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Abstract
Methods of fracture mechanics enable a new approach to the design of structures, ensuring prevention of crack develop-
ment. The plane problem of mechanics of contact fracture for the hub of a friction pair during operation is studied. It is
accepted that near the rough friction surface, the hub has a rectilinear crack. A criterion and a method for solving the
inverse problem of the mechanics of contact fracture on definition of the function of displacements of external contour
points of the hub of a friction pair with regard to temperature drop and inequalities of the contact surface in friction pair
components is given. The found function of displacements of the external contour points of the hub provides an increase
of the load-bearing capacity of the hub of a friction pair. The problem of prevention of the fracture of the hub of a fric-
tion pair with allowance for the real friction surface was first posed and then solved.

Keywords
Friction pair, temperature, rough friction surface, thermal stresses, closure of crack faces, function of displacements of
external contour of hub

1. Introduction

The life of a friction pair [1,2] is determined by the efficiency of the hub and the stress distribution in the
zones of interaction of the friction pair details. The practice of exploitation of the friction pairs of oil-
field equipment and of transport vehicles shows that at repeated reciprocating motion of the plunger,
fracture of the hub of a friction pair occurs on the spots of actual touch in thin surface layers by micro
cracking, within which the hub ‘‘lives’’ the substantial part of its life. In connection with this, at the stage
of design of new constructions of movable conjugations, it is necessary to carry out limit analysis of con-
tact pair details to establish that the would-be initial cracks allocated adversely will not grow to critical
sizes and will not cause fracture during its design life. The size of the initial minimal crack should be con-
sidered as a design characteristic of the material.
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It should be taken into account that the bushing internal contour and the plunger external contour
are nearly circular. As is known, real treated surfaces are never absolutely smooth, but always has
micro- or macroscopic irregularities (of technological character) forming the rough surface. Despite the
extremely small sizes of such irregularities, they affect the different service properties of tribo-
conjugation [3–6].

In the contemporary stage of engineering the optimal design of the friction pair, details providing an
increase of efficiency of friction pairs are of great value [7–31]. The theoretical analysis on the determi-
nation of interference of the jointed cylinder, providing minimization of the abrasive wear of the friction
unit, was carried out by Gadzhiev and Mirsalimov [7]. In Gadzhiev and Mirsalimov [8], the interference
fit of the jointed cylinder, providing the absence of initial wear, was determined. The model of the fric-
tion rough surface was used. In Peigney [9], a method was developed to determine the asymptotic state
reached by a solid continuum subjected to wear and submitted to acyclic loading. The main idea is to
express the stabilized state as the solution of a minimization problem. In Mirsalimov [10,11], the prob-
lems of minimization of stress and the thermal state of contact pair bushing were investigated. Chu [12]
aimed to develop an algorithm for designing the optimum shape of the slider bearing and pressure dis-
tribution using an inverse method. Based on a model of a rough friction surface, the microgeometry of
a friction surface that ensures a uniform distribution of contact pressure is theoretically analyzed by
Mirsalimov [13]. A plane problem of fracture mechanics for a circular cracked disk fitted onto a rotat-
ing shaft is considered by Mirsalimov [14]. The interference between the disk and the shaft, providing
minimization of fracture parameters (stress intensity factors) of the disk, is studied. Chu et al. [15] aimed
to develop an algorithm for designing the piston ring profile and pressure distribution using an inverse
method. Alyaqout and Elsharkawy [16] introduced an approach for designing the optimum shape of a
slider bearing using an inverse method. The proposed approach utilizes a sequential quadratic program-
ming algorithm to minimize friction subject to the load and center of pressure requirements specified. In
Mirsalimov [17], the minimax criterion is used to determine the microgeometry of friction surfaces to
achieve the minimal contact pressure in the bush–plunger friction pair. According to the lubrication the-
ory and the reliability design theory, the optimum design of the hyperboloidal sliding bearing based on
the reliability constraints was put forward by Xu et al. [18]. In Huang et al. [19], the optimal clearance
formula of the piston friction pair for a water hydraulic pump was established based on the thermal bal-
ance principle. Simulations and experimental research were carried out on its influence factors; the
results show that a minimum thermal clearance exists in each of the piston friction pair and its initial
clearance must be greater than this one, otherwise it will be destroyed. Hussain and Sonpimple [20]
describe the development of the evolutionary algorithm for the optimal design of the friction clutch.
The Genetic Algorithm is applied for the optimum design of the friction clutch. The main objective
function was to minimize the axial force between the clutch plate and the pressure plate, using the dia-
meter ratio and the coefficient of friction as design variables and the peripheral velocity as the design
constraint. Theoretical analysis of the definition of the negative allowance providing minimization of
failure parameters of a drawing die reinforced with a holder was carried out on the minimax criterion
by Mirsalimov and Veliyev [21]. Paredes et al. [22] define a method for the optimization of design para-
meter tolerances. The general architecture of the proposed method is identical to that of the robust
design reference method proposed by Taguchi, but its content is different as the tolerances are consid-
ered as functions to be maximized. The possibilities offered by this method are illustrated through its
use in the preliminary design of a cold-expanded bushing. Based on the minimax criterion, the theoreti-
cal definition of the displacement function for hub external contour points, providing the minimization
of contact pressure in the hub–shaft friction pair, is executed by Mirsalimov and Akhundova [23]. The
generalized cumulative model of wear is employed to solve the tribocontact problem for plain bearings
where journals have small lobing (ovality, trilobing, tetralobing) in paper [24]. The case of mixed-area
contact interaction between the shaft and the bush is examined. It was found that lobing causes a signif-
icant increase in the contact pressures, depending on the extent of shaft out-of-roundedness and the type
of lobing. To enhance the wear resistance of the star-wheel, an approach for optimization of the star-
wheel profile was developed by Huang et al. [25]. In Abdo [26], a mathematical model is developed to
correlate the volumetric wear of materials with the dissipation energy in sliding contacts. The wear of
contacting materials originating from the energy loss due to the friction process in the contact is studied.
To reduce the friction of a piston ring, an approach comprising the inverse method and the sequential
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quadratic programming algorithm was proposed by Zhang et al. [27]. In Mirsalimov and Akhundova
[28], based on the minimax criterion and the model of the friction rough surface, a theoretical definition
is developed for the displacement function of the hub external contour that provides the minimization
of abrasive wear in the hub–plunger friction pair. Zhang et al. [29] aimed at proposing an approach for
optimizing the shape of the top piston ring face for minimum friction force using an inverse method. In
Mirsalimov and Akhundova [30], the theoretical analysis of the displacement function for external con-
tour points of the hub of a frictional pair, providing the absence of the initial wear and tear, which takes
place toward the end of the bedding period, is carried out. A criterion and a method for solving the
inverse problem of fracture mechanics on definition of the function of displacements of the external
contour points of the hub of a friction pair with regard to temperature drop in the friction pair are given
by Mirsalimov and Akhundova [31].

In the above studies on the optimization of friction pairs, the presence of a crack in the hub of the
friction pair was not taken into account. In Mirsalimov and Akhundova [31], the problem of the opti-
mization of friction pairs in the presence of a rectilinear crack in the hub is first considered in a simpli-
fied formulation. In Mirsalimov and Akhundova [31] it is assumed that the friction surface is absolutely
smooth. In fact, the real friction surface is rough and contains technological irregularities. In the present
work, in contrast to Mirsalimov and Akhundova [31], it is taken into account that the friction surface is
rough.

The solution of a mechanics problem on the definition of such a displacement function of the external
contour points of the hub at which the stress field formed by it would retard the crack propagation in
the hub, is of considerable interest.

2. Formulation of the problem

Let us consider the stress–strain state of the hub of a friction pair. During operation of the friction pair
at repeatedly reciprocating motion of the plunger, there happens force interaction between the contact-
ing surfaces of the hub and the plunger, and there arise friction forces that reduce the wear of the conju-
gation materials. To determine the contact pressure, it is necessary to consider [1,2] a wear-contact
problem on pressing of a plunger into the surface of the hub weakened by a rectilinear crack.

Let a plunger with elastic parameters G1 and m1 be pressed to the internal surface of the hub with elas-
tic parameters G (shear modulus) and m (Poisson ratio) at some beforehand unknown area. It is consid-
ered that on the external contour, the hub has some displacements. The function of these displacements
is not known in advance, and should be determined from the additional condition.

It is accepted that the plane strain conditions are fulfilled. The modes of the friction pair at which
there may arise residual deformations are unacceptable. An elastic hub has a rectilinear crack of length
2‘1 (Figure 1). Refer the hub of the friction pair to the polar system of coordinates ru having chosen the
origin of the coordinates in the center of concentric circle L of radii R (Figure 1). We will assume that
the internal contour of the hub and the external contour of the plunger are close to circular.

Represent the boundary of the internal contours of the hub L# in the form r = r(u); r = R+ eH(u),
where e= Rmax=R is a small parameter; Rmax is the greatest height of the irregularity of the friction
surface.

By means of a profilogram of the processed surface of the hub, we find the coefficients of the Fourier
series for the function H(u) describing each inner profile of the hub

H(u) =
Xn

k = 0

a0
k cos ku + b0

k sin ku
� �

:

The outer contour of the plunger is nearly circular and may be represented as

r1(u) = R0+ eH1(u),H1(u) =
Xn

k = 0

a1
k cos ku + b1

k sin ku
� �

:

It is assumed that the wear of the hub and the plunger is of abrasive character.
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In the center of the rectilinear crack we place the origin of the local system of coordinates x1O1y1,
whose axis x1 coincides with the line of the crack and shapes the angle a1, with the axis x (Figure 1). It
is accepted that the crack faces are free from external loads. The condition relating the displacements of
the hub and plunger is of the form [1,2]

y1 + y2 = d(u) (u1 ł u ł u2): ð1Þ

Here d(u) is the sag of the points of the surfaces of the hub and the plunger determined by the form of
the internal surface of the hub and plunger, and also by the magnitude of the compressing force P; u2–u1
is the size of the contact angle (area).

In the contact zone, in addition to contact pressures there acts the tangential stress tru connected with
the contact pressure p(u,t) by the Amontons–Coulomb law

tru = fp(u, t),

where f is the friction coefficient of the pair ‘‘hub–plunger’’.
The tangential forces (friction forces) tru(u,t) help to release heat in the contact zone. The total

amount of heat per unit time is proportional to the power of friction forces, and the amount of heat
released at the contact zone point with the coordinate u will be equal to

Q(u, t) = Vfp(u, t),

where V is the mean rate for the period of displacements of the plunger.
The general amount of the heat Q(u,t) will be consumed in the following way: heat flow to the hub

Qb(u,t) and similar flow Q1(u,t) of heat to increase temperature of the plunger, that is, Q = Qb+ Q1.
For displacements of the friction surface points of the hub, we have y1 = y1e+ y1r+ y1w, where y1e are

thermoelastic displacements of the contact surface points of the hub; y1r, y1w are displacements caused

Figure 1. Design diagram of the contact problem for the hub–plunger friction pair: (a) friction pair loading diagram; (b) hub loading
diagram; (c) plunger loading diagram.
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by crushing of microprojections and wear of the hub surface, respectively. Similarly, for displacements
of the plunger contact surface, we have y2 = y2e + y2r + y2w.

The rate of change of displacements of the surface at wear of the hub and plunger will be equal to
[1,2]

dykw

dt
= K(k)p(u, t) k = 1, 2ð Þ, ð2Þ

where K(k) are the coefficients of wear of the hub and plunger material (k = 1,2), respectively.
As the motion of frequency of the plunger is rather great, we consider the problem as a stationary

one. In this case the hub temperature T(r,u) satisfies the differential equation of heat conduction theory
DT = 0 and the boundary conditions

AT1l
∂T

∂n
� AT2a*

1 T � Tcð Þ= � Q*(u) for r = R,

l
∂T

∂n
+ a2 T � Tcð Þ= 0 for r = R0:

Here l is the coefficient of heat conductivity of the hub; D is the Laplace operator; a*
1 is the coeffi-

cient of heat transfer from the inner surface of the hub; a2 is the coefficient of transfer from the external
cylindrical surface of the hub with the external medium of temperature Tc; AT1 is the heat absorbing
surface; AT2 is the cooling surface; Q* is a part of the amount of heat released at friction necessary for
heating the hub; Q* = Qb on the contact area; Q* = 0 out of the area; n, t are natural coordinates.

The perturbed temperature field caused by the crack is ignored in determining the temperature field
to simplify the problem.

To determine the displacements y1e and y1r, it is necessary to solve a thermoelasticity problem for the
hub under the following conditions

r = r(u),sn = � p(u), tnt = � fp(u) on the contact area;

sn = 0, tnt = 0 out of the contact area for r = r(u),

yr � iyu = g(u) for r = R0,

on the crack faces sy1
= 0, tx1y1

= 0:

Here sn, tnt, sy1
, tx1y1

are the stress tensor components; yr, yu are the radial and tangential components
of the displacements vector of the contour L, respectively; g(u) is the sought-for function of displace-
ments of the points of the external contour L of the hub; i2 = � 1.

A thermoelasticity problem for determining the displacements y2e and y2r of the contact surface of the
plunger is stated in the same way

DT1 = 0;

l1

∂T1

∂n
= � Q1(u) on the contact area for r = r1(u),

l1

∂T1

∂n
+ a*

1T1 = 0 out of the contact area,

sn = � p(u), tnt = � fp(u) on the contact area for r = r1(u),
sn = 0, tnt = 0 out of the contact area:

The contact pressure p(u) is unknown beforehand and should be determined in the course of solution
of the contact fracture mechanics problems. The quantities u1 and u2, being the ends of the contact area
of the plunger and hub, are unknown. For determining them, we use the condition [32] that the pressure
p(u) continuously goes to zero when the point u goes beyond the contact section

p u1ð Þ= 0, p u2ð Þ= 0: ð3Þ
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To find the sought-for function g(u) of displacements of the points of the external contour L of the
hub, the problem statement should be complemented with the condition (criterion) of definition of the
function g(u). As such, a condition of definition of the function of displacements of the points of the con-
tour L (of the function g(u)), we accept that in the process of work of the friction pair at the crack tips
there should appear end zones whose faces are closed, that is, come into contact. Closing of the crack
faces at the end zones adjacent to the crack tips restrains the crack propagation and thereby retards the
fracture process of the hub of the friction pair.

Then, it is required to determine the function of displacements of the points of the external contour L
of the hub (of the function g(u)) so that the stress–strain field formed by it in the process of work of the
friction pair could provide the closure of the crack faces in the end zones adjacent to the crack tips.

At the end zones where the closure of crack faces happens, the crack opening should vanish

u+
1 � u�1

� �
� i y+

1 � y�1
� �

= 0: ð4Þ

This additional condition aims to define the sought-for function g(u) of displacements of the points of
the external contour L of the hub.

3. Method of solution

We look for temperatures, stresses and displacements in the hub and plunger in the form of expansions
in the small parameter where we ignore the terms containing e of degree higher than the first. Each
approximation satisfies the system of differential equations of plane thermoelasticity. To find the values
of the temperature and the stress tensor components for r = r(u) (similarly for r = r1(u)), we expand in
series the expressions for temperature, stress and displacements in the vicinity of r = R0. Using the per-
turbations method, allowing for what has been said, we arrive at the sequence of boundary conditions
for the problems of the plane theory of thermoelasticity for the hub.

For a zero approximation

AT1l
∂t(0)

∂r
� AT2a*

1t(0) = � Q(0)
* (u) for r = R, ð5Þ

l
∂t(0)

∂r
+ a2t(0) = 0 for r = R0,

s(0)
r = � p(0)(u), t(0)

ru = � fp(0)(u) on the contact area,

s(0)
r = 0, t(0)

ru = 0 out of the contact area,

y(0)
r � iy(0)

u = g(0)(u) for r = R0,

s(0)
y1

= 0, t(0)
x1y1

= 0 on the crack faces;

ð6Þ

for a first approximation

AT1l
∂t(1)

∂r
� AT2a*

1t(1) = � Q(1)
* (u) for r = R,

l
∂t(1)

∂r
+ a2t(1) = 0 for r = R0,

ð7Þ

s(1)
r = N � p(1)(u), t(1)

ru = Tt � fp(1)(u) on the contact area for r = R,

s(0)
r = N , t(0)

ru = Tt out the contact area,

y(1)
r � iy(1)

u = g(1)(u) for r = R0,

s(1)
y1

= 0, t(1)
x1y1

= 0 on the crack faces:

ð8Þ

Here
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Q(1)
* (u) = � Q(1)

b (u) + AT1l
∂2t(0)

∂r2
� AT2a*

1

∂t(0)

∂r

� �
H(u),

N = � H(u)
∂s(0)

r

∂r
+ 2t(0)

ru

1

R

dH(u)

du
for r=R,

ð9Þ

Tt = s(0)
u � s(0)

r

� � 1

R

dH(u)

du
� H(u)

∂t(0)
ru

∂r
,

t = T – Tc is the excess temperature for the hub.
In a similar way we can write boundary conditions at each approximation for a plunger.
Additional equations (4) accept the following form in a zero approximation

u0 +
1 x1, 0ð Þ � u0�

1 x1, 0ð Þ
� �

� i y0 +
1 x1, 0ð Þ � y0�

1 x1, 0ð Þ
� �

= 0; ð10Þ

in a first approximation

u1 +
1 x1, 0ð Þ � u1�

1 x1, 0ð Þ
� �

� i y1 +
1 x1, 0ð Þ � y1�

1 x1, 0ð Þ
� �

= 0: ð11Þ

Now let us construct the solution of the problem in a zero approximation.
The solution of the boundary value problems in the theory of heat conduction at each approximation

is sought by the method of separation of variables. We find the distribution of the excess temperature
t = t(0) + et(1) for the hub in the following form

t(0) = C10 + C20 ln r +
X‘

k = 1

C(k)
10 rk + C(k)

20 r�k
� �

cos ku +
X‘

k = 1

A(k)
10 rk + A(k)

20 r�k
� �

sin ku,

t(1) = C11 + C21 ln r +
X‘

k = 1

C(k)
11 rk + C(k)

21 r�k
� �

cos ku +
X‘

k = 1

A(k)
11 rk + A(k)

21 r�k
� �

sin ku:

The constants C10, C20, C(k)
10 , C(k)

20 , A(k)
10 , A(k)

20 are determined from boundary conditions (5) of the heat
conduction theory problem in a zero approximation. The coefficient C11, C21, C(k)

11 , C(k)
21 , A(k)

11 , A(k)
21 are

found from boundary conditions (7) of the heat conduction theory problem in a first approximation.
Because of their bulky form, we do not cite the appropriate formulas. To solve the thermoelasticity
problem, at each approximation we use the thermoelastic potential of displacements [33]. In the prob-
lem under consideration, the thermoelastic potential of displacements F for the hub in zero and first
approximations is determined by the solution of the differential equations

DF(0) = bt(0),DF(1) = bt(1),b =
1 + m

1� m
a: ð12Þ

Here a is the coefficient of linear temperature extension.
We look for the solution of Equation (12) in the form

F(0) =
X‘

n = 0

f 0
n (r) cos nu + f 0*

n (r) sin nu
� �

,

F(1) =
X‘

n = 0

f (1)
n (r) cos nu + f (1)*

n (r) sin nu
� �

:

For the functions f 0
n (r), f 0*

n (r) we get the ordinary differential equations
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d2f 0
n

dr2
+

1

2

df 0
n

dr
� n2

r2
f 0
n = bF0

n ,

d2f 0*
n

dr2
+

1

2

df 0*
n

dr
� n2

r2
f 0*
n = bF0*

n :

Particular solutions of differential equations are sought by the method of variation of constants

f 0
n = b � ln r

ðr
R0

rF0
0 (r)dr +

ðR
r

rF0
0 (r) ln rdr

2
64

3
75,

f 0
n = � b

2n
rn

ðR
r

F0
n (r)r1�ndr + r�n

ðr
R0

rF0
n (r)r1 + ndr

2
64

3
75,

f 0*
n = � b

2n
rn

ðR
r

F0*
n (r)r1�ndr + r�n

ðr
R0

rF0*
n (r)r1 + ndr

2
64

3
75:

After defining the thermoelastic potential of displacements in a zero approximation for the hub, by
the known formulae [33] we calculate the approximate thermoelastic potential of the stress �s(0)

r , �s(0)
u , �t(0)

ru

and displacements �y(0)
r , �y(0)

u in the hub

�s(0)
r = � 2G

1

r

X‘

n = 0

∂f 0
n

∂r
cos nu +

∂f 0*
n

∂r
sin nu

� �(
+

(

+
1

r2

X‘

n = 0

�n2
� �

f 0
n cos nu + f 0*

n sin nu
� �)

,

�s(0)
u = � 2G

X‘

n = 0

∂2f 0
n

∂r2
cos nu +

∂2f 0*
n

∂r2
sin nu

� �
,

�t(0)
ru = 2G � 1

r2

� 	X‘

n = 0

n f 0*
n cos nu� f 0

n sin nu
� �

+

(

+
1

r

X‘

n = 0

n
∂f 0*

n

∂r
cos nu� ∂f 0

n

∂r
sin nu

� �)

�y(0)
r =

X‘

n = 0

∂f 0
n

∂r
cos nu +

∂f 0*
n

∂r
sin nu

� �
,

�y(0)
u =

1

r

X‘

n = 0

(� n) f 0
n sin nu� f 0*

n cos nu
� �� �

:

The found stress and displacements for the hub will not satisfy boundary conditions (6). It is neces-
sary to find for the hub the second stress–strain state ��s(0)

r , ��s(0)
u , ��t(0)

ru , ��y(0)
r , ��y(0)

u such that boundary condi-
tions (6) are fulfilled.

Consequently, to determine the second stress–strain state, we have the boundary conditions

��s(0)
r = � p(0)(u)� �s(0)

r , ð13Þ
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��t(0)
ru = � fp(0)(u)� �t(0)

ru on the contact area for r = R,

��s(0)
r = � �s(0)

r , ��t(0)
ru = � �t(0)

ru out of the contact area,

��y(0)
r � i��y(0)

u = g(0)(u)� �y(0)
r � i�y(0)

u

� �
for r = R0,

��s(0)
y1

= � �s(0)
y1
, ��t(0)

x1y1
= � �t(0)

x1y1
on the crack faces:

ð14Þ

By the Kolosov–Muskhelishvili formulas [32], we can write the boundary conditions of the problem
in (13) and (14) in the form of a boundary value problem for finding the complex potential F(0)(z),
C(0)(z) for the hub.

We look for the complex potentials in the form

F(0)(z) = F(0)
1 (z) + F(0)

2 (z),C(0)(z) = C(0)
1 (z) + C(0)

2 (z), ð15Þ

F(0)
1 (z) =

X‘

k =�‘

akzk, C(0)
1 (z) =

X‘

k =�‘

bkzk,

F(0)
2 (z) =

1

2p

ð‘1

�‘1

g0
1(t)dt

t � z1

,

C(0)
2 (z) =

1

2p
e�2ia1

ð‘1

�‘1

g0
1(t)

t � z1

�
�T1eia1

t � z1ð Þ2
g0

1(t)

" #
dt:

Here T1 = teia1 + z0
1; z1 = e�ia1 z� z0

1

� �
; g0

1(t) is the sought-for function, characterizing the jump of displa-
cements at a zero approximation when passing through the crack line

g0
1 x1ð Þ=

2G

i(1 + k)

∂

∂x1

u0 +
1 x1, 0ð Þ � u0�

1 x1, 0ð Þ+ i y0 +
1 x1, 0ð Þ � y0�

1 x1, 0ð Þ
� �� �

, ð16Þ

k = 3� 4m:

We represent the boundary value problem for finding the complex potential on circular boundaries in
the form

F(0)
1 t0ð Þ+ F(0)

1 t0ð Þ � e2iu �t0F0(0)
1 t0ð Þ+ C(0)

1 t0ð Þ
� �

= X (0)(u)� f1 � if2ð Þ, ð17Þ

F(0)
1 tð Þ � kF(0)

1 tð Þ � e2iu �tF0(0)
1 tð Þ+ C(0)

1 tð Þ
� �

= g(0)(u)� f3 � if4ð Þ,
t = R0 exp(iu), t0 = R exp(iu),

,

X (0)(u) =
�(1� if )p(0)(u)� �s(0)

r � i�t(0)
ru

� �
on the contact area

� �s(0)
r � i�t(0)

ru

� �
out of the contact area

(

f1 � if2 = F(0)
2 t0ð Þ+ F(0)

2 t0ð Þ � e2iu �t0F(0)
2 t0ð Þ+ C(0)

2 t0ð Þ
� �

,

f3 � if4 = F(0)
1 tð Þ � kF(0)

1 tð Þ � e2iu �tF0(0)
1 tð Þ+ C(0)

1 tð Þ
� �

� �y(0)
r � i�y(0)

u

� �
:

To solve the boundary value problem (17) with respect to potentials F(0)
1 (z) and C(0)

1 (z), we use the
method of power series. For this, the right-hand sides of conditions (16) are expanded into Fourier series
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X (0)(u) =
X‘

k =�‘

A(0)
k eiku,

� f1 � if2ð Þ=
X‘

k =�‘

D(0)
k eiku, � f3 � if4ð Þ=

X‘

k =�‘

F(0)
k eiku:

The coefficients D(0)
k and F(0)

k are expressed in the form of integrals from the sought-for function g(0)
1 .

To determine them, the residue method was used. After some transformations we arrive at the infinite
linear algebraic system with respect to the coefficients ak and bk, whose solution is written in the form

a0 =
A(0)

0 + D(0)
0

� �
R2

0 � F(0)
0 R2

2R2
0 � (1� k)R2

, a�1 =
A(0)

1 + D(0)
1

� �
R0

1 + k
,

b�2R�2
0 = 2a0 � A(0)

0 � D(0)
0 , b�1 =

k A(0)
1 + D(0)

1


 �
R0

1 + k
,

ak =
(1 + k) R2 � R2

0

� �
Mk � �M�k R�2k + 2

0 + kR�2k + 2
� �

1� k2ð Þ R2 � R2
0

� �2 � R�2k + 2
0 + kR�2k + 2

� �
R2k + 2

0 + kR2k + 2
� � k = 62,63, . . .ð Þ,

Mk = F(0)
k R�k + 2 � A(0)

k + D(0)
k

� �
R�k + 2

0 ,

a1 =
2 A(0)

1 + D(0)
1

� �
R2 � R2

0

� �
R0

1� kð Þ R4
0 + kR4

� � �
�M�1

R4
0 + kR4

,

bk�2Rk�2
0 = (1� k)akRk

0 + �akR�k
0 � A(0)

k + D(0)
k

� �
:

The right-hand sides of these formulas contain the coefficients of expansion of the function g(0)(u) of
displacements of the points of the external contour L of the hub in a zero approximation

g0(0)(t) =
X‘

k =�‘

A0
keiku = a*(0)

0 +
X‘

k = 1

a*(0)
k cos ku + b*(0)

k sin ku
� �

and the coefficients of expansion of the contact pressure

p(0)(u) = a0
0 +

X‘

k = 1

a0
k cos ku + b0

k sin ku
� �

and also the integrals of the sought-for function g(0)
1 (t).

Satisfying by functions (15) the boundary conditions on the crack faces (14), we get a singular integral
equation with respect to the unknown function g(0)

1 (x1)

ð‘1

�‘1

R t, x1ð Þ g0
1(t) + S t, x1ð Þ g0

1(t)
h i

dt = pf1 x1ð Þ, ð18Þ

f1 x1ð Þ= � F(0)
1 x1ð Þ+ F(0)

1 x1ð Þ+ x1F0(0)
1 x1ð Þ+ C(0)

1 x1ð Þ
h i

� �s(0)
y1
� �t(0)

x1y1


 �
:

The variables x1, t, ‘1 are dimensionless quantities referring to R0; R(t,x1) and S(t,x1) are determined
by the relations of formula VI.61 in Panasyuk et al. [34].

To the singular integral equation for the inner crack it is necessary to add the condition of uniqueness
of displacements by passing the contour of the crack
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ð‘1

�‘1

g0
1(t)dt = 0: ð19Þ

By means of the algebraization process [34–36], the complex singular integral equation (18) of the
above-remarked condition (19) is reduced to the system of M complex algebraic equations for defining
M unknowns g0

1 tmð Þ= y0
1 tmð Þ � iu0

1 tmð Þ (m = 1,2,.,M)

1

M

XM
m = 1

‘1 g0
1 tmð ÞR ‘1tm, ‘1xrð Þ+ g0

1 tmð Þ S ‘1tm, ‘1xrð Þ
h i

= f1 xrð Þ, ð20Þ

XM
m = 1

g0
1 tmð Þ= 0 r = 1, 2, . . . ,M � 1,

tm = cos
2m� 1

2M
p, xr = cos

pr

M
:

If in (20) we pass to complexly conjugated values, we get one more M algebraic equation. The right-
hand side of system (20) contains unknown values of coefficients of expansion of the functions of displa-
cements of the points of the outer contour L of the hub and contact pressure p(0)(u).

By means of complex potentials (15), Kolosov–Muskhelishvili formulas and integration of kinetic
equation of wear (2) of the hub material, we find radial displacement y0

1 of the contact surface of the
hub at a zero approximation.

A thermoelasticity problem for a plunger is considered in the same way. By using the solution of the
thermoelasticity problem for a plunger in a zero approximation and the kinetic equation of wear of the
plunger material we find radial displacement y0

2 of the contact surface of the plunger in a zero approxi-
mation. The found quantities y0

1 and y0
2 are substituted into the main contact equation (1) in a zero

approximation.
For algebraization of the main contact equation, the unknown functions of contact pressure in zero

approximation are sought in the form of expansions

p(0)(u, t) = p0
0(u) + tp0

1(u) + . . . ,

p0
s (u) = as

0 +
X‘

k = 1

as
k cos ku + bs

k sin ku
� �

s = 0, 1, . . .ð Þ:
ð21Þ

Substituting relations (21) into the main contact equation in a zero approximation, we find functional
equations for sequential determination of p0

0(u), p0
1(u), etc. For constructing an algebraic system with

respect to ak, bk, we equate the coefficients at the identical trigonometric functions in the left- and right-
hand sides of the functional equation of the contact problem. As a result, we get an infinite algebraic
system with respect to a0

k (k = 0,1,2,.), b0
k (k = 1,2,.) and a1

k , b1
k, etc. Because of unknown quantities

u1 and u2, the system of equations becomes nonlinear.
To determine the quantities u1 and u2 (u1 = u0

1 + eu1
1 + . . ., u2 = u0

2 + eu1
2 + . . .) we have condition (3).

We can represent this equation in the form

p(0) u0
1

� �
= 0, p(0) u0

2

� �
= 0 for a zero approximation, ð22Þ

p(1) u1
1

� �
= 0, p(1) u1

2

� �
= 0 for a first approximation: ð23Þ

The right-hand sides of infinite algebraic systems with respect to ak, bk contain the integrals from the
unknown function g0

1 xkð Þ and also unknown values of the coefficients of expansion of the function g0(u)
of displacements of the point of the outer contour L of the hub in a zero approximation. Thus, infinite
algebraic systems with respect to ak, bk and the finite system with respect to g0

1 xkð Þ are connected
between themselves and they should be solved jointly. The obtained systems of equations with respect
to ak, bk, ak, bk, g0

1 tmð Þ (m = 1,2,.,M) at the given function of displacements of the points of the outer
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contour L of the hub attempt to find, in a zero approximation, the stress–strain state of the hub of a
friction pair involving a crack in the hub, contact pressure, stress intensity factors in the vicinity of the
crack tip, temperature distribution and also details of the abrasive wear of the friction pair.

In the stated optimal design problem, it is necessary to determine the function of displacements of
the points of the outer contour L of the hub. The coefficients A0

k (k = 0,61,62,.) should be defined.
Consequently, the obtained combined algebraic system is not still closed.

To construct missing equations in a zero approximation, we require the conditions (10) to be fulfilled
at the nodal points belonging to the end areas, where the closure of the crack faces must happen. In the
case under consideration, instead of (10) it is convenient to use the expression for the derivative of the
crack faces opening. Thus, the missing equations in a zero approximation are obtained in the form

g0
1 tkð Þ= 0 k = 1, 2, . . . ,M1ð Þ, ð24Þ

where M1 is the number of nodal points belonging to the end areas.

4. A method for numerical solution

The joint solution of the obtained systems of equations attempts to find the approximate values of the
coefficients ak, bk, ak, bk, the values of crack faces opening functions y0

1 tmð Þ, u0
1 tmð Þ and the coefficients

of the function of displacements of the points of the outer contour L of the hub A0
k (k =

0,61,62,.,6M1). As we give beforehand the end area sizes, the system of equations (23) becomes lin-
ear. The combined system of algebraic equations will be nonlinear because of unknown quantities u0

1

and u0
2. For solving it we use the reduction and successive approximations methods, whose essence is

the following: we use the combined system algebraic at some certain values of u0*
1 and u0*

2 with respect
to the remaining unknowns (listed above). The remaining unknowns linearly enter the combined system.
The values u0*

1 , u0*
2 and the remaining unknowns are substituted into the unused equations (22). The

taken values u0*
1 , u0*

2 and the values of the remaining unknowns corresponding to them will not, gener-
ally speaking, satisfy Equations (22). Therefore, choosing the values of parameters u0

1 and u0
2, we will

repeat the calculations until the last equations of system (22) will be satisfied with the given accuracy.
After defining the sought-for quantities of a zero approximation, we can construct the solution of the

inverse problem in a first approximation. The functions N and Tt are determined on the basis of the
obtained solution for R. Boundary conditions (8) are written in the form of a boundary value problem
for finding the complex potentials F(1)(z) and C(1)(z). We look for the complex potentials F(1)(z) and
C(1)(z) in a similar way as (14) with obvious changes. The further course of the solution is the same as
in a zero approximation.

The obtained complex singular integral equation with respect to g1
1(t) under the additional condition

of type (19) by means of the algebraization procedure is reduced to the finite system of M algebraic
equations for defining M unknowns

g1
1 tmð Þ m = 1, 2, . . . ,Mð Þ:

The right-hand sides of this system contain the coefficients of expansion of the function g(1)(u) of dis-
placements of the points of the outer contour L of the hub in a first approximation

g0(1)(u) =
X‘

k =�‘

A1
keiku = a*(1)

0 +
X‘

k = 1

a*(1)
k cos ku + b*(1)

k sin ku
� �

,

the contact pressure

p(1)(u) = a1
0 +

X‘

k = 1

a1
k cos ku + b1

k sin ku
� �

and also the integrals of the function g1
1 tmð Þ.

Construction of the missing equations for defining the unknown contact stresses is realized similar to
a zero approximation. A thermoelasticity problem for a hub in a first approximation is solved in the
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same way. Algebraization of the main equations of the contact problem in a first approximation is con-
ducted just as in a zero approximation. The sought-for functions of contact pressure are represented in
the form

p(1)(u) = p1
0(u) + tp1

0(u) + . . . , ð25Þ

p1
0(u) = a1

0, 0 +
X‘

k = 1

a1
k, 0 cos ku + b1

k, 0 sin ku

 �

,

p1
1(u) = a1

0, 1 +
X‘

k = 1

a1
k, 1 cos ku + b1

k, 1 sin ku

 �

:

As a result, we get infinite linear algebraic systems with respect to a1
0, 0, a1

k, 0, b1
k, 0 (k = 1,2,.) and

a1
0, 1, a1

k, 1, b1
k, 1 (k = 1,2,.,n).

Because of unknown quantities u1
1 and u1

2, the system of equations becomes nonlinear.
The obtained systems of equations with respect to a1

k , b1
k , a1

k, b1
k , g1

1 tmð Þ (m = 1,2,.,M) attempt, at
the given function of displacements of the point of the outer contour L of the hub, to find in a first
approximation the stress–strain state of the hub of a friction pair involving a crack in the hub, contact
pressure, stress intensity factors in the vicinity of crack tips, temperature distribution and also abrasive
wear of the hub and the plunger.

In the optimal design problem under consideration, the coefficients A1
k (k = 0,61,6 2,.) of the func-

tion of displacements of the point of the outer contour L of the hub should be defined. To construct the
missing equations in a first approximation, we require the additional conditions (11) to be fulfilled at
the nodal points belonging to the end areas at which the crack faces closure occurs. As in a zero approx-
imation, instead of (11) it is convenient to use the relation for the derivative of the crack faces opening.
Consequently, the missing equations in a first approximation are in the form

g1
1 tkð Þ= 0 k = 1, 2, . . . ,M1ð Þ: ð26Þ

5. Numerical results and their analysis

Because of the unknown ends of the contact area (quantities u1 and u2), the combined system of equa-
tions becomes nonlinear. The constructed combined system of equations is closed and attempts at the
given functions H(u) and H1(u) to find by the numerical calculations the optimal function of displace-
ments of the points of the outer contour L of the hub, contact pressure, stress–strain state, temperature
and wear of the hub and plunger of a friction pair.

The functions H(u) and H1(u) describing the roughnesses of the inner surface of the hub and the plun-
ger were considered as a determined set of the rough surfaces of the contours profiles and were modeled
by a stationary random function with a zero mean value and known variance. The problem under con-
sideration has many free parameters. These are various thermophysical and mechanical characteristics
of the materials, geometrical sizes of the hub and the velocity of the plunger motion. The results of the
calculations of contact pressure for the hub of a slush pump depending on the value of the polar angle

u# = u–u+ u0 = u2�u1

2
; u + = u2 + u1

2

� �
are represented in the form of graphs in Figure 2 at velocity of the

plunger V = 0.2 m/s for the case of a rectilinear crack for a1= 600; curve 1 corresponds to the optimal
solution and curve 2 corresponds to the case when the function of the displacements of the external con-
tour points of the hub of a friction pair is equal to zero. The following were accepted as parameters: 2R
= 57 mm; 2R0 = 73 mm; 2R0= 56:7mm; f = 0.2; E = 1.8�105 MPa; E1 = 2.1�105 MPa; n = 0.25; n1 =
0.3; K(1) = 2 � 10�8; K (2) = 2:5 � 10�9; D1 = R� R0= 0:15 mm.

The maximum values of contact pressure, as a rule, are found in the middle part of the contact surface
subject to the wrapping angle and friction coefficient. The existence of friction forces in the contact area
reduces to the shift of the graph of contact pressure distribution in the direction opposite to the action of
the moment. The results of calculations of the function of displacements of the points of the outer con-
tour L of the hub are given in Table 1 (the coefficients are given in mm).
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With known contact pressure it is possible to calculate the temperature distribution and abrasive wear
of the friction pair. We studied the temperature change for different depths on the thickness of the hub.
Graphs of the temperature change in the hub for one stroke of the plunger for different velocities of
plunger motion are represented in Figures 3 and 4. Here solid lines correspond to the optimal solution;
dashed lines correspond to case when the function of displacements of the points of the external contour
of the hub is equal to zero. Curve 1 corresponds to the surface temperature of the hub and curve 2 corre-
sponds to temperature at the depth of 1.5 mm.

Figure 2. Distribution of contact pressure for the hub of a slush pump depending on the value of the polar angle.

Table 1. Values of Fourier coefficients of functions g(u) describing displacements for hub external contour points for plunger speed
V = 0.2 m/s.

a*0 a*1 a*2 a*3 a*4 a*5 a*6 a*7 a*8 a*9

0.1103 0.0893 0.7250 0.0632 0.0566 0.0498 0.0407 0.0322 0.0289 0.0208

b*1 b*2 b*3 b*4 b*5 b*6 b*7 b*8 b*9

0.0813 0.0709 0.0579 0.0508 0.0426 0.0358 0.0271 0.0205 0.0143

Figure 3. Temperature change in the hub for one stroke of the plunger for velocity of plunger motion V = 0.4 m/s.
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The results of calculations of the abrasive wear of the hub surface for one stroke of the plunger are
shown in Figure 5 for different velocities of the plunger motion. Here curves 1–3 correspond to the velo-
city V = 1.0, 0.5, 0.2 m/s, respectively.

Analysis of the calculation results shows that, at low values of the contact pressure, the hub wear
along the length of the contact zone has an uneven character and is mainly formed by the change of the
contact pressure. With increasing of the contact pressure, the hub wear along the length of the contact
zone tends to leveling, and mainly depends on the wear (friction) path. The friction coefficient of the
pair has a significant effect on the wear of the friction pair hub. In this connection, the dependence of
maximum wear on the friction coefficient was calculated. In Figure 6 the dependence of maximum wear
is shown for the friction path corresponding to 10 work hours of the pump. Here curve 1 corresponds
to the optimal solution and curve 2 corresponds to the case when the function of displacements of the
external contour points of the hub is equal to zero.

In the course of time, the surface microgeometry of the hub and plunger will vary due to the wear.
The work relations obtained for the radial wear allow one to determine the variation of friction surface
on considering the moment of time.

Figure 4. Temperature change in the hub for one stroke of the plunger for velocity of plunger motion V = 1.0 m/s.

Figure 5. Abrasive wear of the hub surface for one stroke of the plunger.
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Dependence of the stress intensity factors on the parameter l = ‘1=(R0 � R) is shown in Figures 7 and
8 for the different velocities of the plunger motion for the function of the displacements of the external
contour points of the hub of a friction pair equal to zero. Here, p0 = P

4pED1
. In the calculations it was

assumed that M = 20; 40. Numerous studies show that the number of collocations M should not be less
than 20. The infinite algebraic systems, respectively, the coefficients ak, bk, were reduced to k = 5; 7; 9
equations. The system (19) that serving to find the Fourier coefficients of the sought-for function also

Figure 6. Dependence of maximum wear for the friction path corresponding to 10 work hours of the pump.

Figure 7. Dependence of the stress intensity factor KI on the parameter l = ‘1=(R0 � R).
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was reduced to m1 = 5; 7; 9 equations. It should be noted that the values of the sought-for coefficients
are not substantially changed, since M = 20, k = 5, m1 = 5.

Changing the values of the parameters z0
1 and a1 characterizing the state of the crack, we can investi-

gate different cases of the location of a crack in a hub. If a crack with one end reaches the inner surface
of the hub, then quality (19) is replaced by a condition expressing the finiteness of stresses at the crack
end. At the place where the crack faces interact, that is, the end areas, there arise normal qy1

(x1) and tan-
gential qx1y1

(x1) contact stresses. To determine them, at the already known function of displacements
g(u) of the points of the outer contour L of the hub, it is necessary again to solve a fracture mechanics
problem for a crack with partially contacting faces. A method for solving such problems was given by
Mirsalimov and Mustafayev [37].

6. Conclusions

The practice of the operation of friction pairs shows that at the stage of design of new constructions of
mobile conjugations, it is necessary to take into account the cases when in separate friction nodes (hub)
there may arise cracks. The main resolving equations found in the paper attempt, at the given function
of displacements of the points of the outer contour of the hub, by numerical calculations to find the
stress intensity factors to predict the growth of the existing crack in the hub, to establish the admissible
size of a defect and to find the maximum values of workloads providing a sufficient safety margin. The
solution of the inverse problem to the definition of the function of displacements of the points of the
outer contour of the hub enables, at the design stage, to establish the optimal geometrical parameters of
the elements of mobile conjugations, providing an increase of the load-bearing capacity of the friction
pair.
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Figure 8. Dependence of the stress intensity factor KII on the parameter l = ‘1=(R0 � R).

Mirsalimov and Akhundova 1779



References

[1] Goryacheva, IG. Contact mechanics in tribology. Dordrecht: Kluwer Acad. Publ., 1998.
[2] Goryacheva, IG. Mechanics of frictional interaction. Moscow: Nauka, 2001 (in Russian).
[3] Thomas, TR. Rough surface. London: Longman, 1982.
[4] Bhushan, B. Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribol Lett 1998; 4: 1–35.
[5] Carbone, G, and Bottiglione, F. Contact mechanics of rough surfaces: a comparison between theories. Meccanica 2011;

46: 557–565.
[6] Czifra, A, and Horvath, S. Complex microtopography analysis in sliding friction of steel-ferodo material pair. Meccanica

2011; 46: 609–616.
[7] Gadzhiev, GH, and Mirsalimov, VM. Minimizing wear of the internal surface of a split cylinder sleeve in a contact pair. J

Friction Wear 2004; 25: 231–237.
[8] Gadzhiev, GH, and Mirsalimov, VM. Optimal design of the composite cylinder–piston contacting pair. J Friction Wear

2004; 25: 466–473.
[9] Peigney, M. Simulating wear under cyclic loading by a minimization approach. Int J Solids Struct 2004; 41: 6783–6799.

[10] Mirsalimov, VM. Minimization of stress state of contact pair bushing. J Friction Wear 2006; 27: 388–393.
[11] Mirsalimov, VM. Minimization of thermal state of contact pair bushing. J Mach Manuf Reliab 2006; 35: 88–95.
[12] Chu, HM. Shape optimum design of slider bearings using inverse method. Tribol Int 2007; 40: 906–914.
[13] Mirsalimov, VM. An inverse wear contact problem for a friction couple. J Mach Manuf Reliab 2008; 37: 53–59.
[14] Mirsalimov, VM. Inverse problem of fracture mechanics for a disk fitted onto a rotating shaft. J Appl Mech Tech Phys

2009; 50: 712–719.
[15] Chu, LM, Chang, YP, and Yang, JH. Profile design of piston ring using inverse method. J Marine Sci Technol 2008; 16:

64–70.
[16] Alyaqout, SF, and Elsharkawy, AA. Optimum shape design for surface of a porous slider bearing lubricated with couple

stress fluid. Lubricat Sci 2009; 21: 1–12.
[17] Mirsalimov, VM. Minimizing contact pressure of the bush-plunger friction pair. J Friction Wear 2009; 30: 25–32.
[18] Xu, G, Zhang, J, Wang, J, et al. Optimum design with numerical algorithm of hyperboloidal sliding bearing based on the

reliability constraints. Adv Sci Lett 2011; 4: 2463–2467.
[19] Huang, GQ, Yu, J, and Pu, HL. Optimal design on clearance of piston friction pair for water hydraulic pump. Adv Mater

Res 2011; 287-290: 3056–3060.
[20] Hussain, FS, and Sonpimple, MK. Application of non-traditional method for the optimization of friction clutch. J Theor

Appl Inform Technol 2013; 49: 481–487.
[21] Mirsalimov, VM, and Veliyev, FE. Inverse problem of failure mechanics for a drawing die strengthened with a holder.

Acta Polytechnica Hungarica 2013; 10: 121–138.

[22] Paredes, M, Canivenc, R, and Sartor, M. Tolerance optimization by modification of Taguchi’s robust design approach

and considering performance levels: application to the design of a cold-expanded bushing. Proc Inst Mech Eng G J

Aerospace Eng 2014; 228: 1314–1323.
[23] Mirsalimov, VM, and Akhundova, PE. Minimization of contact pressure for hub–shaft friction pair. J Friction Wear 2015;

36: 404–408.
[24] Chernets, M. Evaluation of the contact strength and durability of plain bearings with different types of shaft lobing. Proc

Inst Mech Eng J J Eng Tribol 2015; 229: 1444–1454.
[25] Huang, R, Li, T, Yu, X, et al. An optimization of the star-wheel profile in a single screw compressor. Proc Inst Mech Eng

A J Power Energ 2015; 229: 139–150.
[26] Abdo, J. Materials sliding wear model based on energy dissipation. Mech Adv Mater Struct 2015; 22: 298–304.
[27] Zhang, Z, Liu, J, and Xie, Y. Design approach for optimization of a piston ring profile considering mixed lubrication.

Friction 2016; 4: 335–346.
[28] Mirsalimov, VM, and Akhundova, PE. Minimization of abrasive wear for the internal surface of the hub of a friction pair.

J Friction Wear 2016; 37: 424–429.
[29] Zhang, Z, Liu, J, Tang, Y, et al. Optimizing the shape of top piston ring face using inverse method. Ind Lubricat Tribol

2016; 68: 9–15.
[30] Mirsalimov, VM, and Akhundova, PE. Optimal design of a frictional pair of a hub–plunger. J Friction Wear 2017; 38:

384–389.
[31] Mirsalimov, VM, and Akhundova, PE. Inverse problems of damage mechanics for a hub of a friction pair. Int J Damage

Mech 2018; 27: 82–96.
[32] Muskhelishvili, NI. Some basic problem of mathematical theory of elasticity. Amsterdam: Kluwer, 1977.
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