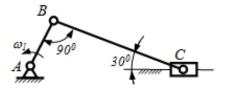
Чему равна относительная скорость v_{CB} в данном положении кривошипноползунного механизма?

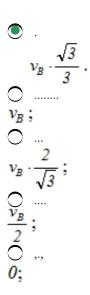

;

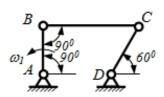
172.

Чему равна скорость v_C точки C в данном положении кривошипно-ползунного механизма?


173 .

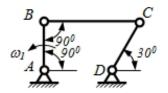

174.

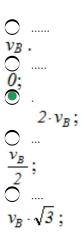

Чему равна относительная скорость v_{CB} в данном положении кривошипноползунного механизма?


Чему равна относительная скорость v_{CB} в данном положении кривошипно-ползунного механизма?

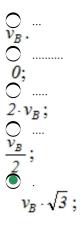
176.

Чему равна относительная скорость v_{CB} в данном положении четырехзвенного шарнирного механизма?

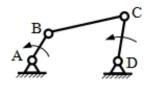


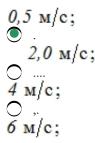

11.05.2016

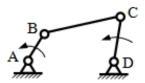
$$\frac{v_B}{2}$$
;
 $v_B \cdot \frac{\sqrt{3}}{3}$;


177.

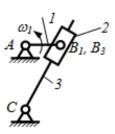
Чему равна скорость v_C точки C в данном положении четырехзвенного шарнирного механизма?



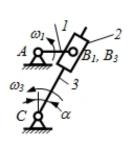

178.


179 .

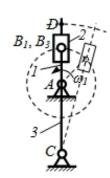

Чему равна относительная скорость v_{CB} если длина звена $l_{BC}{=}0,5$ м и угловая скорость $\omega_2 = 4(1/c)$?


Чему равна длина звена l_{BC} если относительная скорость $v_{CB}=1,2\,$ м/с и угловая скорость $\omega_2=6(1/c)$?

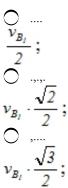
181


Чему равна скорость v_{B_3C} точки B_3 кулисы в данном положении если $l_{AB}{=}0$, $l_{\rm M}$, $l_{BC}=0$, $l_{\rm M}$ и $\omega_l{=}9$ (1/c)?

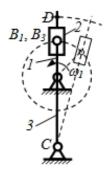
0,6 m/c
0,5 m/c
0,45 m/c
0,8 m/c
0,9 m/c


182

Чему равно передаточное отношение u_{13} в данном положении если $\alpha = 45^{\circ}$?

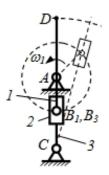

- 2; 2,25 9;
- 183.

Чему равна скорость v_{B_3C} точки B_3 кулисы в данном положении?

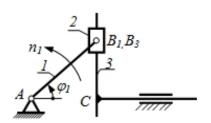

- $\begin{array}{c}
 \bullet \\
 v_{B_{l}} \\
 \bullet \\
 0; \\
 0; \\
 \cdots \\
 v_{B_{l}} \\
 \hline
 0; \\
 \vdots \\
 v_{B_{l}} \\
 \vdots \\
 v_{B_{l}} \\
 \hline
 0; \\
 \vdots \\
 v_{B_{l}} \\
 \vdots \\
 v_{B_{$
- 184 .
- 185.

11.05.2016

186

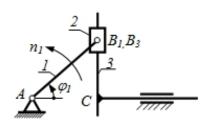

Чему равна скорость v_{B_2C} точки B_3 кулисы в данном положении если AC = 2AB, CD = 4AB?

$$\begin{array}{ccc}
 & \cdots & \cdots & \cdots \\
 & 4v_{B_{I}} & \cdots & \cdots \\
 & 0; & \cdots & \cdots \\
 & 0; & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots & \cdots \\
 & v_{B_{I}} & \vdots & \cdots$$


187.

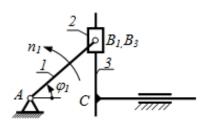
Чему равна скорость v_{B_3C} точки B_3 кулисы в данном положении если AC=2AB?

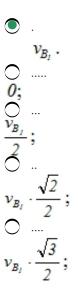
$$0;$$
 $v_{B_{I}};$
 $v_{B_{I}};$
 $v_{B_{I}}$


Чему равна скорость v_C точки C при $\varphi = 0^{0}$?

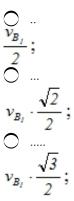
189 .

11.05.2016

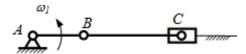

Чему равна относительная скорость $v_{B_3B_1}$ при $\varphi=45^{\circ}?$



$$\begin{array}{c}
\bullet \\
v_{B_i} \cdot \frac{\sqrt{2}}{2} \\
\bigcirc \cdots \\
0; \\
\vdots \\
\vdots \\
v_{B_j}; \\
\bigcirc \cdots \\
v_{B_j} \cdot \frac{\sqrt{2}}{2} \\
\bigcirc \cdots \\
v_{B_i} \cdot \frac{\sqrt{2}}{2}
\end{array}$$

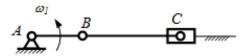

191.

Чему равна скорость v_C точки C при $\varphi = 90^{\circ}$?



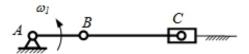
Чему равно нормальное ускорение a_{CB}^n в данном крайнем положении кривошипно-ползунного механизма, если $l_{AB}=0$, l_{M} , $l_{BC}=0$, 4_{M} $\omega_1 = 10(1/c) = const$?

194.


Чему равно косательное ускорение a_{CB}^{ε} в данном крайнем положении кривошипно-ползунного механизма, $l_{AB}=0, 1_{M}$ $l_{BC}=0.4_{\rm M}$ если $\omega_1 = 10(1/c) = const$?

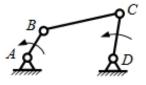
- 2 m/c_2; 7,5 m/c_2; 12,5 m/c_2; 12,5 m/c_2

195.


Чему равно ускорение a_C точки C в данном крайнем положении кривошипноползунного механизма, если $l_{AB}=0$, l_{M} , $l_{BC}=0$, 4м и $\omega_1=10(1/c)=const$?

 $\begin{array}{ccc} \bigcirc & 2.5 \,\text{M/c} \,_2 \\ \bigcirc & 2 \,\text{M/c} & 2 \end{array}$

196.


Чему равно угловое ускорение ε_2 звена BC в данном крайнем положении $l_{AB}=0, I_{\mathbf{M}},$ кривошипно-ползунного механизма, если $l_{BC}=0,4_{\rm M}$ $\omega_1 = 10(1/c) = const$?

- 12,5(1/c_2)
 0;
 2(1/c_2)
 2,5(1/c_2)
 7.5(1/c_2)

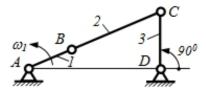
197.


Какое векторное уравнение составлено верно?

$$\overline{a}_C = \overline{a}_D + \overline{a}_{DC}^n + \overline{a}_{DC}^r;$$

198.

Чему равно нормальное ускорение a_{CB}^n если $v_{CB} = 2 \text{м/c} l_{BC} = 0.5 \text{ м?}$


 $\bigcirc 0,2$

7,2

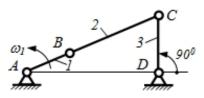
2.4

200.

Чему равно косательное ускорение a_{CD}^{ε} в данном крайнем положении шарнирного четырехзвенного механизма, если $l_{AB}=0.3$ м, $l_{BC}=0.7$ м, $l_{CD}=0.6$ м, $l_{AD}=0.8$ м и $\omega_l=10(1/c)=const$?

43,75

6,3


15,75

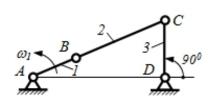
22,5

26.25

201.

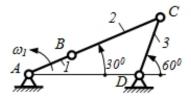
Чему равно полное ускорение a_C точки C в данном крайнем положении шарнирного четырехзвенного механизма, если $l_{AB}\!=\!0,3$ м, $l_{BC}\!=\!0,7$ м, $l_{CD}=0,6$ м, $l_{AD}=0,8$ м и $\omega_l=7(1/c)=const$?

43,75;


22,5;

15,75;

② 26.25 :


202.

Чему равно угловое ускорение ε_3 звена CD в данном крайнем положении шарнирного четырехзвенного механизма, если $l_{AB}=0,3$ м, $l_{BC}=0,7$ м, $l_{CD}=0,6$ м, $l_{AD}=0,8$ м и $\omega_l=7(1/c)=const$?

- **4**3,75;
- \bigcirc 22.5
- $\widetilde{\bigcirc}$ 15.75
- \bigcirc 6,3
- 26,25;

Чему равно нормальное ускорение a_{CB}^n в данном крайнем положении шарнирного четырехзвенного механизма, если l_{AB} =0,1м, l_{BC} =0,5м $\omega_l = 10(1/c) = const$?

$$\bigcirc \dots \\
12\sqrt{3} \text{ m/c}^2; \\
\bigcirc \dots \\
24\sqrt{3} \text{ m/c}^2; \\
\bigcirc \dots \\
2\text{ m/c}^2; \\
\bigcirc \dots \\
0. \\
\bigcirc \dots \\
6\text{ m/c}^2;$$

204.

- вращение вокруг оси у;
- вращение вокруг оси х;
- поступательное по оси z и вращательное вокруг оси z.
- о поступательное по оси х и вращательное вокруг оси х;
- вращение вокруг оси z;

205.

- поступательное по оси z и вращательное вокруг оси z;
- ращение вокруг оси х;
- О вращение вокруг оси у;
- вращение вокруг оси z;
- поступательное по оси х и вращательное вокруг оси х;

206.

Какой переход характеризует данная матрица $\begin{bmatrix} I & 0 & 0 & 0 \\ 0 & \cos\varphi_{mn} & -\sin\varphi_{mn} & 0 \\ 0 & \sin\varphi_{mn} & \cos\varphi_{mn} & 0 \\ 0 & 0 & 0 & I \end{bmatrix}?$

- оси z и вращательное вокруг оси
- вращение вокруг оси х ;
 - ращение вокруг оси у;

1.05.2016							
(вращение вокруг оси z; поступательное по оси x и вращательное вокруг оси	х;					
207 .	й переход характеризует данная матрица	cos	s φ _{mn} ι φ _{mn} 0	- c	sin φ os φ" 0	mn mn	0 0 1 0
(поступательное по оси х и вращательное вокруг оси вращение вокруг оси у; вращение вокруг оси х; вращение вокруг оси z; поступательное по оси z и вращательное вокруг оси;						
208.	й переход характеризует данная матрица	1 0 0	cos sin) Φ _{mn} Φ _{mn})	-s	0 in φ os φ, 0	mn mn
(вращение вокруг оси у; вращение вокруг оси х; поступательное по оси z и вращательное вокруг оси; поступательное по оси x и вращательное вокруг оси вращение вокруг оси z;						
209 .	поступательное вдоль у; поступательное вдоль х; поступательное вдоль z, вращательное вокруг z; поступательное вдоль y, вращательное вокруг у; поступательное вдоль z;						
210 .	й переход характеризует данная матрица	1 0 0	0 1 0 0	0 0 1 0	0 a ₂ ? ?	,	
(поступательное вдоль z, вращательное вокруг z. поступательное вдоль x; поступательное вдоль y; поступательное вдоль z; поступательное вдоль y, вращательное вокруг y;						

Какой переход характеризует данная матрица

- О поступательное вдоль z, вращательное вокруг z.
- поступательное вдоль х;
- поступательное вдоль z;
- поступательное вдоль у;
- поступательное вдоль у, вращательное вокруг у;

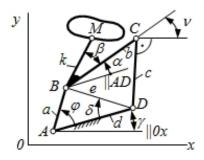
212.

Какой переход характеризует данная матрица 0

$\overline{}$		
	поступательное вдоль	z;

- опоступательное вдоль у , вращательное вокруг у;
- поступательное вдоль z, вращательное вокруг z.
- поступательное вдоль х;
- поступательное вдоль у;

213.

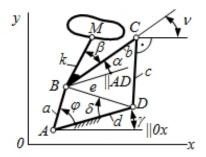

Ο .. *φ*; • .

a; ∨. ∘. •:

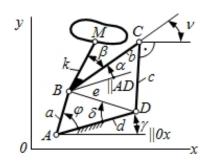
ο, Ο ... δ:

214.

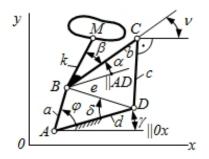
Какой параметр четырехзвенного шарнирного механизма является параметром синтеза?

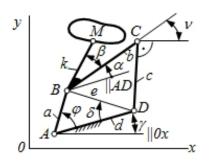


216.


Какой параметр четырехзвенного шарнирного механизма является параметром синтеза?

217.

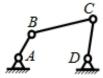

Какой параметр четырехзвенного шарнирного механизма является параметром синтеза?



218 .
Какой параметр четырехзвенного шарнирного механизма является параметром синтеза?

219 .
Какой параметр четырехзвенного шарнирного механизма является параметром синтеза?

220 Какое условие является основным при кинематическом синтезе рычажных механизмов?


- О ограничение длин звеньев;
- О существование кривошипа;
- О ограничения угла давления;
- движение точки по заданной траектории.
 - обеспечение минимального габарита;

221.

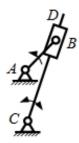
- \(\) \(\) \
- \bigcirc 1AB = 0,20; 1BC = 0,25; 1CD = 0,30; 1AD = 0,10;
- \bigcirc 1AB = 0,10; 1BC = 0,15; 1CD = 0,15; 1AD = 0,25.
- \bigcirc 1AB = 0,15; 1BC = 0,40; 1CD = 0,20; 1AD = 0,10;
- 1AB=0,05;1BC=0,20;1CD=0,30;1AD=0,25;

222.

Какой из четырехзвенных шарнирных механизмов является двухкривошипным? (Размеры в метрах).

- \bigcirc 1AB = 0,05; 1BC = 0,10; 1CD = 0,15; 1AD = 0,25;
- \bigcirc 1AB = 0,20; 1BC = 0,25; 1CD = 0,30; 1AD = 0,10;
- \bigcirc 1AB = 0,10; 1BC = 0,15; 1CD = 0,15; 1AD = 0,25.
- \bigcirc 1AB = 0,15; 1BC = 0,40; 1CD = 0,20; 1AD = 0,10;
- \bigcirc 1AB = 0,05; 1BC = 0,20; 1CD = 0,30; 1AD = 0,25;

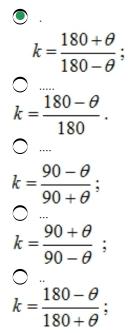
223.


Какой из четырехзвенных шарнирных механизмов является двухкоромысловым? (Размеры в метрах).

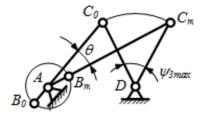
- \bigcirc 1AB = 0,20; 1BC = 0,30; 1CD = 0,25; 1AD = 0,10.
- \blacksquare 1AB = 0,20; 1BC = 0,10; 1CD = 0,30; 1AD = 0,25;
- \bigcirc 1AB = 0,05; 1BC = 0,20; 1CD = 0,25; 1AD = 0,30;
- \bigcirc 1AB = 0,15; 1BC = 0,25; 1CD = 0,30; 1AD = 0,35;
- \bigcirc 1AB = 0,20; 1BC = 0,25; 1CD = 0,30; 1AD = 0,10;

- \bigcirc 1AB = 0,10; 1BC = 0,20; 1CD = 0,25; 1AD = 0,30;
- \bigcirc 1AB = 0,15; 1BC = 0,25; 1CD = 0,30; 1AD = 0,25;
- \bullet 1AB = 0,15; 1BC = 0,20; 1CD = 0,40; 1AD = 0,25.
- \bigcirc 1AB = 0,05; 1BC = 0,20; 1CD = 0,30; 1AD = 0,25;
- \bigcirc 1AB = 0,05; 1BC = 035;; 1CD = 0,20; 1AD = 0,30;

В каком механизме кулиса СО совершает вращательное движение? (Размеры в метрах).

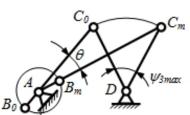

- 1AB = 0.25; 1AC = 0.20; 1CD = 0.50;

226 Как называют угол между передаваемой силой и скоростью точки ее приложения?


- угол передачи;
- угол зацепления; угол давления . фазовый угол;

227 Какой метод относится к оптимизации синтеза?

- случайный и направленный поиск, интерполяция;
- случайный, направленный, комбинированный поиски;
- интерполяция, квадратическое приближение, наилучшее приближение.
- случайный и комбинированный поиск, наилучшее приближение;
- случайный и комбинированный поиск, квадратическое приближение;



Чему равен угол θ если коэффициент изменения средней скорости выходного звена k=3 ?

230.

Чему равен угол θ если коэффициент изменения средней скорости выходного звена k?

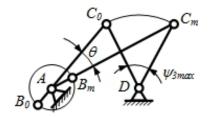
$$\bigcirc$$

$$\theta = 180 \frac{k+1}{l}$$

$$\bigcirc \dots, \\ \theta = 180 \frac{k+1}{k}.$$

$$\bigcirc \dots \dots$$

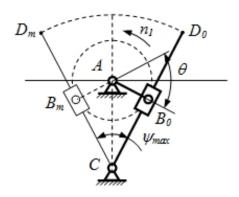
$$\theta = 180 \frac{k}{k+1};$$


$$\theta = 180 \frac{k}{k-1};$$

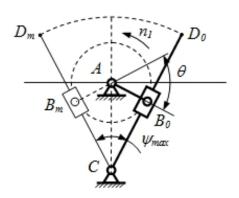
$$\theta = 180 \frac{k-1}{k+1};$$

$$0 \dots \theta = 180 \frac{k-1}{k};$$

$$\theta = 180 \frac{k-1}{k}$$

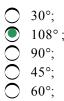

Чему равен угол θ если коэффициент изменения средней скорости выходного звена k=4 ?

- 90°;
- 36°;
- $\widetilde{}$ 0.
- 60°:

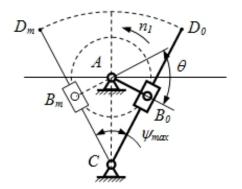

233 .

Чему равен угол ψ_{max} в кулисном механизме, если коэффициент изменения средней скорости выходного звена k=1,67 ?

- **Q** 30°;
- **9** 45°
- 90°;
- 108°;

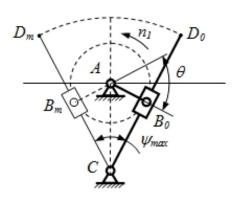

234 . Чему равен угол ψ_{max} в кулисном механизме, если коэффициент изменения средней скорости выходного звена k=2 ?

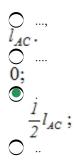
- **)** 45°
- 60°
- 90°;


0 108°; 0 30°;

235 .

236.


Чему равен коэффициент изменения средней скорости выходного звена k в кулисном механизме если угол $\psi_{max} = 90^{\circ}$?



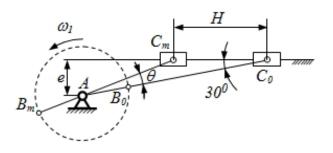
3;
1,4;
1,67;
2;
5.

237 .

Чему равена длина кривошипа l_{AB} в кулисном механизме, если коэффициент изменения средней скорости выходного звена k=2 ?

11.05.2016

$$\begin{array}{c} \frac{\sqrt{2}}{2} \ l_{AC}; \\ \stackrel{}{\bigcirc} \dots \\ \frac{\sqrt{3}}{2} \ l_{AC}; \end{array}$$


238.

40 мм;60 мм;

30 мм;

239.

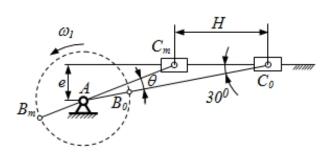
Чему равна разность длин шатуна и кривошипа $l_{BC}-l_{AB}$ кривошипно-ползунного механизма, если полный ход ползуна $H=0.2\sqrt{3}$ м и коэффициент изменения его средней скорости k=1.4?

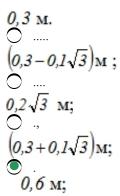
$$\bigcirc
0,3 \text{ M.}$$

$$\bigcirc
\dots$$

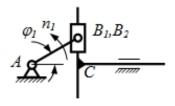
$$(0,3-0,1\sqrt{3})\text{M};$$

$$\bigcirc
0,2\sqrt{3} \text{ M};$$

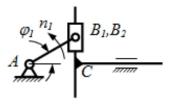

$$\bigcirc
(0,3+0,1\sqrt{3})\text{M};$$


$$\bigcirc
\dots$$

$$(0,6 \text{ M};$$


240 .

Чему равна сумма длин шатуна и кривошипа $l_{BC}+l_{AB}$ кривошипно-ползунного механизма, если полный ход ползуна $H=0.2\sqrt{3}$ м и коэффициент изменения его средней скорости k=1.4?


Чему равна длина кривошипа l_{AB} , если максимальная скорость ползуна $v_{C_{max}} = 6\,\mathrm{m/c}$?

- ① 0,15m;
- O,2m;
- \bigcirc 0,3m;
- \bigcirc 0,4m;
- O,6m;

242

Чему равна длина кривошипа l_{AB} , если максимальное ускорение ползуна $a_{C_{max}} = 120 \, \mathrm{m/c^2}$

- 0,5m;
- 0,3m;
- 0,15m;
- 0,2m;
- 0,6m;

243 Как называется звено, для которого элементарная работа всех действующих внешних сил будет отрицательной или равной нулю?

- выходное звено;
- входное звено;
- ведущее звено.
- начальное звено;
- ведомое звено;

244 Чему равен главный вектор и главный момент сил инерций, действующих на неравномерно поступательно движущегося звена?

$$\begin{array}{l} \bigcirc \ \, ... \\ \overline{F}_u = 0 \\ \overline{M}_u = -J_s \cdot \overline{\varepsilon} \end{array}; \\ \bigcirc \ \, ... \\ \overline{F}_u = m \cdot \overline{a}_s \\ \overline{M}_u = 0 \\ \bigcirc \ \, ... \\ \overline{F}_u = -m \cdot \overline{a}_s \\ \overline{M}_u = -J_s \cdot \overline{\varepsilon} \end{array}; \\ \overline{M}_u = 0 \\ \bigcirc \ \, ... \\ \overline{F}_u = 0 \\ \overline{M}_u = 0 \\ \bigcirc \ \, ... \\ \overline{F}_u = -m \cdot \overline{a}_s \\ \overline{M}_u = 0 \end{array}$$

245 Кто является автором принципа: "Если к действующим внешним силам и силам реакций ускоренно движущегося звена добавить силы инерций, то полученная система будет в равновесии"?

- Даламбер;Чебышев;Виллис;Гразгоф.
- 246 Как называется звено, для которого элементарная работа всех действующих внешних сил является положительной?
 - начальное звено;ведущее звено .входное звено;ведомое звено;

выходное звено;

247 Чему равен главный вектор сил инерций, действующих на звено (m- масса звена; aS — ускорение центра масс; - угловое ускорение; - момент инерции звена относительно центра масс)? $\overline{F}_{u} = -m \cdot \overline{a}_{s}$;

248 Чему равен главный момент сил инерций, действующих на звено?

249 Чему равен главный вектор и главный момент сил инерций, действующих на равномерно поступательно движущегося звена?

$$\begin{split} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

250 Чему равен главный вектор и главный момент сил инерций, действующих на неравномерно вращающегося вокруг центра масс звена?

$$\begin{array}{l}
\bigcirc \dots \\
\overline{F}_{u} = -m \cdot \overline{a}_{s} \\
\overline{M}_{u} = -J_{s} \cdot \overline{\varepsilon};
\\
\bigcirc \dots \\
\overline{F}_{u} = m \cdot \overline{a}_{s} \\
\overline{M}_{u} = 0 \\
\bigcirc \dots \\
\overline{F}_{u} = 0 \\
\overline{M}_{u} = 0
\end{aligned}$$

$$\begin{split} \overline{F}_u &= -m \cdot \overline{a}_{\scriptscriptstyle S} \\ \overline{M}_u &= 0 \\ & \\ \odot \\ \overline{F}_u &= 0 \\ \overline{M}_u &= -J_{\scriptscriptstyle S} \cdot \overline{\varepsilon} \end{split} ;$$

251 Чему равен главный вектор и главный момент сил инерций, действующих на равномерно вращающегося вокруг центра масс звена?

$$\begin{array}{l} \bigcirc \ , \dots \\ \overline{F}_u = -m \cdot \overline{a}_s \\ \overline{M}_u = 0 \\ \bigcirc \ . \dots \\ \overline{F}_u = -m \cdot \overline{a}_s \\ \overline{M}_u = -J_s \cdot \overline{\varepsilon} \\ \vdots \\ \overline{M}_u = 0 \\ \bigcirc \ . \dots \\ \overline{F}_u = m \cdot \overline{a}_s \\ \overline{M}_u = 0 \\ \bigcirc \ . \dots \\ \overline{F}_u = 0 \\ \overline{M}_u = -J_s \cdot \overline{\varepsilon} \\ \bullet \ . \end{array}$$

$$\overline{F}_u = 0$$

$$\overline{M}_u = 0$$

$$\overline{M}_u = 0$$

$$\overline{M}_u = 0$$

252 Чему равен главный вектор и главный момент сил инерций, действующих на равномерно вращающегося вокруг оси, не проходящей через центр масс звена?

$$\begin{array}{l} \bigcirc \ \, ... \\ \overline{F}_u = -m \cdot \overline{a}_S \\ \overline{M}_u = 0 \\ \hline \bullet \ \, ... \\ \overline{F}_u = -m \cdot \overline{a}_S \\ \overline{M}_u = 0 \\ \hline \cdot ... \\ \overline{F}_u = -m \cdot \overline{a}_S \\ \overline{M}_u = -J_S \cdot \overline{\varepsilon} \\ \hline \cdot ... \\ \overline{F}_u = 0 \\ \overline{M}_u = -J_S \cdot \overline{\varepsilon} \\ \hline \cdot ... \\ \overline{F}_u = 0 \\ \overline{M}_u = 0 \\ \hline \cdot ... \\ \overline{F}_u = 0 \\ \overline{M}_u = 0 \\ \hline \cdot ... \\ \overline{F}_u = 0 \\ \hline \cdot ... \\ \hline \cdot ... \\ \overline{F}_u = 0 \\ \hline \cdot ... \\ \hline \cdot ... \\ \hline \cdot ... \\ \overline{F}_u = 0 \\ \hline \cdot ... \\$$

Чему равен главный вектор и главный момент сил инерций, действующих на неравномерно вращающегося вокруг оси, не проходящей через центр масс звена?

$$\begin{array}{l} \bigcirc \ ,/,\\ \overline{F}_u = 0\\ \hline \overline{M}_u = 0\\ \hline \bullet \\ \overline{F}_u = -m \cdot \overline{a}_S\\ \overline{M}_u = -J_S \cdot \overline{\varepsilon}\\ ;\\ \bigcirc \ ,.,\\ \overline{F}_u = 0\\ \hline \overline{M}_u = -J_S \cdot \overline{\varepsilon}\\ \bigcirc \ ,.,\\ \overline{F}_u = m \cdot \overline{a}_S\\ \overline{M}_u = 0\\ \bigcirc \ ,/\\ \overline{F}_u = -m \cdot \overline{a}_S\\ \overline{M}_u = 0\\ ;\\ \overline{M}_u = 0\\ ;\\ \end{array}$$

254.

Чему равен момент инерции J_s цилиндрического звена длиной l относительно оси, проходящей через центр масс S?

Чему равен момент инерции J_O цилиндрического звена длиной l относительно оси вращения O?

$$\frac{ml^4}{24}$$

$$\frac{ml^4}{24}$$

$$\frac{ml^2}{6}$$

$$\frac{ml^2}{3}$$

$$\frac{ml^2}{12}$$

$$\frac{ml^4}{12}$$

256 . Чему равен момент инерции J_O цилиндрического звена длиной l=0,6м и массой m=4 кг?

257 Чему равен главный вектор и главный момент сил инерций, действующих на плоскопараллельно движущееся звено?

11.05.2016

258.

По какой формуле определяется положение центра качения K неравномерно вращающегося звена, к которому приложена результирующая сила инерции \overline{F}_u ?

$$\bigcirc \dots$$

$$l_{ok} = l_{os} + \frac{J_s}{m};$$

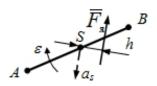
$$\bigcirc \dots$$

$$l_{ok} = l_{os} + \frac{J_s}{l_{os}};$$

$$\bullet \dots$$

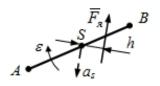
$$l_{ok} = l_{os} + \frac{J_s}{m \cdot l_{os}};$$

$$\bigcirc \dots,$$


$$l_{ok} = l_{os} - \frac{J_s}{m \cdot l_{os}};$$

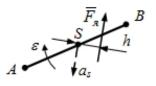
$$\bigcirc \dots,$$

$$l_{ok} = l_{os} + \frac{J_s}{l_{os}}.$$

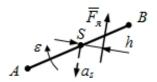

259 ..

На каком расстоянии h от центра масс S плоско-параллельно двущегося цилиндрического звена проходит результирующей главный вектор сил инерций \overline{F}_u если дина звена $l_{AB}=0,6$ м, масса m=0,4 кг, угловое ускорение $\varepsilon=20~(1/c^2)$ и ускорение центра масс $a_s=6$ і $/\tilde{n}^2$?

260 .


Чему равен главный момент M_u сил инерций, действующих на плоскопараллельно двущегося цилиндрического звена если ее масса m=0,6 кг, ускорение центра масс $a_s = 10$ і / \tilde{n}^2 и расстояние h = 0,05м?

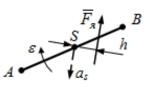
- O ,,.,. 0,4 N·i; ● . 0,3 N·ì
- O... 0,8 N·ì;
- 0,6 N·i;
- O, 0,5 N·ì;


261.

Чему равна длина звена l_{AB} плоско-параллельно двущегося цилиндрического звена если ее угловое ускорение $\varepsilon = 24 \left(1/c^2 \right)$, ускорение центра масс $a_s = 10$ і /ñ² и расстояние h=0,05м?

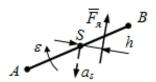
262

Чему равно расстояние h при плоско-параллельном движении цилиндрического звена длиной $l_{AB}=0.5$ м, если ее угловое ускорение $\varepsilon=24\left(1/c^2\right)$ и ускорение центра масс $a_s=10$ і $/\tilde{n}^2$?


- О,08м
- 0,04м;
- \bigcirc 0.05 $_{\rm M}$:
- \bigcirc 0,03 $_{\rm M}$;
- O,025 m;

263.

- \bigcirc 30
- \bigcirc 32
- **2**4
- O 20.
- \bigcirc 26


264.

Чему равно угловое ускорение ε при плоско-параллельном движении цилиндрического звена длиной $l_{AB}=0.6\mathrm{m}$, если ускорение центра масс $a_{\mathrm{S}}=15\,\mathrm{m/c^2}$ и расстояние $h=0.06\mathrm{m}$? (угловое ускорение $\varepsilon=\left(1/\mathrm{c^2}\right)$)

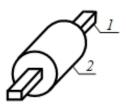
- \bigcirc 24
- \bigcirc 26
- 30
- \bigcirc 32
- \bigcirc 20

Чему равна масса т плоско-параллельно движущегося цилиндрического звена длиной $l_{AB}=0,6$ м, если ее угловое ускорение $\varepsilon=30\left(1/c^2\right)$, ускорение центра масс $a_s = 15 i / \tilde{n}^2$ и расстояние h = 0.06 M?

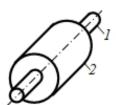
\bigcirc	26	кг;
_		

20 кг.
24 кг;
произвольное значение;
30 кг;

266 .


Чему равно расстояние l_{OK} если вращающееся цилиндрическое звено имеет $l_{OS}=0.04$ м, массу m=0.3кг и $J_S=0.0012$ кг·м²?

0,06	м;
	0,06

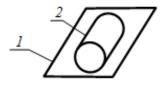

267 ???

Сколько неизвестных реакций возникает в данной кинематической паре?

Сколько неизвестных реакций возникает в данной кинематической паре?

	4.
\bigcirc	2;
\bigcirc	1;
\bigcirc	3;
\bigcirc	1;
	4;
\bigcirc	3;
\bigcirc	4.
\bigcirc	5;

269.


Сколько неизвестных реакций возникает в данной кинематической паре?

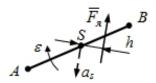
	3
\bigcirc	1;
\bigcirc	5;
\bigcirc	4;
\bigcirc	2;

270.

Сколько неизвестных реакций возникает в данной кинематической паре?

\bigcirc	4;
	2;
\bigcirc	1;
\bigcirc	3;
\bigcirc	5;

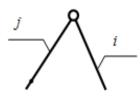
271 .


Сколько неизвестных реакций возникает в данной кинематической паре?

Чему равен главный момент сил инерций M_u , действующий на плоскопараллельно движущееся цилиндрическое звено равномерно вращающееся вокруг центра масс звена с угловой скоростью $\omega = 20 \left(1/c^2 \right)$ если $J_z = 0.5 \, \mathrm{kr} \cdot \mathrm{m}^2$? (J_z момент инерции звена относительно оси, проходящей через центр масс).

\bigcirc	2,0 Nм
	0;
\bigcirc	2,5 Nм
\bigcirc	5 Nм;
\bigcirc	10 Nм;

Чему равен главный момент сил инерций M_u , действующий на плоскопараллельно движущееся цилиндрическое звено массой m = 2.4 кг, длиной $l_{AB} = 1.0$ м и ускорением $a_{BA}^{\tau} = 3.0 (\text{m/c}^2)$?

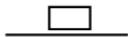

	0,6Nм;
\sim	-,,

277.

Чему равен главный вектор сил инерций F_u , действующий на поступательно движущееся со скоростью v = 2 m/c звено?

278 .

Какие параметры силы реакции, возникающее в одноподвижной вращательной паре плоского механизма известны?


$\overline{}$				
()	точка	припожения	И	направления

точка приложения; величина;

точка приложения и величина.

279 .

Какие параметры силы реакции, возникающее в одноподвижной вращательной паре плоского механизма известны?

	точка	приложения	И	величина
--	-------	------------	---	----------

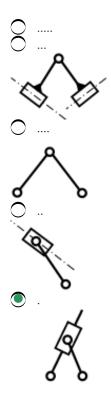
точка приложения;

величина;

точка приложения и направления;

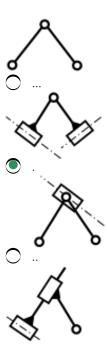
280.

Какие параметры силы реакции, возникающее в двухподвижной паре высшего класса плоского механизма известны?

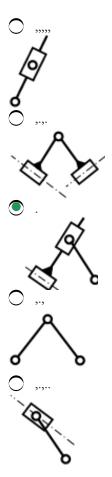


	точка приложения и направления
\bigcirc	направление;
\bigcirc	точка приложения;
\bigcirc	величина;
\bigcirc	точка приложения и величина

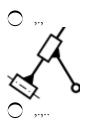
281 Какая кинематическая цепь является статически определимой?

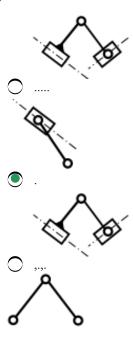

\bigcirc	n=5,p1=6;
\bigcirc	n=3,p1=4;
\bigcirc	n=4,p1=7;
	n=2,p1=3;
\bigcirc	n=2,p1=4.

282 Какая плоская кинематическая цепь является статически неопределимой?

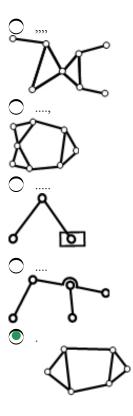


283 Какая плоская кинематическая цепь является статически неопределимой?

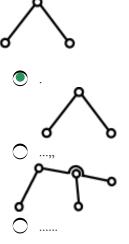


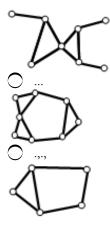


284 Какая плоская кинематическая цепь является статически неопределимой?

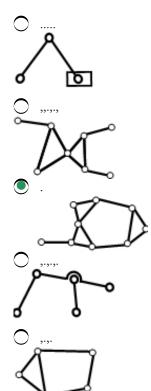


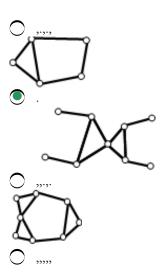
285 Какая плоская кинематическая цепь является статически неопределимой?

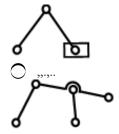




286 Какая плоская кинематическая цепь является статически определимой?


287 Какая плоская кинематическая цепь является статически определимой?



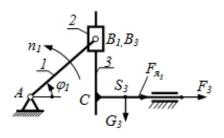

288 Какая плоская кинематическая цепь является статически определимой?

289 Какая плоская кинематическая цепь является статически определимой?

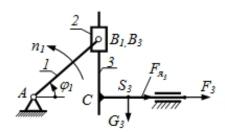
290 .

Сколько неизвестных реакций в данной группе Асура?

- 6; 10; 10; 12; 14;

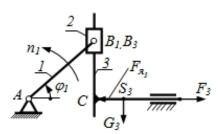

291.

Сколько неизвестных реакций в данной группе Асура?


292 .

Чему равна сила реакции F_{30} , если G_3 =20 N, $F_{u_3}=50$ N, F_3 =120 N?

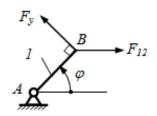
- 50 N; 120 N;


Чему равна сила реакции F_{21} , если G_3 =20 N, $F_{u_3}=50$ N, F_3 =120 N?

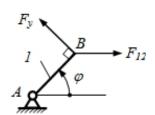
- 170N;
- 30 N:
- $\tilde{\bigcirc}$ 50 N
- 120 N
- 100 N

294.

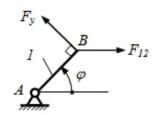
Чему равна сила реакции F_{21} , если G_3 =20 N, $F_{u_3}=50$ N, F_3 =120 N?



- 70N.
- Ŏ 50 N
- 170 N
- O 20 N;
- \bigcirc 120 N

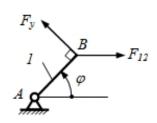

295.

$$F_{12};$$
 \bullet
 $0.$
 $F_{12} \frac{\sqrt{2}}{2};$
 $F_{12} \frac{\sqrt{3}}{2};$
 $F_{12} \frac{\sqrt{3}}{2}:$
 $F_{12} \frac{\sqrt{3}}{2}:$


Чему равна уравновешивающая сила F_y при $\varphi = 30^{0}$?

297 . Чему равна уравновешивающая сила F_y при $\ \, \varphi = 45^{0}?$

Чему равна уравновешивающая сила F_y при $\varphi = 60^{\circ}$?

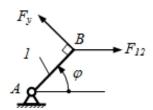

$$\bigcap_{I_{12}} F_{I_{12}};$$
 $\bigcap_{I_{12}} F_{I_{12}};$
 $\bigcap_{I_{12}} F_{I_{12}} \frac{\sqrt{3}}{2};$
 $\bigcap_{I_{12}} F_{I_{12}};$

299 .

$$O_{i}$$
, ..., O_{i} , ...,

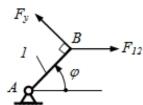
300

Чему равна сила реакции F_{10} при $\varphi = 0^{0}$?


11.05.2016

0.

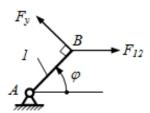
$$F_{12} \frac{\sqrt{3}}{2}$$
;
 $F_{12} \frac{\sqrt{2}}{2}$;
 $F_{12} \frac{\sqrt{2}}{2}$;

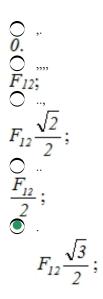

301 .,.

Чему равна сила реакции F_{10} при $\varphi = 30^{0}$?

302 .,.

Чему равна сила реакции F_{10} при $\varphi = 45^{\circ}$?


$$\begin{array}{c}
\bigcirc \dots \\
F_{12} \frac{\sqrt{3}}{2}; \\
\bigcirc \dots \\
F_{12}; \\
\bigcirc \dots \\
F_{12};
\end{array}$$


11.05.2016

$$F_{I2}\frac{\sqrt{2}}{2}$$

303 ,.,.

Чему равна сила реакции F_{10} при $\varphi = 60^{\circ}$?

304 Какое уравнение равновесия составлено верно?

$$\begin{array}{l} \bigcirc \ \, ,... \\ \overline{F}_{2l} + \overline{F}_{u_3} - \overline{G}_3 + \overline{M}_{u_3} + \overline{F}_{30} = 0 \, . \\ \bigcirc \ \, ... \\ \overline{F}_{2l} + \overline{F}_3 + \overline{G}_3 - \frac{M_{u_3}}{\mu_l} + \overline{F}_{30} = 0 \, ; \\ \bigcirc \ \, ... \\ \overline{F}_{2l} + \overline{F}_{u_3} + \overline{G}_3 - \overline{F}_{30} = 0 \, ; \\ \boxed{\bullet} \ \, . \\ \overline{F}_{2l} + \overline{F}_{u_3} + \overline{G}_3 + \overline{F}_{30} = 0 \, ; \\ \bigcirc \ \, ... \\ \overline{F}_{2l} + \overline{F}_{u_3} + \overline{G}_3 + \overline{M}_{u_3} + \overline{F}_{30} = 0 \, ; \\ \end{array}$$

305 ..

Чему равна сила трения скольжения в поступательной кинематической паре? $(f_0 \ \text{и} \ f' - \text{соответственно коэффициенты трения и приведенного трения скольжения, } r - радиус цапфы, <math>F_{ijn}$ - действующая нормальная сила).

$$F_{zz} = f_0 \cdot F_{ijn};$$

$$\cdots$$

$$F_{ss} = f' \cdot r \cdot F_{ijn};$$

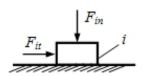
$$\bigcirc ...$$

$$F_{ss} = 2 \frac{F_{ijn}}{f'};$$

$$\bigcirc ...,$$

$$F_{ss} = \frac{f' \cdot F_{ijn}}{r};$$

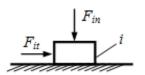
$$\bigcirc$$


$$F_{ss} = \frac{1}{3} f' \cdot r \cdot F_{ijn}.$$

306.

0;66 N;150 N;100 N;120 N;

307.


Чему равна максимальная сила трения скольжения F_0 , если действующая на тело силы F_{in} =2000N, F_{it} =40N, а для угла трения скольжения имеем $tg \varphi_0$ =0,15?

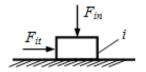
10N; 50N. 30N; 40N;

308 .

Чему равна сила трения скольжения F_s , если действующая на тело силы F_{in} =200N, F_{it} =20N, а для угла трения скольжения имеем $tg\,\varphi_0$ =0,15?

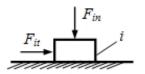
20N;
50N.
40N;
30N;
10N;

309 ..


В каком состоянии будет находиться тело, если F_{in} =200N. F_{it} =40N, а угол трения скольжения соответствует $tg \varphi_0$ =015?

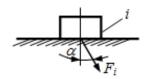
\bigcirc	в покое;
\bigcirc	в равномерно замедленном движении.
\bigcirc	в равномерном движении;
	в равномерно ускоренном движении;
\bigcirc	в неопределенном движении;

310 ..


В каком состоянии будет находиться тело, если F_{in} =200N. F_{it} =20N, а угол трения скольжения соответствует $tg \varphi_0$ =015?

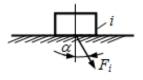
в покое;
в равномерно замедленном движении.
в равномерном движении;
в равномерно ускоренном движении;
в неопределенном движении;

311 ..


В каком состоянии будет находиться тело, если F_{in} =200N. F_{it} =30N, а угол трения скольжения соответствует $tg \varphi_0$ =015?

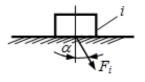
\bigcirc	в неопределенном движении;
\bigcirc	в покое;
	в покое или в равномерно прямолинейном движении.
Ŏ	в равномерном движении;
Ŏ	в равномерно ускоренном движении;
\bigcirc	66 N;
\bigcirc	45 N.
\circ	0;
	90 N;
$\tilde{\bigcirc}$	150 N;

312


Чему равна сила трения скольжения F_s , если на тело под углом $\alpha=30^0$ действует результирующая сила $F_i=200\cdot\sqrt{3}\,$ N, а угол трения скольжения определяется из условия $tg\,\varphi_0=0,15$?

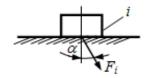
- 30 N;
- (a) 45 N
- 15 N:
- 90 N;
- 60 N:

314 ...

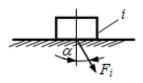

Чему равна максимальная сила трения скольжения F_0 , если на тело под углом $\alpha=45^0$ действует результирующая сила $F_i=200\cdot\sqrt{2}$ N, а коэффициент трения скольжения $f_0=0,15$?

- O 60 N;
- 45 N.
- \bigcirc 15 N;
- → 90 N;
- 🖲 30 N ;

315 ..

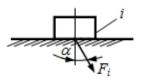

Чему равна сила трения скольжения F_s , если на тело под углом $\alpha = 45^0$ действует результирующая сила $F_i = 200 \cdot \sqrt{2}$ N, а угол трения скольжения определяется из условия $tg \, \varphi_0 = 0,15$?

- 30 N
- () 45 N.
- 15 N;
- \bigcirc 90 N
- \bigcirc 60 N


316 ..

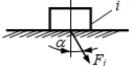
Чему равна максимальная сила трения скольжения F_0 , если на тело под углом α =600 действует результирующая сила F_i =200 N, а коэффициент трения скольжения f_0 =0,15?

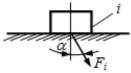
317.


Чему равна сила трения скольжения F_s , если на тело под углом $\alpha = 60^{\circ}$ действует результирующая сила F_i =200N, а угол трения скольжения определяется из условия $tg \varphi_0 = 0, 15$?

- 45 N. 15 N; 90 N;

318.


В каком состоянии будет находится тело, если действующая сила F_i , а угол $\alpha < \varphi_0$? $(\varphi_0$ – угол трения покоя).


- в неопределенном движении;
- в равномерно замедленном движении.
- в равномерном движении;
 - в равномерно ускоренном движении;
- в покое;

319 ..

В каком состоянии будет находится тело, если действующая сила F_i , а угол $\alpha=$ φ_0 ? (φ_0 – угол трения покоя).

	α F_i
\bigcirc	в покое; в покое или в равномерном прямо¬ли¬нейном движении.
Ŏ	в равномерном движении;
\circ	в равномерно ускоренном движении;
\circ	в неопределенном движении;
320	
	и состоянии будет находится тело, если действующая сила F_i , а угол $lpha > arphi_0$?
$(\varphi_0 - yr$	ол трения покоя).
	α F_i
Q	в неопределенном движении;
\circ	в равномерно замедленном движении.
\sim	в равномерном движении;
	в равномерно ускоренном движении; в покое;
321,	
	E E
	ом состоянии будет находится тело, если действующая сила
$F_i = 100$	$0.\sqrt{3}\ { m N}$, а угол $\alpha = 30^{0}$? (коэффициент трения скольжения $f_{0} = 0.15$)
	\vdash \downarrow^i

_	
\bigcirc	в равномерно замедленном движении.
\bigcirc	в покое;
\bigcirc	в неопределенном движении;
	в равномерно ускоренном движении;
	в равномерном движении;

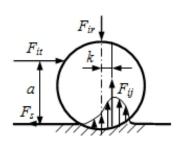
322 Как будет вращаться вал в подшипнике, если действующая на него результирующая сила реакции будет касательной круга трения?

\bigcirc	ускоренно;
\bigcirc	замедленно;
\bigcirc	равномерно ускоренно.
	равномерно;
\bigcirc	неравномерно;

323 Как будет вращаться вал в подшипнике, если действующая на него результирующая сила реакции будет проходит внутри круга трения? (в начальном положении вал находится в движении).

\bigcirc	ускоренно;
\bigcirc	неравномерно;
\bigcirc	равномерно;
\bigcirc	равномерно ускоренно
	замелленно :

324 Как будет вращаться вал в подшипнике, если действующая на него результирующая сила реакции будет проходит вне круга трения?


\bigcirc	замедленно;
\bigcirc	неравномерно;
\bigcirc	равномерно ускоренно
	ускоренно;
\bigcirc	равномерно;

325 ,.

По какой приближенной формуле определяется момент трения скольжения $M_{\mathfrak{s}}$ между цапфой и подшипником, если радиус цапфы r, действующая на нее сила F_{ir} и приведенный коэффициент трения f?

326.

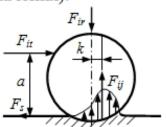
Какое условие определяет чистое скольжение цилиндра при трении качения? (f_0 и k — соответственно коэффициенту трения скольжения и качения).

$$a < \frac{k}{f_0};$$

$$0 = \frac{f_0}{k};$$

$$0 = \frac{f_0}{k};$$

$$0 = \frac{f_0}{k};$$


$$0 = \frac{k}{f_0};$$

$$a > \frac{k}{f_0};$$

$$a = \frac{k}{f_0};$$

327 ...

Какое условие определяет чистое качение цилиндра при трении качения? (f_0 и k — соответственно коэффициенту трения скольжения и качения).

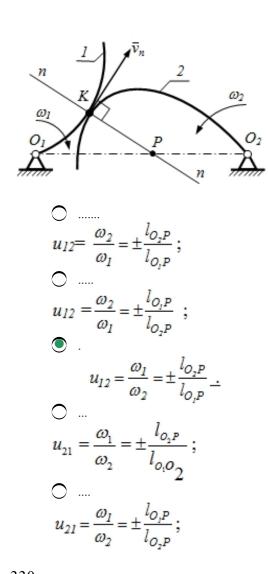
328 ,.,

$$\bigcirc \dots \\
a > \frac{k}{f_0}; \\
\bigcirc \dots \\
a > \frac{f_0}{k}.$$

$$\bigcirc \dots \\
\bigcirc \dots \\
a > \frac{f_0}{k}.$$

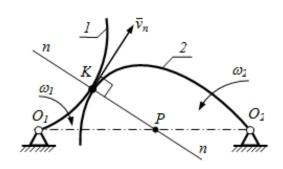
11.05.2016

$$a < \frac{k}{f_0};$$

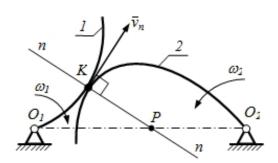

$$a = \frac{k}{f_0}$$

$$a = \frac{k}{f_0};$$

$$a < \frac{f_0}{k};$$


329 ..

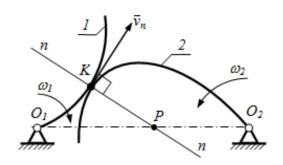
Основная теорема зацепления?


330 ,.,.

Чему равно передаточное отношение u_{12} , если O_1O_2 =100мм и O_2P =80 мм

-0,25; 0,25;

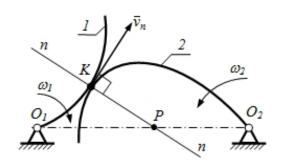
Чему равно передаточное отношение u_{12} , если $O_1O_2=100$ мм и $O_2P=80$ мм


4. -4;

331 ,,,,

4.-0,25;0,25;0,8;

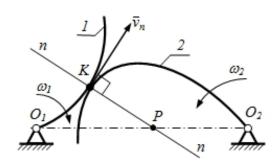
332


Чему равно передаточное отношение u_{12} , если $O_1O_2=100$ мм и $O_2P=80$ мм?

-5.
0,2;
-0,2
6;
5;

333 ..

Чему равно передаточное отношение u_{2l} , если $O_1O_2=120$ мм и $O_2P=20$ мм?

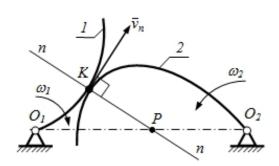

\bigcirc	5;
\bigcirc	-5.
\frown	0.0

O -0,2

 \bigcirc 6:

334 ,.,

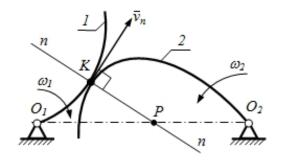
Чему равно межцентровое расстояние O_1O_2 , если передаточное отношение u_{12} = - 1,5 и O_2P = 60 мм?



- 100 mm;
 - 40мм.
- **№** 80мм;
- 60мм;50мм;

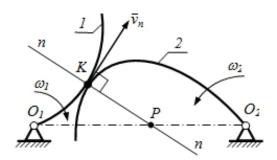
Ŭ

335 ,.,.


Чему равно межцентровое расстояние O_1O_2 , если передаточное отношение u_{21} = - 0.5 и O_2P =30 мм?

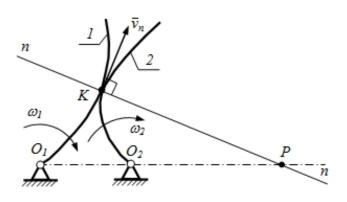
- О 40 мм;
- 90мм:100 мм;
- О 60 мм;
- 50 mm

336 ...


Чему равно межцентровое расстояние O_1O_2 , если передаточное отношение $u_{21} = -0.25$ и $O_2P = 40$ мм?

- 80 мм;
- 40 mm;
 - 90 мм.
- **5**0мм:
- 0 00

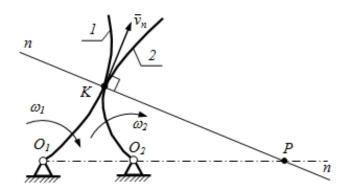
337 ...


Чему равно межцентровое расстояние O_1O_2 , если передаточное отношение $u_{12} = -2,0$ и $O_2P = 20$ мм?

- 40 mm;
- 100 mm
- O 00.00
- 50 mm·
- 60 mm;

338 ..

Чему равно передаточное отношение u_{12} , если межцентровое расстояние $O_1O_2 = 80$ мм и $O_2P = 20$ мм?


	0,2
\bigcirc	3;
\bigcirc	-3.

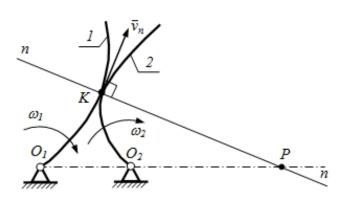
 $\begin{array}{c}
-3, \\
0.4
\end{array}$

-0,2;

339

Чему равно межцентровое расстояние O_1O_2 , если передаточное отношение u_{12} = 0.3 и O_1P =100 мм?

О 80 мм.


2 60 мм;

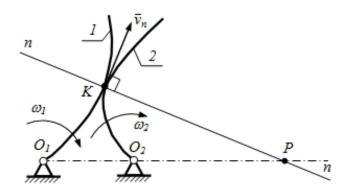
50 мм;40 мм;

9 70 мм ;

340 ..

Чему равно межцентровое расстояние O_1O_2 , если передаточное отношение u_{12} = 0.25 и O_2P = 20 мм?

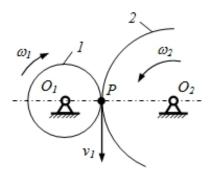
О 80 мм.


О 40 мм;

50 мм;60 мм;

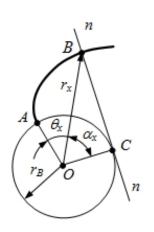
70 mm:

341 ,,


Чему равно межцентровое расстояние O_1O_2 , если передаточное отношение u_{12} = 0,3 и O_1P =120 мм?

80 mm.
40 mm;
50 mm;
60 mm;

342 ...


Чему равна угловая скорость ω_2 , если в полюсе зацепления P линейная скорость первого колеса v_1 =0,8м/с, O_1P =20 мм и O_1O_2 =100 мм?

0 40 m/c 0 5 m/c 0 10m/c 0 0,5 m/c 0 25 m/c

343 .,.

Какое выражение является уравнением эвольвенты окружности?

11.05.2016

$$\bigcirc_{x} = \cos \alpha_{x} - \alpha_{x}$$

$$r_{x} = \frac{r_{e}}{tg\alpha_{x}}$$

$$\bigcirc_{x} = tg\alpha_{x} + \alpha_{x}$$

$$r_{x} = \frac{r_{e}}{\cos \alpha_{x}}$$

$$\bullet_{x} = tg\alpha_{x} - \alpha_{x}$$

$$\bullet_{x} = tg\alpha_{x} - \alpha_{x}$$

$$r_{x} = \frac{r_{e}}{\cos \alpha_{x}}$$

$$\vdots$$

$$\bullet_{x} = tg\alpha_{x} - \alpha_{x}$$

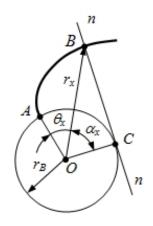
$$r_{x} = \frac{r_{e}}{\cos \alpha_{x}}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

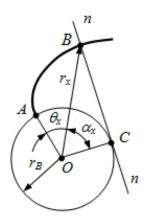
$$\theta_{x} = tg\alpha_{x} + \alpha_{x}$$


$$\vdots$$

$$\theta_{x} = tg\alpha_{x}$$

$$\vdots$$

344 ...


Чему равен радиус r_b основной окружности эвольвенты, если $\alpha_x + \theta_x = 0.8$ рад и BC = 24 мм?

- О 6 мм;
- 18 мм;
- 12 MM
- 24 MM
- 🖲 30 мм .

345 ...

Чему равен угол $\alpha_x + \theta_x$ в уравнении эвольвенты окружности, если радиус $r_b = 30$ мм и BC = 18мм?

- 0,6рад;
- 0,9 рад; 4/3 рад; 0,5 рад;

346 Чему равно передаточное отношение внешнего цилиндрического зацепления с неподвижными осями колес?

$$\bigcirc ...$$

$$u_{12} = -\frac{z_1}{z_2};$$

$$\bullet ...$$

$$u_{12} = -\frac{z_2}{z_1};$$

$$\bigcirc ...$$

$$u_{12} = -\frac{1}{z_1}$$

$$\vdots$$

$$\bigcirc , ,
 u_{12} = \frac{z_2 - z_1}{z_2}.$$

$$\bigcirc . , ,
 u_{12} = \frac{z_1}{z_2};$$

$$u_{12} = \frac{z_1}{z_2};$$

$$\bigcap_{u_{12}} = \frac{z_2}{z_1};$$

347 Чему равно передаточное отношение внутреннего цилиндрического зацепления с неподвижными осями колес? z2>z1

$$\bigcirc \dots$$

$$u_{12} = -\frac{z_1}{z_2};$$

$$\bigcirc \dots$$

$$u_{12} = -\frac{z_2}{z_1};$$

$$u_{12} = \frac{z_2 - z_1}{z_2}$$

$$u_{12} = \frac{z_1}{z_2};$$

$$u_{12} = \frac{z_2}{z_1};$$

$$u_{12} = \frac{z_2}{z_1};$$

348 Как располагается делительная окружность нулевого зубчатого колеса при ее нарезании рейкой?

\bigcirc	не касается делительной прямой инструмента;
\bigcirc	касается делительной окружности инструмента;
	kacaется делительной прямой инструмента;
\bigcirc	не касается делительной окружности инструмента
\bigcirc	пересекает делительную окружность инструмента

349 Как располагается делительная окружность положительного зубчатого колеса при ее нарезании рейкой?

\sim	
\bigcirc	пересекает делительную окружность инструмента.
\bigcirc	касается делительной окружности инструмента;
\bigcirc	касается делительной прямой инструмента;
\bigcirc	не касается делительной окружности инструмента
	не касается делительной прямой инструмента;

350 Как располагается делительная окружность отрицательного зубчатого колеса при ее нарезании рейкой?

\bigcirc	не касается делительной прямой инструмента;
\bigcirc	касается делительной прямой инструмента;
	пересекает делительную прямую инструмента;
\bigcirc	не касается делительной окружности инструмента
\bigcirc	пересекает делительную окружность инструмента.

351 Как располагается делительная окружность нулевого зубчатого колеса при ее нарезании долбяком?

\bigcirc	пересекает делительную окружность инструмента.
	kacaется делительной окружности инструмента;
\bigcirc	касается делительной прямой инструмента;
\bigcirc	не касается делительной окружности инструмента;
\bigcirc	не касается делительной прямой инструмента;

352 Как располагается делительная окружность положительного зубчатого колеса при ее нарезании долбяком?

	пересекает делительную окружность инструмента.
_	
\bigcirc	касается делительной окружности инструмента;
	не касается делительной окружности инструмента;
\bigcirc	касается делительной прямой инструмента;
	не касается лелительной прямой инструмента:

353 Как располагается делительная окружность отрицательного зубчатого колеса при ее

нарезании долояком?		
не ккасапере	есекает делительную окружность инструмента асается делительной окружности инструмента; пется делительной прямой инструмента; есекает делительную прямую инструмента; асается делительной прямой инструмента;	
354 Чему ран	вна высота ножки зуба hf нормального цилиндрического колеса? (m – модуль зубьев).	
 2,25 0,5n 0,75 1,0n 1,25 	n; om; n om;	
355 Чему ран	вна полная высота зуба h нормального цилиндрического колеса? (m – модуль зубьев).	
0,5n 2,25 1,25 1,0n 0,75	5 m. 5m; n	
356 Радиус к	акой окружности цилиндрического зубчатого колеса определяется по формуле?	
нача Впад Осно	ительной; альной ; цин зубьев ; овной . тупов зубьев ;	
	сакой окружности нормального цилиндрического колеса с внешними зубьями и по формуле r=0,5m(z-2,5)?	
основысвпад	альной ; овной. тупов зубьев; цин зубьев : ительной ;	
	сакой окружности нормального цилиндрического колеса с внешними зубьями и по формуле r=0,5m(z+2,5)	
осно О дели О нача О осно	цин зубьев; ительной; альной ; овной ; тупов зубьев:	
359 Радиус какой окружности нормального цилиндрического колеса с внутренними зубьями определяется по формуле $r=0.5m(z-2.5)$		
осно О дели	тупов зубьев : овной. ительной; цин зубьев;	

Выступо:	в зубьен

360 К чему приводит уменьшение межцентрового расстояния цилиндрического зацепления с внешними зубьями?

\bigcirc	увеличению начальной окружности;
\bigcirc	уменьшению передаточного отношения
\bigcirc	увеличению передаточного отношения;
	уменьшению начальной окружности;
\bigcirc	увеличению угла зацепления.

361 К изменению какого параметра приводит изменение межцентрового расстояния цилиндрического зубчатого зацепления с неподвижными осями колес?

_	
	угла зацепления:
\bigcirc	передаточного отношения;
\bigcirc	модуля зубьев;
\bigcirc	шага зубьев;
\bigcirc	толщины зубьев по делительной окружности:

362 К изменению положения какой окружности колес зацепления приводит изменение межцентрового расстояния?

\bigcirc	окружность выступов зубьев;
\bigcirc	основная окружность.
	начальная окружность;
\bigcirc	делительная окружность;
\bigcirc	окружность впадин зубьев;

363 Как называются соприкасающиеся окружности зубчатых колес зацепления, перекатывающиеся друг по другу без скольжения?

```
    окружность выступов зубьев;
    окружность впадин зубьев;
    основная окружность.
    начальная окружность;
    делительная окружность;
```

364 По какой формуле вычисляется радиус rb основной окружности нормального цилиндрического зубчатого колеса?

365 По какой формуле вычисляется радиус га окружности выступов зубьев цилиндрического нормального колеса с внешними зубьями?

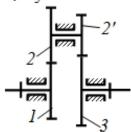
$$r_a = 0.5m(z + 2).$$
 $r_a = 0.5m(z - 2.5);$
 $m_a = 0.5mz\cos\alpha;$
 $m_a = 0.5mz\cos\alpha;$
 $m_a = 0.5m(z - 2);$
 $m_a = 0.5mz;$

366 По какой формуле вычисляется радиус rf окружности впадин зубьев цилиндрического нормального колеса с внешними зубьями?

$$r_f = 0.5m(z+2)$$
.
 $r_f = 0.5m(z-2)$;
 $r_f = 0.5mz\cos\alpha$;
 $r_f = 0.5mz\cos\alpha$;
 $r_f = 0.5m(z-2.5)$;
 $r_f = 0.5mz$;

367 По какой формуле вычисляется радиус га окружности выступов зубьев цилиндрического нормального колеса с внутренними зубьями?

$$\bigcap_{r_a = 0,5m(z+2).}$$
 $r_a = 0,5m(z-2);$
 $r_a = 0,5m(z-2);$
 $r_a = 0,5m(z+2,5);$
 $r_a = 0,5m(z-2,5);$
 $r_a = 0,5mz;$

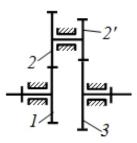

368 По какой формуле вычисляется радиус rf окружности впадин зубьев цилиндрического нормального колеса с внутренними зубьями?

$$r_f = 0.5m(z-2);$$
 $r_f = 0.5mz;$
 $r_f = 0.5mz;$
 $r_f = 0.5m(z+2).$
 $r_f = 0.5m(z-2.5);$
 $r_f = 0.5m(z-2.5);$

$$r_f = 0.5m(z+2.5);$$

369.

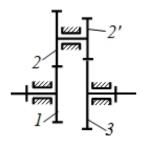
Чему равно передаточное отношение u_{13} в зубчатом механизме с неподвижными осями колес, если $z_1=10$; $z_2=20$; $z_{2'}=11$; $z_3=66$?


- **-12**;
- 8;
- 12
- 10. ○ -8·

370.

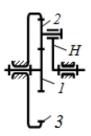
- **-12**
- 12;
- 8;
- -8;

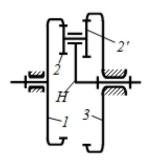
371.


Чему равно число зубьев z_3 в зубчатом механизме с неподвижными осями колес, если передаточное отношение $u_{13}=6,\ z_1=10\ ;\ z_2=20\ ;\ z_{2'}=10\ ?$

- 50;
- 10;
- 30
- 0 40;

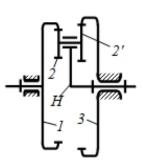
372 ..


Чему равно число зубьев z_1 в зубчатом механизме с неподвижными осями колес, если передаточное отношение $u_{13}=6,\ z_2=20\ ;\ z_{2'}=10$ и $z_3=30$?


- 20;
- **Ŏ** 50.
- $\begin{array}{c} \checkmark & 40; \\ \frown & 30; \end{array}$

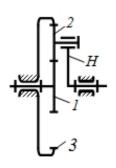
373.

По какой формуле определяется целое число E, обеспечивающее условие сборки данного планетарного механизма? (k – чило сателлитов)

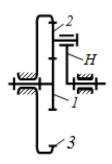

Чему равно число зубьев z_3 , обращенного планеторного механизма $(\omega_H=0)$, если передаточное отношение $u_{13}^H=1.5$, $z_1=100$, $z_{2'}=15$?

- 90
- \bigcirc 25
- $\bigcap_{20} 12;$
- 72.

375 ..


Чему равно число зубьев z_2 , обращенного планеторного механизма $(\omega_H=0)$, если передаточное отношение $u_{13}^H=1.5$, $z_1{=}100$, $z_{2'}=15$?

- 25:
- 30;
- 72;


376 .

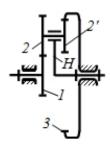
Чему равно передаточное отношение u_{23}^H , обращенного механизма $(\omega_H=0)$ в данном планеторном механизме, если z_1 =24 и z_3 =84?

377 ...

Условие соседства данного планетарного механизма?

$$(z_2 - z_1) \sin \frac{\pi}{k} > z_{2'} + 2$$
.

$$(z_2 - z_1) sin \frac{\pi}{k} > z_2 + 2$$
;

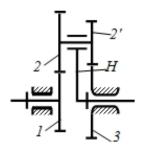

$$(z_1 + z_2) \sin \frac{\pi}{k} > z_2 + 2;$$

$$(z_1+z_2)\sin\frac{\pi}{k}>z_2-2$$
;

$$(z_2 - z_1) \sin \frac{\pi}{k} > z_2 - 2$$
;

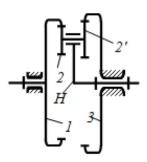
378 .

Условие соседства данного планетарного механизма?



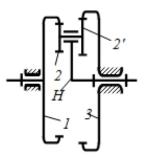
$$\bigcap \dots (z_1 + z_2) \sin \frac{\pi}{k} > z_2;$$

$$(z_2 - z_1) \sin \frac{\pi}{k} > z_{2'} + 2$$


379 ..

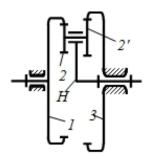
Условие соседства данного планетарного механизма?

380 .


Условие соседства данного планетарного механизма?

$$\bigcap ... (z_1 - z_2) \sin \frac{\pi}{k} > z_{2'}.$$

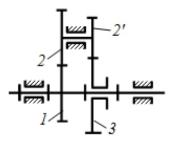
381 ..


Чему равно передаточное отношение u_{H1} данного планетарного механизма, если $z_1 = 75$; $z_2 = 15$; $z_3 = 72$ и модули всех колес одинаковы?

-10; -8; 8; 10.

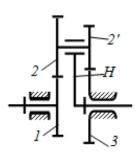
382 ...

Чему равно передаточное отношение u_{IH} данного планетарного механизма?



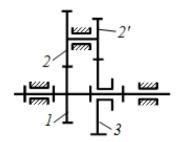
$$u_{lH} = l - \frac{z_2 \cdot z_3}{z_1 \cdot z_2};$$

$$u_{lH} = l + \frac{z_2 \cdot z_3}{z_1 \cdot z_2};$$


383 ..

Чему равно число зубьев z_3 в зубчатом механизме с неподвижными осями колес, если передаточное отношение z_1 = 20, z_2 = 30; $z_{2'}$ = 10?

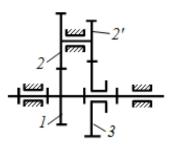
384 ...


Чему равно передаточное отношение u_{lH} данного планетарного механизма, если $z_1 = z_2 = 12$, $z_2 = 60$ и модули всех колес одинаковы ?

385 ...

386 ...

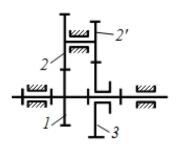
Чему равно передаточное отношение u_{23} в зубчатом механизме с неподвижными осями колес, если z_1 = 20, z_2 = 30; $z_{2'}$ = 10?



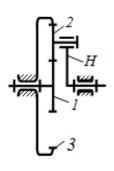
	;4
\bigcirc	1,5
\bigcirc	6.
\bigcirc	5;

 \bigcirc 3;

387 ...


Чему равно число зубьев $z_{2'}$ в зубчатом механизме с неподвижными осями колес, если передаточное отношение u_{13} =8, z_1 = 25 ; z_2 = 50?

84.
30;
70;
60;
15:


388 ...

Чему равно число зубьев z_1 в зубчатом механизме с неподвижными осями колес, если передаточное отношение u_{13} =8, $z_{2'}$ = 18; z_3 = 72?

389 ...

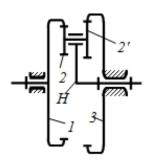
Чему равно передаточное отношение данного планетарного механизма?

$$u_{lH} = l - \frac{z_3}{z_l};$$

$$\bigcirc \dots$$

$$u_{lH}=l-\frac{z_3}{z_2}\,;$$

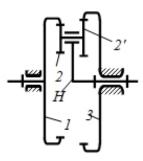
$$u_{lH} = l + \frac{z_3}{z_l};$$


390 .,.,.

Чему равно передаточное отношение u_{lH} данного планетарного механизма, если $z_1 = z_2 = 12$, $z_2 = 60$ и модули всех колес одинаковы?

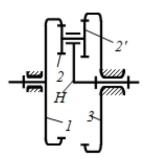
○ -25.

391 ...


Чему равно передаточное отношение u_{IH} данного планетарного механизма?

$$\begin{array}{c} \bullet \quad . \\ & u_{IH} = l - \frac{Z_2 \cdot Z_3}{Z_1 \cdot Z_2} \; ; \\ \bigcirc \dots \\ u_{IH} = l - \frac{Z_2 \cdot Z_3}{Z_1 \cdot Z_2} \; . \\ \bigcirc \dots \\ u_{IH} = l + \frac{Z_2 \cdot Z_3}{Z_1 \cdot Z_2} \; ; \\ \bigcirc \dots \\ u_{IH} = l - \frac{Z_1 \cdot Z_2}{Z_2 \cdot Z_3} \; ; \\ \bigcirc \dots \\ u_{IH} = l + \frac{Z_1 \cdot Z_2}{Z_2 \cdot Z_3} \; ; \\ \end{array}$$

392


Чему равно передаточное отношение u_{H1} данного планетарного механизма, если $z_1 = 75$; $z_2 = 15$; $z_3 = 72$ и модули всех колес одинаковы?

◯ −10

Условие соседства данного планетарного механизма?

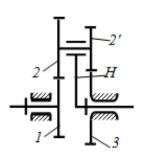
$$(z_1 - z_2) sin \frac{\pi}{k} > z_2 + 2;$$

$$(z_1 + z_2) sin \frac{\pi}{k} > z_2 - 2;$$

$$...$$

$$(z_1 - z_2) sin \frac{\pi}{k} > z_2.$$

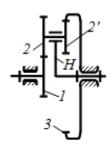
$$(z_1 - z_2) sin \frac{\pi}{k} > z_2.$$


$$(z_1 - z_2) sin \frac{\pi}{k} > z_2 - 2;$$

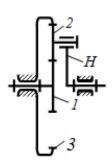
$$...$$

$$(z_1 - z_2) sin \frac{\pi}{k} > z_2;$$

394 ...


Условие соседства данного планетарного механизма?

$$(z_1 + z_2) sin \frac{\pi}{k} > z_2 + 2;$$


395 ...

Условие соседства данного планетарного механизма?

396

Условие соседства данного планетарного механизма?

$$\bigcirc \dots$$

$$(z_1 + z_2) \sin \frac{\pi}{k} > z_2 - 2;$$

$$\bigcirc \dots$$

$$(z_2 - z_1) \sin \frac{\pi}{k} > z_{2'} + 2.$$

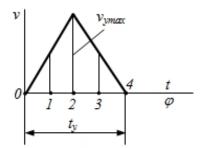
397 Какое из нижеследующих выражает внутренние силы материальной системы?

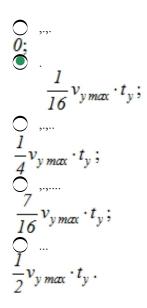
	силы взаимодействия материальных точек системы
\bigcirc	только силы тяжести точки системы
\bigcirc	Силы взаимодействия материальных точек вне системы
\bigcirc	силы тяжести точек вне системы
\bigcirc	силы материальных точек вне системы действующие на эту систему

398 Чему равняется главный момент внутренних сил к данному центру действующие к материальной точки ?

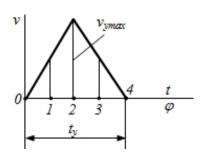
	нулю 0.
\bigcirc	сумме значении внутренних сил
\bigcirc	главному вектору внешних сил
\bigcirc	главному вектору внешних сил со знаком минус
\bigcirc	не равняется нулю

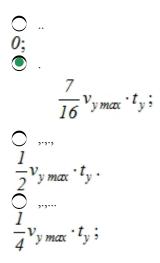
399 Какими динамическими характеристиками выражается движение материальной точки?


- силой и кинетической энергией количеством движения и силой силой и ускорением скорость и ускорение
- количеством движения и кинетической энергией


400 Какой из фазовых углов кулачка может быть равной нулю?

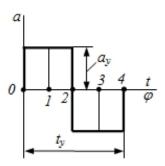
401 ...


Чему равно перемещение в поступательно движущегося толкателя кулачкового механизма в положении "I"?



402 ..

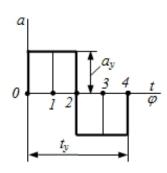
Чему равно перемещение в поступательно движущегося толкателя кулачкового механизма в положении "3"?



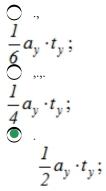
11.05.2016

$$\frac{\bigcirc}{16} v_{y max} \cdot t_y;$$

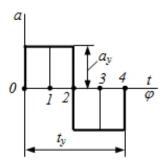
403 ...

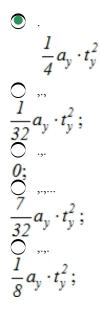

Чему равна скорость v поступательно движущегося толкателя кулачкового механизма в положении "0"?

$$\bigcirc_{a_y \cdot t_y}^{\cdots}$$

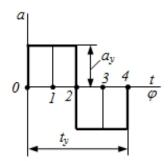

404 ...

Чему равна скорость v поступательно движущегося толкателя кулачкового механизма в положении "2"?

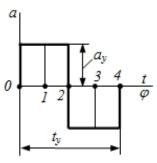

$$\bigcirc_{a_y \cdot t_y}$$
 $\bigcirc_{a_y \cdot t_y}$
 $\bigcirc_{a_y \cdot t_y}$

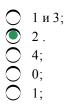

11.05.2016

405 ,.,.

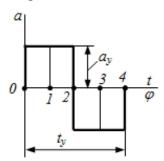

Чему равно перемещение s поступательно движущегося толкателя кулачкового механизма в положении "4"?

406 ...

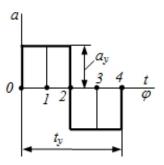

Чему равно перемещение s поступательно движущегося толкателя кулачкового механизма в положении "2"?



$$\begin{array}{c}
\bigcirc ,..., \\
\frac{7}{32}a_{y} \cdot t_{y}^{2}; \\
\bigcirc ,.... \\
\frac{1}{4}a_{y} \cdot t_{y}^{2}; \\
\bullet \\
\frac{1}{8}a_{y} \cdot t_{y}^{2}; \\
\bigcirc ,... \\
\frac{1}{32}a_{y} \cdot t_{y}^{2}; \\
\bigcirc ,... \\
0;
\end{array}$$

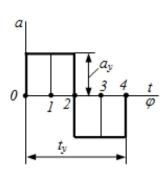

407 ,.,

В каком положении скорость толкателя будет максимальной?


В каком положении перемещение толкателя будет максимальной?

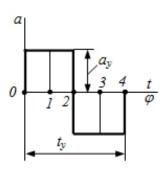
\bigcirc	2.
\bigcirc	1 и 3
\bigcirc	1;
\bigcirc	0;
	4:

409


Чему равна максимальная скорость v_{max} поступательно движушегося остроконечного толкаткля, если его ускорение a_y =0,5 $\left(\text{м/c}^2\right)$ и полное время фазы удаления t_y =0,8c.?

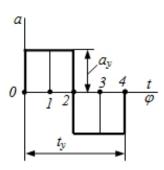
0; 0,2 0,01; 0,1; 0,04;

410 ...


Чему равна скорость в "3" положении поступательно движушегося остроконечного толкаткля, если его ускорение $a_y=0,5\left(\mathrm{m/c^2}\right)$ и полное время фазы удаления $t_y=0,8\mathrm{c.?}$

0,01; 0,1;

411 ...


Чему равна скорость в "4" положении поступательно движушегося остроконечного толкаткля, если его ускорение $a_y=0,5\left(\mathrm{m/c^2}\right)$ и полное время фазы удаления $t_y=0,8\mathrm{c.?}$

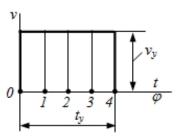
0; 0,2 0,01 0,1

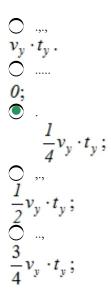
412 ...


Чему равно перемещение s в "l" положении поступательно движушегося остроконечного толкаткля, если его ускорение a_y = $0,5 \left(\text{м/c}^2 \right)$ и полное время фазы удаления t_v =0,8с.?

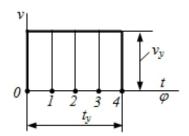
0,04 м.0;0,2 м;0.01 м;0,1 м;

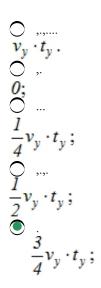
413 ...


Чему равно перемещение s в "4" положении поступательно движушегося остроконечного толкаткля, если его ускорение a_y = $0, 5 \left(\text{м/c}^2 \right)$ и полное время фазы удаления t_y =0, 8с.?



- О,04м.
- 0;
- 0,07м;
- O,01m;
- 0.08м;


414 ,.,.

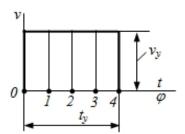

Чему равно перемещение s поступательно движушегося толкателя в "l" положении?

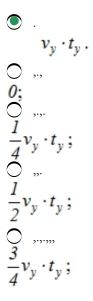
Чему равно перемещение s поступательно движушегося толкателя в "3" положении?

416 .,.,.,

$$\bigcirc_{v_{y} \cdot t_{y}} .$$

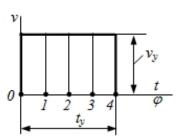
$$\bigcirc_{0};$$

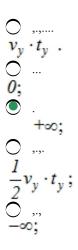

$$0;$$

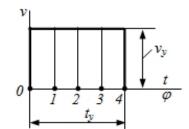

$$\frac{1}{4}v_{y} \cdot t_{y};$$

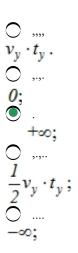
$$\frac{1}{2}v_{y} \cdot t_{y};$$

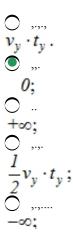
$$\frac{3}{4}v_{y} \cdot t_{y};$$


Чему равно перемещение s поступательно движушегося толкателя в "4" положении?

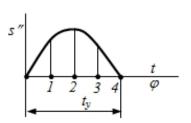



418 ,.,.


Чему равно ускорение a поступательно движушегося толкателя в " θ " положении?



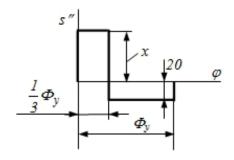
Чему равно ускорение a поступательно движушегося толкателя в "4" положении?



420

421

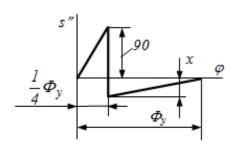
В каком положении толкателя его ускорение равно нулю?

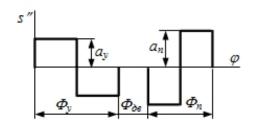

О 1 и 3О 0;О 1;О и 4

\bigcirc	непрерывно линейное ускорение.
\bigcirc	косинусоидальное ускорение;
	синусоидальное ускорение;

постоянное скорость;постоянное ускорение;

423 ,..,


Чему равен x на диаграмме аналога ускорения толкателя $s''(\varphi)$ кулачкового механизма?


- 40;

424 ,.,.

Чему равен x на диаграмме аналога ускорения толкателя $s''(\varphi)$ кулачкового механизма?

Какое должно соблюдаться условие, чтобы на диаграмме перемещения толкателя $s(\varphi)$ конец фазы приближения оказалось на оси φ ?

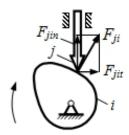
426 .,.,.

$$color= \frac{s'}{s_0 - s}.$$

$$color= \frac{s'}{s_0 - s}.$$

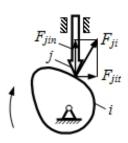
$$tgv = \frac{s'}{s_0 + s};$$

$$color= \frac{s' - e}{s_0};$$


$$tgv = \frac{s' - e}{s_0};$$

$$tgv = \frac{s' - e}{s_0 + s};$$

$$tgv = \frac{s' - e}{s_0 + s};$$


427 ...

Чему равен угол давления v в данном кулачковом механизме, если $F_{ji} = 100\,\mathrm{N}$ и $F_{jit} = 0$?

- 428 .,.

Чему равен угол давления v в данном кулачковом механизме, если $F_{ji} = 100\,\mathrm{N}$ и $F_{jit} = 100$ N?

- 429

$$\bigcirc_{min}, \dots, \dots$$

$$r_{min} + s > s''$$

$$\bigcirc_{min}$$

$$v_{max} > v_b$$
;

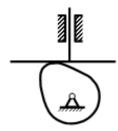
$$r_{min} + s > -(s'')$$

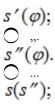
$$v_{max} < v_b$$
;

$$\bigcap_{r_{min}+s>s'};$$

430 ,.,

$$\bigcirc$$
 ,.... $s'(\varphi)$; \bigcirc ,.... $s''(\varphi)$. \bigcirc . \bigcirc


431 .,..


Из какого условия определяется минимальный радиус кулачка r_{min} в данном кулачковом механизме? (φ - угол поворота кулачка, s — перемещение толкателя)

432 ...

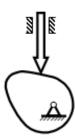
При графическом решении из какого условия определяется радиус кулачка r_{min} в данном кулачковом механизме? (φ - угол поворота кулачка, s — перемещение толкателя)

433

\bigcirc	максимальное перемещение h толкателя
	эксцентриситета е;

закона движения толкателя; фазового угла Фп; фазового угла Фу;

434 ...


От какого параметра независит максимальный радиус кулачка r_{min} в данном кулачковом механизме?

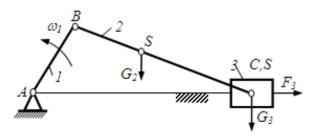
\bigcirc	фазового угла Фу ;
\bigcirc	фазового угла Фп ;
\bigcirc	максимальное перемещение h толкателя
\bigcirc	закона движения толкателя;
	угла давления V.

435 ...437

К чему может привести увеличение угла давления у в данном кулачковом механизме?

\sim	=
\bigcirc	увеличению габарита кулачка;
\bigcirc	уменьшению габарита кулачка;
\bigcirc	выпуклости профиля кулачка;
	нарушению выпуклости профиля кулачка
	улучшению режима работы механизма

436 Какие параметры соответствуют динамической модели механизмов с поступательной движущимся входным звеном?



$$F_n, m_n, s_1;$$
 \bigcirc ,...
 $M_n, J_n, s_1;$
 \bigcirc ...
 $F_n, J_n, \varphi_1.$
 \bigcirc ,...
 $M_n, J_n, \varphi_1;$

- 437 Какие параметры в динамике механизмов определяются из условия равенства мощностей?
 - приведенный момент и приведенная масса:
 - приведенная сила и приведенный момент;
 - приведенная сила и приведенная масса;
 - приведенный момент и приведенный момент инерции;
 - приведенная масса и приведенный момент инерции;

438 ..

По какой формуле определяется суммарная мощность P сил, действующих на механизм?

$$\bigcirc \dots, \\ P = -F_3 \cdot v_C - G_3 \cdot v_C + G_2 \cdot v_{S_2} \cdot \cos \left(\overline{G_2} \stackrel{\wedge}{,} \overline{v_{S_2}} \right).$$

$$\bullet \dots$$

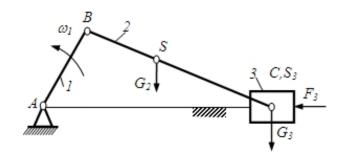
$$P = -F_3 \cdot v_C + G_2 \cdot v_{S_2} \cdot \cos \left(\overline{G_2} \stackrel{\wedge}{,} \overline{v_{S_2}} \right);$$

$$\bigcirc \dots$$

$$P = F_3 \cdot v_C + G_2 \cdot v_{S_2} \cdot \cos \left(\overline{G_2} \stackrel{\wedge}{,} \overline{v_{S_2}} \right);$$

$$\bigcirc \dots$$

$$P = -F_3 \cdot v_C + G_3 \cdot v_C + G_2 \cdot v_{S_2} \cdot \cos \left(\overline{G_2} \stackrel{\wedge}{,} \overline{v_{S_2}} \right);$$


$$\bigcirc \dots$$

$$P = F_3 \cdot v_C + G_3 \cdot v_C + G_2 \cdot v_{S_2} \cdot \cos \left(\overline{G_2} \stackrel{\wedge}{,} \overline{v_{S_2}} \right);$$

$$\bigcirc \dots$$

$$P = F_3 \cdot v_C + G_3 \cdot v_C + G_2 \cdot v_{S_2} \cdot \cos \left(\overline{G_2} \stackrel{\wedge}{,} \overline{v_{S_2}} \right);$$

По какой формуле определяется суммарная мощность P сил, действующих на механизм?

$$O ::$$

$$P = -F_{3} \cdot v_{C} + G_{3} \cdot v_{C} + G_{2} \cdot v_{S_{2}} \cdot cos\left(\overline{G}_{2}, \overline{v}_{S_{2}}\right);$$

$$O ::$$

$$P = -F_{3} \cdot v_{C} + G_{2} \cdot v_{S_{2}} \cdot cos\left(\overline{G}_{2}, \overline{v}_{S_{2}}\right);$$

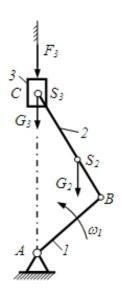
$$O :::$$

$$P = -F_{3} \cdot v_{C} - G_{3} \cdot v_{C} + G_{2} \cdot v_{S_{2}} \cdot cos\left(\overline{G}_{2}, \overline{v}_{S_{2}}\right);$$

$$O ::$$

$$P = F_{3} \cdot v_{C} + G_{3} \cdot v_{C} + G_{2} \cdot v_{S_{2}} \cdot cos\left(\overline{G}_{2}, \overline{v}_{S_{2}}\right);$$

$$O ::$$


$$P = F_{3} \cdot v_{C} + G_{3} \cdot v_{C} + G_{2} \cdot v_{S_{2}} \cdot cos\left(\overline{G}_{2}, \overline{v}_{S_{2}}\right);$$

$$O ::$$

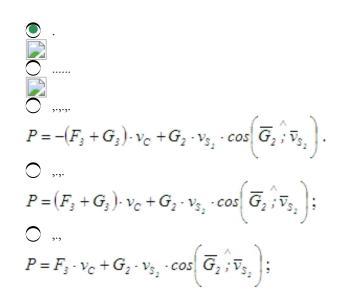
$$P = F_{3} \cdot v_{C} + G_{2} \cdot v_{S_{2}} \cdot cos\left(\overline{G}_{2}, \overline{v}_{S_{2}}\right);$$

440 .,.

По какой формуле определяется суммарная мощность P сил, действующих на механизм?

$$\bigcirc ,, P = (F_3 - G_3) \cdot v_C + G_2 \cdot v_{S_2} \cdot cos(\overline{G}_2 ; \overline{v}_{S_2});$$

$$\bigcirc$$


11.05.2016

$$\begin{split} P &= - \left(F_{3} + G_{3} \right) \cdot \nu_{C} + G_{2} \cdot \nu_{S_{2}} \cdot cos \left(\overline{G}_{2} \stackrel{\wedge}{,} \overline{\nu}_{S_{2}} \right); \\ \bigcirc & ... \\ P &= \left(F_{3} + G_{3} \right) \cdot \nu_{C} + G_{2} \cdot \nu_{S_{2}} \cdot cos \left(\overline{G}_{2} \stackrel{\wedge}{,} \overline{\nu}_{S_{2}} \right). \\ \bigcirc & ... \\ P &= \left(F_{3} + G_{3} \right) \cdot \nu_{C} + G_{2} \cdot \nu_{S_{2}} \cdot cos \left(\overline{G}_{2} \stackrel{\wedge}{,} \overline{\nu}_{S_{2}} \right); \\ \bigcirc & ... \\ \bigcirc & ... \\ \bigcirc & ... \\ D &= \left(F_{3} + G_{3} \right) \cdot \nu_{C} + G_{2} \cdot \nu_{S_{2}} \cdot cos \left(\overline{G}_{2} \stackrel{\wedge}{,} \overline{\nu}_{S_{2}} \right); \\ \bigcirc & ... \\ \bigcirc & ... \\ \bigcirc & ... \\ \end{matrix}$$

441

По какой формуле определяется суммарная мощность P сил, действующих на механизм?

442 ...

443 ,,

444 Какой формулой определяется угловая скорость входного звена при использовании метода Виттенбауера?

445 Какой максиимальный угол с осью и Jn образует касательная к диаграмме Виттенбауера?

446

200(1/c)192 (1 / c) 208 (1 /c) 250 (1/c) 450 (1/c)

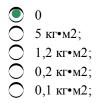
452 По какой формуле определяется приведенная к поступательно движущемуся входному звену масса Mn?

453 По какой формуле определяется приведенный к поступательно движущемуся входному звену сила Fn?

 $454~\Pi$ о какой формуле определяется приведенный к валу вращающегося звена момент инерций Jn?

455 Чему равен приведеный к вращающемуся входному звену момент сил Mn?

456 ...



	Неопределенна
Ō	0;
\bigcirc	0,1кг;
\bigcirc	5кг;
\bigcirc	1,0кг;

457 ...

\bigcirc	Неопределенна
\bigcirc	0,1кг;
\bigcirc	0;
\bigcirc	1,0кг;
	5 кг

458

459 ...

\bigcup	5 кг•м2;
\bigcirc	0;
	0,2 кг•м2:
\bigcirc	0,1 кг•м2;
\bigcirc	1,2 кг•м2;

460

461 ,.,

466 Какие параметры динамики механизмов определяются из условия равенства кинетических

ускорения входного звена; скорости выходного звена; ускорения выходного звена; положения входного звена:

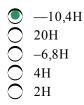
1.05.2016	
энергий?	
00•00	приведенная сила и приведенный момент; приведенная сила и приведенная масса; приведенная масса и приведенный момент инерции: приведенный момент и приведенная масса; приведенный момент и приведенный момент инерции;
467 От ч	его зависит приведенный к входному звену момент Мп сил, действующих на механизм?
00000	скорости выходного звена; ускорения входного звена; скорости входного звена; положения входного звена: ускорения выходного звена;
468 От ч	его зависит приведенный к входному звену сила Fn от сил, действующих на механизм?
00000	скорости выходного звена; ускорения входного звена; скорости входного звена; положения входного звена: ускорения выходного звена;
469 .,,	
	<pre> ''' ''' '''' </pre>
470 .,.	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

471 ,.,

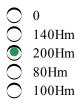
приведенная сила:приведенный момент инерции;

476

8,5Hm



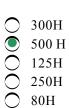
477 Каким может быть максимальное число неизвестных реакций связей приложенных к вырезанному узлу плоской фермы, при определении усилий в стержнях фермы способом вырезания узлов..



478

479 ,.,.

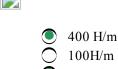
480 ,.,.


481 ..

482 ..

		· ,·
		·
	\bigcirc	,,,
		,,,,,,

484	Как	можно назвать центр масс системы другими словами????
	\sim	центр тяжести системы
	\bigcirc	центр середины системы центр движения системы инерционный центр системы
	\bigcirc	центр движения системы
		инерционный центр системы
	\circ	центр гравитации системы
485	Где і	находится центр тяжести тела имеющего ось симметрии?
		D.
		Вне оси симметрии
		на оси симметрии
	\bigcirc	Около центра симметрии
	\bigcirc	На расстоянии от координатных осей
	\bigcirc	На расстоянии от оси симметрии
40.6		
486		
486		
486		
486		0.38
486		
486		0.38 1,0
486	•0000	0.38 1,0 4,24
486	•00000	0.38 1,0 4,24 1,5
486	•••••	0.38 1,0 4,24
	00000	0.38 1,0 4,24 1,5
407	•00000	0.38 1,0 4,24 1,5
	00000	0.38 1,0 4,24 1,5
	0 0000 ::	0.38 1,0 4,24 1,5 2,5
	0 0000 ::	0.38 1,0 4,24 1,5 2,5
	0 0000 ::	0.38 1,0 4,24 1,5 2,5
	0 0000 ::	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735
	0 0000 ::	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153
	00000	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735
487	•00000 : 00•00	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153
487	0 0000 ::	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153
487	•00000 : 00•00	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153
487	<pre>●00000 :: 00●00 :: (</pre>	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153 4,1
487	<pre>●00000 :: 00●00 :: (</pre>	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153 4,1
487	<pre>●00000 :: 00●00 :: (</pre>	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153 4,1 200 H•M 300H•M
487	•00000 : 00•00	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153 4,1 200 H•M 300H•M 100H•M
487	<pre>●00000 :: 00●00 :: (</pre>	0.38 1,0 4,24 1,5 2,5 0,2 1,432 0.735 0,153 4,1 200 H•M 300H•M


11.05.2016

494 .,.,.

496 ...

497 Покажите условие равновесия пространственной систем сходящих сил.

498 ,.

499	Какс	й вектор считается векторным моментом силы относительно точки.
	00000	связанный свободно-скользящий скалярный свободный скользящий
500	Вка	ком случае момент силы относительно оси равен нулю.
	00000	Линия действия силы пересекает ось. Сила и ось находятся на одной плоскости. Линия действия силы перпендикулярна оси Z и не пересекается. Сила и ось не параллельны. Линия действия силы не пересекает ось.
501	Пока	ажите геометрические условия равновесия пространственной системы сил.

502 Показать координаты центра параллельных сил.

503 ...

504 ...

 $\alpha = 60^{\circ}$

α=20°

α= 15°

 $\alpha = 45^{\circ}$

505

F = 7H

F = 15H

F = 18H

F = 4H

506 ...

R = 20H

R = 30H

R = 50H

R = 40H

R = 15H

F = 660H

F = 250H

F=400H

F = 523H

F = 660H

508

Rb = 35H

Rb=18H

Rb = 40H

Rb = 70H

Rb = 60H

509 ...

Rb=10kH

Rb = 15kH

Rb=7kH

Rb=8kH

Rb=9,5kH

1.05.2016	
510	
0000	Ma = 120κHm Ma = 100κHm Ma = 78κHm Ma = 90κHm Ma = 80κHm
511	
0.000	Ya=30 kH Ya=25 κH Ya=40 kH Ya=19 kH Ya=22 kH
512 Дейс	твие силы на тело сколькими элементами характеризуется
0.000	5 3 1 2 4
той же то	е силы приложенные к телу в одной точке, имеют равнодействующую приложенную в очке и диагональю параллелограмма, построенного на этих силах, как на сторонах»-иома и вместо упущенного написать соответствующее слово.
	3 аксиома , - изображаемую 2 аксиома ,- равными 1 аксиома ,- изображается 4 аксиома ,- численно определяемую 5 аксиома, - выражаемую
многоуго	я равновесия системы сходящихся сил необходимо и достаточно, чтобы силовой ольник, построенный из этих сил был » в место пропущенного написать гвующее слово и это, какое условие равновесия.
0.000	«Неустойчивый»- графоаналитическое «Замкнут» - геометрическое «Замкнут» - аналитическое «Открыт» - геометрическое «Открыт» - аналитическое
515	
0.000	цилиндрический шарнирно - подвижная жесткая заделка цилиндрический шарнирно- неподвижная сферический шарнирно - неподвижная сферический шарнирно - подвижной

 50 H 86,6 H -86,6 H -50 H 70,7 H
517 «Момент равнодействующей плоской системы сходящихся сил относительно любого центра равен алгебраической сумме моментов слагаемых сил относительно того же центра» — эта, какая теорема?
 Эйлера Вариньона. Пуансо теорема о трех силах теорема о сложении сил относительно координационных осей
518 В каком данном способе движется точки? берётся за главной координатой дуга.
 не в каком способе в координатном способе в векторном способе в обычном способе в сферическим координатном движении
519 Если движение точки дано способе, тогда от какого параметра зависит координата?
от расстояния; от периодической координата; от скорости; от ускорения; ;от времени
520 Как зависит ускорение точки от скорости?
521 Вектор скорости как направляется, если точка движется криволинейной траекторией?
в любом направлении в вогнутом направлении к траектории в выпуклом направлении к траектории в касательном направлении к траектории в нормальном направлении к траектории
522 Как направляется вектор ускорения в криволинейном движении точки?

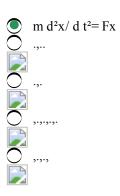
4.05.0040	
1.05.2016 В выпуклом направлении к траектории В касательном направлении к траектории В любом направлении В направлении ускорения точки В вогнутом направлении к траектории	
523 Точка движется со скоростью \overline{v} по кругу , у которого радиус R. Чему равняется ускорение точки ?)
524 Чему равняется проекция ускорения на координатной оси)	
525 Как выражается вектор скорости в естественном способе движения ?	

526 Как направляется нормальное ускорение точки?

_	
\bigcirc	по направлению перпендикулярна к главному
	по направлении к главной нормали
\bigcirc	по касательной
\bigcirc	по направлению только по радиус вектору
\bigcirc	в любом направлении

527 Какой величиной является количество движения материальной точки?

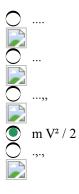
8700 N; 7800 N; 10800 N:


534 Дано материальная точка с массой 1 кг и со скоростью 5м/сек. Чему равняется количество движения материальной точки?		
 5kqm²/san² 5 kqm/san 1kqm/san 2kqm 4kqm/san 		
535 Дано материальная точка с массой 5 кг и со скоростью 1м/сек. Чему равняется количество движения материальной точки?		
 5 kq•m²/san² 1kq•m/san 5kq•m/san 2kq•m 4kq•m/san 		
536 Дано материальная точка с массой $8\ \mathrm{kr}$ и со скоростью $1\mathrm{m/cek}$. Чему равняется кинетическая энергия материальной точки?		
1 kq•m/san 5 kq•m²/san² 4kq•m/san 2 kq•m 5 kq•m/san		
537 Горизонтальная платформа грузом с массой 1 кг двигается вертикально вниз с ускорением 9,81 m/san². Найти давление груза на платформу.		
 5,81 N; 7,96 N; 0; 3,92 N; 4,59 N; 		
538 Горизонтальная платформа грузом с массой 2 кг двигается вертикально вниз с ускорением 5 m/san² . Найти давление груза на платформу. (принять g=10 m/san²)		
 50 N; 5.81 N; 10N; 0; 4.59 N; 		
539 Материальная точка с массой 2 кг движется прямолинейно со скоростью $4\ t^2\ m/san$. Найти модуль силы действующий на материальную точку , если $t=3$ сек ?		
 ◆ 48 N; → 12 N; → 24 N; → 34 N; → 18 N; 		

540 Чему равняется сила тяжести с массой 0,1 кг (измерение с N-ом)

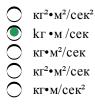
552 ...

,.,


553 Как выражается уравнение прямолинейного движения материальной точки?

554 Какая величина количество движения материальной точки?

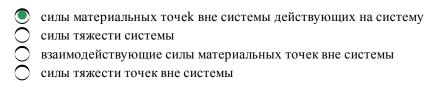
\bigcirc	постоянная
\bigcirc	скалярная
\bigcirc	обыкновенная
	векториальная
\bigcirc	сложная


555 Как выражается кинетическая энергия материальной точки?

556 Какой величиной является кинетическая энергия материальной точки?

\bigcirc	постоянной
\bigcirc	непостоянной
	скалярной
\bigcirc	векториальной
\bigcirc	регулярной

557 Укажите единицу измерения количество движения.


558 Найдите единицу измерения кинетической энергии.

11.05.2016 \(\text{Kr}^2 \cdot \text{M}^2 / \cext{cek}^2 \\ \text{Kr} \cdot \text{M/cek} \\ \text{Kr}^2 \cdot \text{M/cek} \\ \text{Kr} \cdot \text{M}^2 / \cext{cek}^2 \\ \text{Kr}^2 \cdot \text{M/cek} \\ \text{M} \text{Cek}^2 \\ \text{Kr}^2 \cdot \text{M/cek} \\ \text{M} \text{Cek} \text{Cek}^2 \\ \text{M} \text{Cek} \text{Cek} \\ \text{Constant M/cek} \\ Cons
559 Единица измерения кинетической энергии?
Джоуль;НьютонВатт;Вольт;Ампер;
560 Как выражается элементарный импульс силы
),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
561 Какая формула выражает импульс силы?
562 Как выражается работа силы?
♠ A○ B○ C○ D○ E
563 Чему равняется работа силы?
 умножения проекции силы F на ось и на расстояние S умножения силы F на расстояние S умножения силы F на скорость V умножения силы F на ускорения W умножения силы F на время t

564 Что означает слово инерция?		
 □ просто движение □ движение материальной точки по инерции □ движение регулярное □ движение постоянное □ движение не регулярное 		
565 Какой величиной является сила инерции?		
регулярной векториальной скалярной постоянной не постоянной		
566 Из каких условий определяется постоянные интегрирования решая дифференциальное уравнение движения материальной точки?		
 из начальных условий движения. из последних условий движения из любых условий движения из условий дифференциального уравнения эти постоянные изначально известны 		
567 Может ли, зависеть действующая сила на материальную точку от ее скорости?		
 может быть только постоянной Может быть не может быть зависит только от времени зависит только от ускорений материальной точки 		
568 Какое из нижеследующих формул выражает математическую формулу теоремы об изменении кинетической энергии материальной точки?		
569 Как можно выразит основной закон динамики завися от радиус-вектора?		

570 Какое из нижеследующих выражает внутренних сил действующие на материальную систему?

571 Показать векториальную выражение касательной инерционной силы.

572 Показать дифференциальную формулу теоремы изменения количество движения материальной точки.

573 На материальную точку действует постоянная сила F.Показать для этого случая формулу теоремы изменения количество движения.

574 Какой формулой выражается основное уравнение несвободного тела материальной точки?

	<i>y-y-</i> ;
\bigcup	••••
	,
Сака	ЯИ
$\overline{}$	

575 Какая из формул выражает импульс силы?

576 Как можно выразить элементарную работу силы действующую на материальную точку завися от элементарной перемещений этой материальной точки?

\bigcirc	dA=2Fvds
\bigcirc	dA=Fds/dt
\bigcirc	dA=Fvds
$\overline{\bigcirc}$	dA=Ftgα·ds
	$dA = Fcosa \cdot ds$

577 В каком случае проекция по бинормалью, на материальную точку будет равняться нулю?

\bigcirc	тогда kогда v=const
\bigcirc	только прямолинейном движение
	во всех случаях
\bigcirc	только в особых случаях
\bigcirc	тогда, kогда w=const

578 Какие из нижеследующих выражает внешнею силу действующие на материальную систему?

\bigcirc	только силы тяжести точек системы
\bigcirc	взаимодействующие силы материальных точек системы
\bigcirc	взаимодействующие силы материальных точек
\bigcirc	силы тяжести точек вне системы
	действующие силы материальных точек вне системы на эту систему

579 Какой буквой обозначают радиуса вектора материальной точки М?

\bigcirc	v
	W
\bigcirc	R
	r
\bigcirc	m

580 Чем	лу равняется главный вектор действующих сил на материальную систему?
	нулю 0 умножению значений внутренних сил не равняется нулю главному вектору внешних сил сумме значений внутренних сил
581 Гла систему	вный момент относительно центра действующих внутренних сил на материальную т:
	сумме значений внутренних сил главному вектору внешних сил не равняется нулю нулю. главному вектору внешних сил со знаком минус
582 Ука	жите единицу измерения кинетической энергии
	KГ• M²/ CeK²
583 Чем	лу равняется изменение количества движения материальной точки?
	производной силы от времени работе силы тяжести работе силы тяготения Импульсу силы нулю
584 Hai	йдите единицу измерение работы.
) джоуль) Ватт) Ньютон) м/сек²) м/сек
585 Ука	жите единицу измерения количества движения
) кг•м / сек) Н•сек) Н*м) кг•м2) кг*м/сек²
586 Ука	жите единицу измерения импульса силы
	 H*c H H*м κr*м/сек κr*м/сек²

587 Сколько видов имеет силы, действующие на материальные точки системы
$\overset{\sim}{\bigcirc}$ $\overset{\sim}{6}$
$ \overset{\smile}{\bigcirc} 5 $
© 2 ○ 6 ○ 5 ○ 4 ○ 3
$\overset{\smile}{\bigcirc}$ 3
588 Какое из нижеприведенных выражает силы, действующие на материальных точек системы
Силы активные и инерции
С силы реакции и тяжести
Силы инерции и реакции
© силы активные и реакции
С силы тяжести и инерции
589 Что бывает, известны у активных силах?
О только значение
значение ровняется нулю
ничего не известно
значение, направление
только направление
590 Как можно назвать центр масс системы другими словами?
С центр середины системы
С центр движения системы
Инерционный центр системы
центр тяжести системы
С центр гравитации системы
591 Чему равняется момент количества движения относительно оси, если момент от действующей силы относительно оси равняется нулю, (my(F)=0)
регулярная
не регулярная не постоянная
<u> </u>
равняется нулю Постоянная
592 Чему равняется значение момент количества движения относительно центра, если момент действующей силы относительно центра равняется нулю?
равняется нулю
Постоянная
е постоянная
не регулярная
регулярная
593 Какое решение имеет уравнение
\bigcirc $y = a \sin(kt + a + b)$
$\sum_{k=0}^{\infty} x = a \sin(kt + \alpha + \beta)$
$ = x = \sin(kt + \alpha) $
$\sum_{\alpha} x = \sin(kt + \alpha)$
$\sum_{x=a}^{\infty} x = a(kt+\alpha)$
\bigcirc x=a sink t

594 Како	е из нижеследующих уравнений показывает гармоническую колебанию движения?
	x= a sinkt
$\widetilde{\bigcirc}$	$x = \sin(kt + \alpha)$
$\tilde{\bigcirc}$	$x = a \sin(kt + \alpha \beta)$
	$x=asin(kt+\alpha)$
$\tilde{\circ}$	$x = a (kt + \alpha)$
595 Ч _{ему}	у равняется изменение кинетической энергии?
opo iem	у разылетел изменение кинети теской эпертии:
	работу действующей силы на материальную точку
Ō	сумме действующей силы
Q	производную действующей силы
Q	модулю действующей силы на материальную точку
\circ	мощностью действующей силы на материальную точку
596 Какс	й формулой выражается элементарный импульс силы?
	F· dt
	mF
	mV
\bigcirc	F·dr
	ериальная точка движется со скоростью, которая по значению и направлению ная. Чему будет равняться инерционная сила материальной точки?
\bigcirc	mF
$\tilde{\bigcirc}$	$\mathrm{mV^2/2}$
	0
$\tilde{\bigcirc}$	F·dt
Ŏ	$\mathrm{mF^2}$
	е из нижеприведенных выражений является моментом количества движения вьной точки?
	$m\cdot V\cdot r$
\sim	rxmV
	r mV
$\tilde{\circ}$	nmV
599 Звен	о плоского рычажного механизма, совершающее вращательное движение, называется
\bigcirc	кулисой.
$\tilde{\bigcirc}$	кривошипом;
Ŏ	ползуном;
Ŏ	шатуном;
	коромыслом;
600 Кин	ематической парой называют
$\overline{}$	POO OTROTTA POPULA
\simeq	все ответы верны два соприкасающихся звена;
\simeq	два соприкасающихся звена, жесткое соединение двух деталей;
	подвижное соединение двух соприкасающихся звеньев;
\sim	две детали, соединенные подвижно.
\mathcal{O}	ADV ACTUME, COORTINUE HOADHANIO.

601 Степень подвижности плоского механизма вычисляют по формуле ...

608 Вектор силы трения направлен противоположно вектору звена.

 $d = m \cdot z$ d = m/z $d = m \cdot z^2$ $d = m \cdot z^2/2$

изготовлено, одинаковыми являются

11.05.2016

164/177

622 При силовом расчете механизма заданы моменты сил
С все ответы верны
опротивления;
инерции;
трения.
нет правильного ответа
623 Зацепление двух зубчатых колес, при котором угловые скорости колес имеют одинаковые знаки, называется
односторонним;
внутренним;
внешним;
О однообразным;
положительным.
624 Зубчатые механизмы, понижающие угловую скорость вращения выходного вала по сравнени с входным, называются
С вариаторами;
все ответы верны
генераторами
мультипликаторами;
редукторами;
625 Диаграмму ускорений выходного звена механизма получают путем графического диаграммы скоростей этого звена.
вычитания ординат;
интегрирования.
626 Модуль цилиндрического прямозубого колеса через диаметр делительной окружности этого колеса определяется по формуле
\bigcap m=dz
\bigcap m=2d/z
с все ответы верны
\bigcirc m=d/z
\bigcirc m=2dz
627 Замыкание кулачкового механизма осуществляют способом.
силовым;
механическим;
нет правильного ответа
все ответы верны
фрикционным.
628 Внутренние силы – это силы
ет правильного ответа
движущие;
полезного сопротивления;

11.05.2016		
О тяжести звен	њев;	
взаимодейст	вия звеньев.	
620 При миноможни		
029 При кинематиче	еском анализе механизма строят планы	
моментов си	л;	
пет правильн	ного ответа	
все ответы в	ерны	
скоростей;		
Сил.		
630 Звено плоского	механизма, совершающее поступательное движение, называется	
ползуном		
шатуном;		
кулисой.		
коромыслом		
С кривошипом		
631 Равномерность	движения механизма оценивается коэффициентом	
нет правильн	ного ответа	
• неравномерн		
динамичнос		
равномернос		
Движения.	711,	
движения.		
632 Процесс движег	ния машинного агрегата состоит из, установившегося движения и выбе	га
разбега;		
нет правильн	ного ответа	
все ответы в		
О пускового мо		
<u> </u>	шегося движения;	
633 Примером прос	транственного механизма может служить	
_	арнирного четырехзвенника;	
<u> </u>	-ползунный механизм;	
нет правильн		
все ответы в		
🖲 коническая з	убчатая передача	
634 Передаточное о	тношение редуктора по абсолютной величине	
больше един	ищы;	
равно едини		
меньше един		
нет правильн		
все ответы в		
_		
	10 мм полная высота зуба нулевого цилиндрического прямозубого	
эвольвентного колес	са внешнего зацепления равна	
	IAPA OTRATA	
○ нет правильн○ 31.4 мм;	1010 018014	
31,4 mm;		
22,5 mm;		

\bigcirc	25 мм.
$\tilde{\bigcirc}$	все ответы верны
J	•
636 Сила	а инерции ползуна направлена направлению ускорения точки его центра массы.
\bigcirc	по
\bigcirc	нет правильного ответа
\bigcirc	все ответы верны
\bigcirc	перпендикулярно.
	противоположно;
637 При	кинематическом исследовании механизма определяют
\frown	СИЛЫ
	скорости; нет правильного ответа
\simeq	
\sim	все ответы верны
\bigcirc	моменты сил.
638 Mex	анизм, движение точек всех подвижных звеньев которого осуществляется в одной или
	вных плоскостях, называют
11 p1110	
\circ	линейным;
$\tilde{\bigcirc}$	нет правильного ответа
$\tilde{\bigcirc}$	симметричным.
	плоским;
$\tilde{\bigcirc}$	пространственным;
O	
639 Фор	мулой строения обладает механизм класса
	WATTANTA TA
\circ	четвертого.
000	нет правильного ответа
0000	нет правильного ответа первого;
00000	нет правильного ответа первого; второго;
00000	нет правильного ответа первого;
О О О ● 640 Пара	нет правильного ответа первого; второго;
640 Пара	нет правильного ответа первого; второго; третьего; третьего; метры, являющиеся кинематическими характеристиками механизма,- это
640 Пара	нет правильного ответа первого; второго; третьего; метры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма;
640 Пара	нет правильного ответа первого; второго; третьего ; мметры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма.
640 Пара	нет правильного ответа первого; второго; третьего ; метры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение:
640 Пара О	нет правильного ответа первого; второго; третьего ; мметры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции;
640 Пара	нет правильного ответа первого; второго; третьего ; метры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение:
О • • • • • • • • • • • • • • • • • • •	нет правильного ответа первого; второго; третьего ; мметры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции;
О • • • • • • • • • • • • • • • • • • •	нет правильного ответа первого; второго; третьего ; мметры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции; класс механизма; пление двух зубчатых колес, при котором угловые скорости колес имеют положные знаки, называется
О • • • • • • • • • • • • • • • • • • •	нет правильного ответа первого; второго; третьего ; мметры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции; класс механизма; пление двух зубчатых колес, при котором угловые скорости колес имеют положные знаки, называется внешним;
О • • • • • • • • • • • • • • • • • • •	нет правильного ответа первого; второго; третьего ; иметры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма передаточное отношение: силы инерции; класс механизма; пление двух зубчатых колес, при котором угловые скорости колес имеют положные знаки, называется внешним; положительным.
О • • • • • • • • • • • • • • • • • • •	нет правильного ответа первого; второго; третьего ; иметры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции; класс механизма; пление двух зубчатых колес, при котором угловые скорости колес имеют положные знаки, называется внешним; положительным. внутренним;
О • • • • • • • • • • • • • • • • • • •	нет правильного ответа первого; второго; третьего ; метры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции; класс механизма; пление двух зубчатых колес, при котором угловые скорости колес имеют положные знаки, называется внешним; положительным. внутренним; однообразным;
О • • • • • • • • • • • • • • • • • • •	нет правильного ответа первого; второго; третьего ; иметры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции; класс механизма; пление двух зубчатых колес, при котором угловые скорости колес имеют положные знаки, называется внешним; положительным. внутренним;
641 Заце противог	нет правильного ответа первого; второго; третьего ; метры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции; класс механизма; пление двух зубчатых колес, при котором угловые скорости колес имеют положные знаки, называется внешним; положительным. внутренним; однообразным;
641 Заце противог	нет правильного ответа первого; второго; третьего ; метры, являющиеся кинематическими характеристиками механизма,- это степень подвижности механизма; масса механизма. передаточное отношение: силы инерции; класс механизма; пление двух зубчатых колес, при котором угловые скорости колес имеют положные знаки, называется внешним; положительным. внутренним; односбразным; односторонним;

649 Момент инерции звена механизма измеряется в

ускорений; скоростей;

все ответы верны

11.05.2016	
\circ	все ответы верны
\circ	KΓ•M
\bigcirc	KT/M
	нет правильного ответа
	$K\Gamma^{\bullet}M^2$
650 Стат	ического уравновешивания звеньев достигают, используя
\bigcirc	маховики.
	противовесы;
Ŏ	пружины;
\circ	все ответы верны
$\overline{\bigcirc}$	нет правильного ответа
651 Прог	цесс движения машинного агрегата состоит из разбега, установившегося движения и
	выбега;
$\tilde{\bigcirc}$	нет правильного ответа
$\tilde{\bigcirc}$	все ответы верны
Ŏ	пускового момента.
Ŏ	неустановившегося движения;
652 У му	льтипликатора передаточное число по абсолютной величине
	меньше единицы.
\bigcirc	нет правильного ответа
\bigcirc	все ответы верны
	больше единицы;
\bigcirc	равно единице;
653 Mexa	аническая передача – это механизм, предназначенный для передачи движения.
\bigcirc	поступательного;
Ŏ	сложного плоско-параллельного.
\circ	нет правильного ответа
	все ответы верны
	вращательного;
	цину зуба S нулевого цилиндрического прямозубого эвольвентного колеса через шаг Р ычислить по формуле
	S=P/2;
Ŏ	$S=2P/\pi$
Ŏ	$S=P/\Pi$.
\circ	все ответы верны
\circ	нет правильного ответа
	отрицательном смещении зуборезного инструмента по отношению к заготовке колеса зуба по делительной окружности
	уменьшается;
	нет правильного ответа
\sim	все ответы верны
\sim	увеличивается.
$\widetilde{\bigcirc}$	остается неизменной;

656 При модуле m=10 мм шаг по делительной окружности нулевого цилиндрического эвольвентного прямозубого колеса равен
 Все ответы верны 22,5 мм; 15,7 мм. нет правильного ответа 31,4 мм;
657 Звено плоского рычажного механизма, совершающее качательное (колебательное) движение, называется
кулисой. шатуном; ползуном; кривошипом; коромыслом;
658 Звенья низшей кинематической пары соприкасаются
 нет правильного ответа по линии; по касательной; по поверхности; в точке.
659 Структурной группой Асура называется кинематическая цепь, которая после присоединения элементов ее крайних кинематических пар к стойке имеет степень подвижности, равную
□ четырем.□ единице;□ трем;□ нулю;□ двум;
660 Кинематической характеристикой зубчатой передачи являются
 толщины зубьев. угловые скорости колес; числа зубьев колес; модуль передачи; межосевое расстояние
661 Сателлиты, водило, центральные подвижные зубчатые колеса – это звенья зубчатого механизма.
 все ответы верны простого; планетарного; дифференциального. нет правильного ответа
662 Параметр зубчатого колеса, не зависящий от смещения инструмента при нарезании зубьев, - это
все ответы верны

669 Момент сил инерции звена механизма измеряется в

000	$K\Gamma^{\bullet}M$ $K\Gamma/M$ $H^{\bullet}M^2$	
$\tilde{\circ}$	все ответы верны	
	совпадении частоты вынужденных колебаний механизма с частотой собственных ій возникает	
0.000	нет правильного ответа резонанс; диссонанс; вибрация; амортизация.	
671 Сбал	пансированный ротор при изменении угловой скорости входного звена	
0000	все ответы верны остается уравновешенным; перестает быть уравновешенным; меняет положение центра масс. нет правильного ответа	
672 Разм	еры и массу маховика уменьшают	
00000	устанавливая маховик на тихоходный вал; повышая угловую скорость вращения входного звена; понижая угловую скорость вращения входного звена. все ответы верны устанавливая маховик на более быстроходный вал;	
673 Проі	цесс движения машинного агрегата состоит из разбега, и выбега.	
00000	нет правильного ответа неустановившегося движения; пускового момента; установившегося движения. все ответы верны	
674 Для реализации движения выходного звена с длительными остановками (паузами) можно использовать механизмы.		
00000	нет правильного ответа зубчатые; червячные; кулачковые;. винтовые.	
	менение конструктивных мер замыкания кулачковых механизмов силовым или ческим методом имеет целью	
00000	уменьшение износа рабочих поверхностей предотвращение соударений кулачка с толкателем; уменьшение количества звеньев и кинематических пар; обеспечение постоянного контакта кулачка с толкателем; снижение потерь на трение;	
676 Vron	граненнения всегла равен 20 градусам у зволь вентной пилинлинеской перелани	

00000	все ответы верны прямозубой; косозубой; нулевой зубчатой. нет правильного ответа			
677 Положительное смещение зуборезного инструмента при нарезании зубчатого колеса голщину зуба по делительной окружности.				
	нет правильного ответа не влияет на; увеличивает; уменьшает. все ответы верны			
00000	одвижное (условно неподвижное) звено на схемах механизма называется нет правильного ответа основанием; корпусом; стойкой станиной. ъя высшей кинематической пары соприкасаются			
00000	по линии или в точке; нет правильного ответа все ответы верны по касательной по поверхности;			
680 Клас О О О	характером соприкосновения звеньев; все ответы верны числом звеньев, входящих в соединение. числом ограничений на свободу относительного движения звеньев; видом движения звеньев;			
681 Стег •	все ответы верны W=1; W>1; W<1. W=0;			
682 Назначаемый коэффициент смещения зуборезного инструмента при числе зубьев нарезаемого колеса Z				
00000	нет правильного ответа равен нулю; отрицателен; положителен; равен единице.			

683 Диаграмму перемещений толкателя кулачкового механизма получают путем графического ...

диаграммы скорости толкателя.		
\circ	вычитания ординат;	
	интегрирования.	
	нет правильного ответа	
Ŏ	сложения ординат;	
Ŏ	дифференцирования;	
	овая скорость коромысла, точка которого расположена от оси вращения на расстоянии $0,2$ ст линейную скорость $2\mathrm{m/c}$, равна с .	
\bigcirc	все ответы верны	
	0,4	
	10:	
Ŏ	0,1.	
Ö	нет правильного ответа	
685 Зако	н движения толкателя кулачкового механизма без удара называют	
\bigcirc	нет правильного ответа	
	линейным;	
	синусоидальным;	
	косинусоидальным.	
\circ	все ответы верны	
686 Сил	овой расчет механизма с учетом сил инерции звеньев называют	
\bigcirc	нет правильного ответа	
	силовым;	
	кинетостатическим;	
	инерционным;	
\circ	уравновешивающим.	
687 Уран	вновешивающую силу при силовом расчете механизма прилагают к	
\circ	все ответы верны	
	входному;	
Ŏ	выходному;	
Ŏ	любому.	
Ŏ	нет правильного ответа	
688 Рыч	аг Н.Е.Жуковского" – это план скоростей механизма, повернутый на	
\bigcirc	все ответы верны	
Ŏ	30°	
Ŏ	45°	
$\tilde{\bigcirc}$	60°	
left	90°	
689 Неуравновешенность ротора вызывает		
\bigcirc	все ответы верны	
	повышение динамических нагрузок на опоры;	
	неравномерность его вращения;	
\simeq	уменьшение угловой скорости его вращения;	
\sim	увеличение угловой скорости его вращения,	

690 Равномерность движения входного звена повышают, звеньев.		
\circ	все ответы верны	
	увеличивая массы отдельных;	
Ŏ	увеличивая скорость вращения;	
	уменьшая количество;	
\bigcirc	увеличивая количество.	
691 Скорость входного звена при установившемся движении машинного агрегата		
\bigcirc	нет правильного ответа	
	меняется периодически;	
Ŏ	остается постоянной;	
Ŏ	достигает минимального значения	
\circ	все ответы верны	
692 При	силовом расчете механизма применяют метод	
0)2 Hpn	силовом расчете мехапизма применяют метод	
Õ	нет правильного ответа	
	кинетостатики;	
Ŏ	планов скоростей;	
\circ	планов ускорений;	
\circ	кинематических диаграмм.	
693 Для зубчатого колеса и зуборезного инструмента, с помощью которого это колесо изготовлено, одинаковыми являются		
\bigcirc	все ответы верны	
$\tilde{\bigcirc}$	диаметры окружностей выступов;	
Ŏ	диаметры окружностей впадин;	
	модуль.	
\bigcirc	нет правильного ответа	
694 Воспроизведение практически любого закона движения выходного звена позволяют обеспечить механизмы.		
	все ответы верны	
\sim	кулисные;	
$\widetilde{\bigcirc}$	кривошипно-ползунные;	
$\widetilde{\bigcirc}$	храповые;	
	кулачковые.	
695 Вект	гор силы инерции звена направлен центра масс звена.	
\bigcirc	все ответы верны	
\bigcirc	по направлению вектора скорости;	
\bigcirc	противоположно вектору скорости;	
\bigcirc	по направлению вектора ускорения;	
	противоположно вектору ускорения;	
696 При работе кулачкового механизма может отсутствовать фаза толкателя.		
\bigcirc	нет правильного ответа	
$\widetilde{\bigcirc}$	удаления;	
$ \widetilde{\bigcirc} $	дальнего стояния;	
Ŏ	возвращения.	
Ŏ	все ответы верны	

597 Маховик в механизмах		
00000	нет правильного ответа уменьшает амплитуду периодических колебаний скорости начального звена; увеличивает амплитуду периодических колебаний скорости начального звена; уменьшает вибрацию при работе механизма; изменяет направление вращения входного звена.	
	Р нулевого цилиндрического эвольвентного прямозубого колеса по делительной сти через толщину зуба по этой окружности можно вычислить по формуле	
	все ответы верны $P=0,5~S;$ $P=2S;$ $P=0,75~S.$ нет правильного ответа	
•	положительном смещении зуборезного инструмента по отношению к заготовке колеса зуба по делительной окружности	
	нет правильного ответа остается неизменной уменьшается; увеличивается. все ответы верны	
700 При	кинетостатическом расчете механизма определяют	
00000	нет правильного ответа силы. перемещения; ускорения; скорости;	