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ARTICLE INFO ABSTRACT

Keywords: In this study, three-dimensional problem of the theory of elasticity (3DPTE) for radially inhomogeneous (INH)
Three-dimensional problem transversally-isotropic thin hollow spheres is investigated using the asymptotic integration method. The basic
Inhomogeneity relations and equilibrium equations for radially inhomogeneous transversally-isotropic thin hollow spheres are
:;‘::’sany'i”m?ic material formed and inhomogeneous solutions (INHSs) and homogeneous solutions (HSs) are constructed. The built

solutions completely reveal the qualitative structure of a three-dimensional stress-strain state of radially in-
homogeneous transversely-isotropic spheres of small thickness and serve as an effective apparatus for solving
boundary value problems, the basis for evaluating existing applied theories and for creating new, more refined
applied theories. Asymptotic formulas are obtained that allow the calculation of the three-dimensional stress-
strain state of spheres. New solution groups (boundary layer solutions) have been found that are absent in
applied theories. The behavior of homogeneous solutions in the inner parts of the sphere and in the vicinity of
conical sections has been studied, when the thin-walled parameter of the sphere tends to zero. The nature of the
constructed homogeneous solutions is clarified. On the basis of the theoretical analysis, three types of the stress-
strain state (SSS) in the radially inhomogeneous transversally-isotropic hollow spheres (RINHTIHSS) are con-
sidered: a penetrating stress state, a simple edge effect, and a boundary layer. Finally numerical calculations are
made and the influences of inhomogeneity on the stress distributions are investigated.

Stress-strain state

1. Introduction analysis for displacements and stress distributions in nonlinear elastic

straight slender rods. Ciarlet et al. [12] presented asymptotic analysis of

Since the spherical shells are one of the basic elements of a series of
technical designs, the study of three-dimensional problems of their
elasticity theory has created the subject of many works [1,2]. The
problem of elasticity theory for the spherical shells is very old and is
considered by Saint-Venant. The first attempts at solving the equili-
brium problems of elastic spherical shells have been made by Galerkin
[3], Lurie [4] and Lekhnitsky [5]. Then Gol’denveizer [6] derived an
approximate theory of shells by means of asymptotic integration for the
equations of the elasticity theory.

One of the first attempts to solve the elasticity problem of the sphere
using the asymptotic method was done by Vilenskaya and Vorovich [7].
After this research, some important studies emerged; Rappoport [8]
investigated the deformations of isotropic and transversally-isotropic
thick spheres. Vasilenko et al. [9] analyzed the three-dimensional
stress-strain state for INH transversely isotropic spheres. Boev and Us-
tinov [10] carried out an analysis of the three-dimensional SSS of three-
layered spheres. Cimetiére et al. [11] developed asymptotic theory and
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linearly elastic shells, justification for flexural shell equations. It is also
necessary to emphasize some important publications on the 3-D exact
solutions of elasticity for spherical shells by state-space-method. For
example; Chen and Ding [13] examined the exact static stress analysis
of multilayered elastic spherical shells completely based on three-di-
mensional elasticity for spherical isotropy using the state-space-
method. Ding et al. [14] studied the elastodynamic solution for
spherically symmetric problems of multilayered hollow spheres using
the state-space-method, the method of separation of variables and the
method of orthotropic expansion.

An important place in the theory of thin-walled structures is occu-
pied by the study of the behavior of inhomogeneous shells. High spe-
cific strength and stiffness with relatively low weight, heat-insulating,
electrical insulating, soundproofing properties and high aerodynamic
qualities of heterogeneous structures ensure their wide application in
various fields of engineering. The complexity of the phenomena that
arise when deforming inhomogeneous shells and the variety of
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heterogeneity of structures led to the creation of various applied the-
ories built on the basis of a certain system of hypotheses [15-25].

The existence of various applied theories for inhomogeneous shells
requires their analysis on the basis of 3DPTE. The analysis of SSS of INH
shells from the position of 3-D equations of the theory of elasticity for
creating new more refined applied theories is actual [1]. In addition, a
number of issues related to the study of the SSS of inhomogeneous
shells, including the study of the stress concentration near the bound-
aries and local loads, and the study of vibrations in a sufficiently wide
frequency range and in a number of other cases, can be solved only in
the framework of theory of elasticity.

In the literature, there are at different methods to 3D exact solutions
of elasticity for structural elements, one of these is the asymptotic
method. Akhmedov and Mekhtiev [26,27] conducted asymptotic ana-
lysis of the inhomogeneous cone and plates using asymptotic method.
Cheng et al. [28] applied three-dimensional asymptotic approach to
inhomogeneous and laminated piezoelectric plates. Mekhtiev and
Bergman [29] investigated the forced vibration of the transverse iso-
tropic hollow cylinder under axisymmetric harmonic force based on the
theory of elasticity using the homogenous solutions method. Vetyukov
etal. [30] used asymptotic splitting in the three dimensional problem of
elasticity for non-homogeneous piezoelectric plates. Akhmedov and
Akperova [31] presented asymptotic analysis of the 3DPTE for a ra-
dially inhomogeneous transversely-isotropic hollow cylinder. Kulikov
and Plotnikova [32,33] presented exact 3D stress analysis and rigid-
body motions of laminated composite plates by sampling surfaces
method. Shariyat and coauthors [34-38] solved 3DPTE and studied
stress, bending, vibration and buckling analysis of FGM and in-
homogeneous plates with and without eccentric cutouts using different
methods.

The challenge of the current study is the solution of the 3-D problem
of the theory of elasticity for thin RINHTIHSs by using the method of
asymptotic integration of the equations of the theory of elasticity. The
INHSs and HSs are created. Asymptotic formulas are obtained that
allow the calculation of the three-dimensional stress-strain state of
spheres. New solution groups (boundary layer solutions) have been
found that are absent in applied theories. The behavior of homogeneous
solutions in the inner parts of the sphere and in the vicinity of conical
sections has been studied, when the thin-walled parameter of the sphere
tends to zero. In addition, the nature of the HSs constructed is studied.
On the basis of the analysis, it is shown that the SSS in the RINHTIHS
consists of three types: a penetrating stress state, a simple edge effect,
and a boundary layer. Finally numerical calculations are made and the
effects of inhomogeneity of stress distributions are investigated.

2. Basic relations and equilibrium equations

Let us consider the axisymmetric problem of the theory of elasticity
for a radially inhomogeneous transversely-isotropic hollow sphere of
the small thickness (see, Fig. 1). We assume that the sphere does not
contain any of the poles of 0 and 7. In the spherical coordinate system,
the region occupied by the sphere is denoted by

= {rE [rl: r2]v e [91; 92]’ pE [0! 2”]}'

The system of equilibrium equations in the absence of mass forces in

the spherical coordinate system r, ¢ and € expressed as [1-4]:

9oy 199 20, — Ggp — Teg + G COLE _ "
or r o 2
00 , 100gs |, 30 + (0ge — Tpp)cOt 6
or r 86 - a

where 0y, Oy, Tpg, Tge are components of the stress tensor, ‘which are
expressed in terms of the displacement components w, = w,(r, ) and
wg = wy(r, 6) as follows [5,9,18,25]:
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Fig. 1. Radially inhomogeneous transversely-isotropic hollow sphere and no-
tation.

W) o 200

+
r a6

= Aua—aw— + Au(— cotf + —

ow, Azz 0w
Opp = Ap— ar + (Ap + Azg)— S o Azz— cot6 + — =2 696
Oge = A1z 55 + (Ap + A).S)_ + Azg— cotf + — A22 aa‘gs
10w, GWQ We)
A T =i
= 44(r a6 or r 2

where Ay = A;(F) are the material properties of the RINHTIHS, re-
garded as arbitrary continuous functions of the variable 7, in which
F=r/r, and r= JAn. Such shells will be called weakly in-
homogeneous.

Substituting relations (2) into the Eq. (1), after some manipulations,
we obtain the equilibrium equations in the displacements as:

)

tige [5(21712 — by — b3 — bu)% + (2b1; — by3 — bus

3

du,
P [ —sp(bu % + sbu(ue cot € + 2u, +

— byy)eug cot 8

+ 2(by; — blz)—p' + 2(2by; — by — b23)£u,, + buap— + ebyy——

Oug au,,
+ byy—— cot 6 + ebyy—— cot 6| =
Map co 54469 co

i byse™ 0| St - sau eu +ee | b B
A o 06 ¢ 12 3000
+ E(bzz + bz; + 3b44) .
du, ok o
X —ag- — £(by3 + 3bas + by cot?B)ug + sbzz( a:ze + au; cot 6)

+ 35,28 _
9 ®3)
where p = % ln(r—'o) is the new non-dimensional radial variable and

(-1£p<D), e= % ln(:—:) is the non-dimensional small parameter

the thickness of the sphere and

=7, b = gg in which G, is the some characteristic
modulus and defined as, Gy = max Aj.

Suppose that on the lateral surfaces of the sphere the following

characterizing

W wg
4 Ug = 5
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boundary conditions are given:

—Ep a
Op = Lt PO Y ebu(ue cot 6 + 2u, + 6_) = f*(8),

€ op a6

p=+1
—Ep a
ggp & S [% " e(?”ei’ - ue)] = t%(6)
P p=11 4)

where the following dimensionless parameters apply: g, = g—’; and
Tpo = dc—'z

We assume that the loads f*(6) and t*(6) given on the lateral sur-
faces are sufficiently smooth functions. Let us assume that arbitrary
boundary conditions are given at the ends of the sphere (on the conical
sections 6 = §; (j = 1, 2)), leaving the sphere in equilibrium.

3. Construction of solutions
3.1. Construction of inhomogeneous solutions

The INHSs will be called particular solutions of the equilibrium Eq.
(3), which satisfy the inhomogeneous boundary conditions (4). As the
thickness of the sphere is sufficiently small, and the load given on the
lateral surfaces is sufficiently smooth and relative to ¢ is of order O(1),
then it is reasonable to use the first iteration process (IP) of the
asymptotic method to construct the INHSs [6].

We seek INHSs in the form:

ug=¢! (uao + eug, + g, + )
(5

= ¢l 2
U, = ¢ (“po + eup + e%up, + ) 5

The substitution of (5) into (3) and (4) leads to a system whose
sequential integration yields the relations for the expansion coefficients
of (5):

Upo = dy (6),
upy = —[2d,(6) + d,(6)cot 6 + d',(6)] j(;p %z-dx + d3(6)
11

ugy = d(6),

ugy = p dy(6) + dy(6) (6)

where the following definitions apply:

po(d5(8) + d;(B)cot 6) + (b2(§” -bP - —‘-’-;’-s)dz(e) — (3bY + g,)d{(6)

=t(0)

biP (d}'(6) + d{(B)cot 6) — 80(d;(6) + dy(B)cot ) — 2g,d,(6) = —f (6)
@
in which
f@ =f*©®) —f(6), t®) =1t -1t (),
b% — by b
P = —11( i2 . 11 ZZ)p"dp
11
o = 11 (by1byy + b;]bzz, — 2b%) odp, b(k) f bap*dp,
1
b = [ buprdp, bY = [’ bnpdp (8)

The components of the stress tensor corresponding to solutions of
(5) have the form:
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e
bazbiy + bybiy — 2bj, dx
bn

G = (d3(6) + dy(6)cot 6) /L’;

— (d{'(8) + d{(8)cot 6) jl”l basdx

2(b11by + byybys — 2b1
+di(6) ‘/j (bu1by bu 23 12)
1

dx + f=(8) + O(¢)

b11b22

; b2 by b,
0 = b«{dz(e) ./: 12(= e 227 NI g
1

dx + dj(6)cot 6 [ bis
b
=2bd dx]

p buby — b
+dz(9)[‘/: (b23 — by)dx + n26 f B dx | + t=(6)

b11b23
bll

) byby +
_dl(e)[af_ﬁbMdH ShE

+ O(s)}
1 [ bibyy + byybys — 2b3
a;¢ = ;{ 11922 bllll 23 1zd1(6)+
_p2 _ 2
4 bmbu=bi 1) o Bubn =iy gycore + 0(e)
bn by
=
o = _1_{b11bzz + buibys 2b12d1(6)
£ by
_p2
yhubs=bi g dy(6) + 2ubn — b b”d;(e) +0()
bu bl'l
(©)
where the following dimensionless parameters apply: o, = ‘;L: and
* _ 966
g6 = Go

3.2. Construction of HSs

The HSs will be any solution of the equilibrium Eq. (3) that satisfies
the condition of no stresses on the lateral surfaces. Let us consider the

problem of constructing HSs. In relations (4), we set f*(6) = 0 and
t£(6) =0

ou, a
[bu‘a— + Ebu(ue cotf + Zu,, + %)] =0,

p=+1
)
bu[due —u—”—-us)] =0.
p=11 (10)

The solution of Egs. (3) and (10) is sought as follows:

us(p, 6) = a(p)m(6), ug(p, 6) = c(p)m’(6) 11)

where the function m(6) satisfies the Legendre equation [2,7,38]:

m*(8) + cot 6-m'(6) + (z2 - %)m(e) - _-

Substituting (11) into (3) and (10), taking into account (12), the
following boundary value problems with the spectral parameter, z, are
obtained: '

1
dp I:bu dp b ok 2 bu(za = (Z = z)c)]

d
+ E[(bu - 2bu>;£+z(bu — by — by)e a]
1 dc
= ZZ'—_EE(b]z"—bzz—bz3'-b44)C+€b440+b44— =0
4 dp

—d— by d—+E(a"‘C) b]zd + €(by; + by + 2by) a+
dp dp dp

d 1
+ Zb“E; + €(by; — byz — 2by)c] — (22 - Z)czbzzc =0, 13)
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da (-1 -
[blldp i€ bu(Za (Z 4)0)] - 0';
b«[£+s(a—c)] =0.
dp p=11 (14)

The piecewise continuity of the elastic characteristics gives rise to
difficulties in the investigation of Egs. (13) and (14). To solve the Egs.
(13) and (14), we use the asymptotic method based on three iterative
processes [6,26,27,31].

The HSs, which are appropriate to the first iterative process, can be
obtained from (6)-(8) if we put f*(8) = t*(6) = 0 in them, we have

u = B[cos 61n (cot g) = l] ;

u® = B[sin 6 In (cot g) + cot 9] s (15)
These solutions correspond to the eigenvalues z = 1.5. The stresses
corresponding to these solutions have the form:

byy — bp)e
o = (baz — bx)e B

by3 — b )e P
c—*(l) - S_Z}___ZZ____B
Sinze

) = O =
o, =0,4=0, s :
P2 i sin?6

(16)

Let us turn to the construction of the second SSS. The solution of
Egs. (13) and (14) is sought as:

c@(p) = elcw(p) + € culp) + .1,
a7

a?(p) = ap(p) + € an() + ...,
zZ= E‘%(ao +eg + ... (18)
Substituting (17) and (18) into (13) and (14), after some transfor-
mations we obtain:
4 4
u® (e, ) = 3 Taf? )my(8),  ui (e, 6) = 3 Ty (o)mj(6)
Jj=1 j=1

where

agp, + b - b
a®@) =1+ s[“’p‘—”—i j(;pg—zdx -ad ff %fxdx +0(ed),

Po
aZp, —
c(Z)(p)=£ "f_plﬁ_p+o(€)
! g

To determine a,;, we obtain the following biquadratic equation:

[Bop, + b3y (b5 — )] ag + &Py — 8P1) &5 + 80Py — & = 0.

(20)

The stresses corresponding to solutions (19) take the form:

235

Thin-Walled Structures 139 (2019) 232-241

(=g, + 24P, b2 — byb
O';,Z,)?— 52‘;=11}{ 0 0jF1 "‘aozj,/:_P] ./:);( 12 bnll 22)dx dy
o
o (b11bs + biibys — 2b3)
_f dx
= by
(b — byb
+ag [* (f_yl L,,1—11‘1‘9’)’“1" dy
bi1bys + byybys — 2b3
2 o py bubaz + biiba i2
+ao,[—f_1 (/_1 ! dx)dy

e jj: b11b22 % b11b23 = 2b122xdx] S 2_/:‘; blleZ + b11b23 = Zblzzdx

by by
+ O(s)} m;(6),
a(é) - 524-1 % __fﬁ by1by, + biiba — 2b122d.x . “ozjfp b — bubzzxdx
P j= -1 bll -1 bu
(=8 + @§P)) Lo b — byb )
_ 1% . 0Py ff{ i2 bun 2 4y + O(e) m(6),
o = ¥4 T, (=8 + %Py) (b} — bubss) sl (b5 - bubzs)p
> j=17 Po bii v bn
" bi1by; + byybys — 2b%
bll
—g, + agp,
+ 0(e)1m;(©) + €| (b — bys)| ——5—— — p [cot & + O(e) [m;(®) p,
QojPo

~(8g + agp)) (b} — buby) + biyby, + buby — 2b}

4
aggZ) = Zj=l T {[

Py bn bn
= aosz
2 -—
X M & O(E)]mj(e)
by
—gy +ag
+ e[(b23 - bu)(goz—poﬂ’l - p)cot 6+ 0(5)]m;(e)}.
0jFo

@21

It is noted that the asymptotic expansion of ¢(6, 1)~ X, g, (6)A* is

valid, as g,(6) # 0(6; < 6 < 6,) and Re(A71,/¢,(6)) > 0(A € (0; A¢)) and
A — 0, then the principal term of the asymptotic solution of equation

A%y"(8) — q(8, A)y(6) =0 (22)
at 1 — 0 has the form [39]:
o

Y128 ) =gy “'zs(e)ex;l[:t/l“ S oot

1o 90 4lns o

270 \Jg() (23)

Substitution
m(@) = 2
sin 6 (24)
leads Eq. (12) to the form:
” 2 1 ) -

Y&+ (Z * e PO =0 (25)

Substituting (18) into (25), using (23) and taking into account (24),
we obtain that for the second iterative process the principal term of the
asymptotic solution of the Eq. (12) with € — 0, takes the form:
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1 1 =) 5 1
Vsin 6 §—a2, exp[—z 2y —ag (6 — 91)](1 4 O(ez))
in neighborhood 6 = 6, ,

?FLE exp[s‘%\/?aa(e - 92)](1 + O(s%))

in neighborhood 6 = 6, .

my(6) =

e
Vsin 8
(26)

According to the third iterative process, the solution (13) and (14) is
sought as:

a® (p) = ax(p) + ean () + ... , () = Bilcso(P) +ecy() + ..,
0 .
27)
z=ie1(By + B, + ...).

(28)

After substituting (27) and (28) into Eqgs. (13) and (14) for the first
terms, we obtain:

N(B)Wo = {m(B)Wo, h(B)Wo =0 at p=x1}=0 (29)
where

h(By)Wo = (Bo + BoB1 + BZB2) Wo, ha(By)Wo = (Co + B, C1)Wo

in which
3(byd) 0

By = -

o =1, a(b«a)"

B = ||0 basd + 0(b12) I
17 " 0(bas) + b12d 0 ’
_ by O

By =l bzzu,

b1d 0 0 b B
cl,=||011 b446"’ cl=||b44 0‘2u, Wy = (a0, C30)7

The spectral problem (29), describes a potential solution of a
transversally-isotropic plate inhomogeneous in the thickness direction
[15,17,19,20,26,27,31,34-37]. By replacing

as(p) = =5 [eod” ()] + By bl ¥’ (0) + By e (0)]',

cs(p) = Bieny” () — e (o) (30)

The spectral problem (29) reduces to the following problem:

leod” @' = By {[erp @] + er9” (0) + [ ()]} + B extp(p) = 0

VOl =0 Bp@)],_,, = 0.

(31
where
g by _ by, by

bh—buby’ | bh—bubn b~ bubxn’

The Eq. (31) is a generalization of the spectral problem of Papkovich
for the inhomogeneous transversely-isotropic materials [15,31,34-37].
In the next step we obtain the boundary value problem for determining
Wy = (az, cy)7 and B;:

(Bo + ﬂoBl % ﬁozBZ)-VTl = [P(BO + ﬁoBl +* ﬁosz) = 2503132

+ Ao + ByAr + B1A 1wy

(Co + ByCWil,_yy = [P(Co + ByCr) + By Cs + CalWop=s1 (32)

where
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—28(by2) + (2b; — by))d 0

Ao =1l 3(bas) — 2basd
0 (bas + b3 + by

A =l = b Il
—(bzz + b23 + 2byy) 0

AZ =, “0 _z(a(bll) + b44a)“Y
00

_ 0 "Zbu _ —ZblZ 0
G = "0 o I, Co= II0 b44”

The condition for solvability of (32) is the orthogonality of the right-
hand side of the solution of the dual problem:

N*(Bwg = N(=f)ws =0

where

(33)

We = (a5, c30)"-
Satisfying this condition, for 3, we have:
N,

/31= N,

(€D))

where

M= 2,/:11 {(b12€30)'a35 + bascioass + By(basasodsy + baacsotio)ldo
N=[ 11 {Bo [(pb12¢30)" a3 + pbascsodsy + (Pbasase) €3 + pb12@seCio
+ (bas + bz + by,

—2b12)C30ady — (bay + bas + 3bas)as il + BLe(basazdsy + brncsoli)

+ (bascs0) '3

+(pb11aly) @l + (0baaClo)Th — 3bsuclotl — 2(bu — bi2)alodlh

= 2(b12a3)'azo}dp

In the third iterative process, the solutions are:
u® (o, 8) = T Di[—By (ot (0)) + Bl bid ¥’ (0) + By (eathy ()

+ 0(e)] x my(6)

uf® (p, ) = e T, DelBy eot, (0) — By erth () + O(e)] my(6) .

(35)
In the third iterative process, the stresses are expressed as:
1 oo
o = = Per Dk [=Bo i (0) + 0(€)] mi (6)
0% = Tav, DelB5' 9, () + 0(©) m{(©),
1 e =
%" = — Ty Del =B 9{ ) + 0(©)] mi(6) .
~1 2
#3) _ 1 D By (b — by) i Bok b12(ba2 — ba3)
T 2 "[ B—bubn PO Wh-bubg O
+ O(e)]mk(e) :
(36)

Substituting (28) into (25), using (23) and taking into account (24),
we obtain that for the third iterative process the principal term of the
asymptotic solution (12) with ¢ — 0 takes the form:

my (6)
1 -1 [p2 i i
mexp[_s \/5_01:(9 — 611 + 0(¢)) in neighborhood 6
_ =6 .
/ﬂoklsme exple! ‘/5—02‘( (6 — 6,)](1 + O(g)) in neighborhood 8
= 92 .

(37)
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The general solution (13) and (14) is the sum of the solutions (15),
(19) and (35) corresponding to the above three iterative processes [6]:

3 3
uy(p, 6) = Z u®,  ug(p, 6) = Z uéi)
i=1 i=1

4. SSS corresponding to different types of HSs

We represent displacements as follows:

up = u + Yy Erar (o) myc(6),

ug = uf" + T2 Exci(p) m'x (6) . (38)

The second term includes the displacement determined by the
second and third iterative process. For stresses we have:

ol = 03D + D B (o (0)m () + o (0)mi (6)cot 8), e
k=1
= D Eou(o)mi(6)
k=1 (39
where

o)== [buaé ©) + by + by (o) - Ebzz(ZkZ " %)q(p)]
o2 (p) = e (bys — b) ci(p),

ou(p) = ?Mcé(p) + e(@0) — ce(d))]

Let us consider the connection between HSs and the principal vector
P of stresses in the section 8(=const), is defined as

" r2 .
P=2rsiné f (0,9 cos 6 — ogg sin O)rdr
r
or

1
P = 2nesin 0 (0,6 cos 8 — o sin ) e*Pdp.
% 36

(40)
Substituting (39) into (40), we obtain:
1 0
P=—aneB [ | G(p) e%dp + 27t sin 6 El Eg [daxm,(8)cos &
— dy.my (6)sin 6] (41)
where

du= [ o @edo, du= [ Gulp) - 0P () e*dp

Multiplying Eq. (13) by e* and integrating within [-1, 1], using
integration by parts using the appropriate boundary conditions (14), we
have:

1
2dy + (22 = Z)dzk =0, dg+dy=0 “2)

It follows from (42) that
diy=dy=0 (43)

On the basis of (41) and (43) for the principal vector, P, we obtain:

= ~4meB [ 6(e) e%de. (44)

In section 6(=const), the moment M and shearing force Q for sol-
ving the second and third iterative process have the form:
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(b — Pop)ag; + Po& — P18

M® = ¢2sin 6 ijl Tj[ ]mj(e) + 0(?)

Po
— ag + 2py8, — B
019 2.6 gin 92;=1 T]_[ ®;” = poP;) %y pPogo Po8& — &Py ) (6)
o
+0(),
M® = 0(%), Q¥ =0(?)
(45)

From expression (45), we find that the principal parts of the mo-
ment and shear force determined by the solution of the second SSS. The
solution of Eq. (15) corresponding to the first iterative process de-
termines the internal SSS of the sphere. The stresses determined by the
second and third SSSs are localized at the ends of the sphere (in conical
sections 6 = 6;(j = 1, 2)). From (26) and (37), we find that when
moving away from the conical sections 8 = 6;(j = 1, 2), these solutions
decrease exponentially, and the attenuation index of the stresses de-
termined by the second SSS has the order of O (e'/?) versus the ¢, and
the stresses corresponding to the third SSS are of order O(¢™?). The
stress state corresponding to the solutions of (19) is the edge effects in
the applied shell theory [7,10,26,27,31]. The first terms of the expan-
sion in ¢ of the solution (19) in combination with the first terms of (15)
can be considered as solutions of the classical shell theory. The third
asymptotic process determines the solutions (35) that have the char-
acter of the boundary layer, which in the Kirchhoff-Love theory are
absent. The first terms of (36) are equivalent to the Saint-Venant edge
effect of an inhomogeneous transversely-isotropic plate [31]. For ima-
ginary g, the boundary layer of Saint-Venant is weakly damped, and
solutions (36) should be classified as internal solutions. In this case, the
SSS of the transversely-isotropic and isotropic spheres is qualitatively
different [31]. When B, are real or complex, the overall picture of the
SSS are qualitatively similar to the corresponding picture for an iso-
tropic sphere [1,2,7,10] and they differ in the rate of attenuation of the
Saint-Venant boundary layers.

The above analysis shows that the stressed state of a RIHTIS consists
of three types: a penetrating stress state, a simple edge effect, and a
boundary layer.

5. Satisfaction of boundary conditions

We assume that the stresses of the sphere are given as

elo=gy =Sy @)+ Teolg_g =S (P)- (46)

where f;(p) and f;(p) =1, 2) are sufficiently smooth functions
having order ¢ relative to O(1) and satisfying the following equilibrium
conditions:

27 sin 6, f 1] (fy (p)cos 61 — f;, (p)sin ;) e*Pdp=

=27 sin 6, [ (f,(p)cos 6, — f,, (p)sin 6;) e*#dp @7

The connection between the constant B and the principal vector P is
represented by the equation:

P
4ne [ 11 G(p) e*dp

(48)

To determine the constants E; in this study, we use the variational
principle of Lagrange [1,2,7]:

2
3 S, G = £y (0))6us + Ge = £ @)W1 1,_, edp = 0.
J=1 (49)

Substituting (38) and (39) into (49) and counting 8E; as independent
variations, we obtain from (49) an infinite system of linear algebraic
equations:
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0
ZDjkEk =H, (j=1, )

k=1 (50)

where

Dy = [, 0P () ¢i(p) eedp- X2_, mi(€)mj (6)+
+ [ 0 )y (p)eedp X2_, mi.(8)m] (8.)cot 6.+
+ [ ou o)y (p)e*edp X2_, mi (©Imy(65)

H =2, [m©) L2 0)c0) e¥dp + my(6) [ £, (0)a;(p) e*°dp]

in which

PG(p)
2mee® sin?6; f 11 G(p)e®dp’

fii) =f,00) + 5=1,2)

The system of infinite linear algebraic Eq. (50) is always solvable
under physically meaningful conditions imposed on the right-hand side
of Eq. (50). The solvability and convergence of the reduction method
for Eq. (50) is proved in Refs. [12].

Using the smallness of the parameter, &, we construct asymptotic

‘2) = 0(*?) and gfi? = 0(1) solutions of the system of Eq. (50).
ConSIdermg that, we w1ll clarify the assumptions regarding the external
load. The tangential stresses given at the ends are decomposed as:

fue) =1 + £

where

1, 2).

0= [ LOd, [P =40 -0

It can be shown that

VE-aj
sin 64/ —ag;

0jP1

ii‘;:ﬁ@l = Do)+ O(E%)],

0

L Glo g de = T4 T(L oy @)dp)m) (@) =

x T Tilg

(-]

-g+ag@ —p)+

(51)
On the basis of the Eq. (51) we find that
=0, =01, =1 2) (52)
The unknown constants 7; and Dy (j=1,4; k=1,2,..) will be
sought in the form:
Tj=Tjo+ el + ., (53)
Dy = Do + €Djy + ... . (54)

After substituting (53) and (54) into Eq. (50), taking into account
(52) for the determination of Tj, and Dy, we obtain the following
systems of linear algebraic equations,

4
D lyTe=1 (k=T73),

Jml (55)
Y LD =1 (=T o),

j=1 (56)
where
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=52 [Co2
—Qg — vV~ %ok leozj(Pl2

= pob) + (118

= Po&)

lk‘ =
' 4l ageas; Po
T
_ _sinBsiné, i 1 —1)S‘/ o
sin 6; — sin 6, =i /sin & 4—a
%Py t+ &
1 S(P)(—— = p)dp + 12
f ! %ok Po \ —aOk =
G 1
Ly=— [ et + ~¢;¢;+ﬁ0§ez¢k¢,~]dp
A\ 601501( ' bM

e —————— f [ 1¢J ka ﬁojez¢k.§b]] dp
s/ﬁok o

- sin 6, sin 6,
j (sin 6; — sin 62)\//3_01»
=€ l/y] dp

+:/—;%_6_2— ffl 5@ [5&290#—911[’]] dp

{ Jsin 6, L f“(p)[ﬁo, o]

+ ﬁﬁa LA f (p)[_%;(eo ¢,"]f

+ﬁ(§1i¢; + 5&1(91%)']@ + _\/si:l——ez'/: f2 ()

x[—ﬁof(eow,”)' + 5(,;‘;3# + BO;‘(e1¢,)’] dp]

in which

(57)

b= s%(f,’_“ +.), (=1, 2) (58)

Definitions Tj, and Dy, (p = 1, 2, ...) invariably reduces to systems
whose matrices coincide with the matrices of the systems (55) and (56).

6. Results and discussion
6.1. Comparative studies

To verify the accuracy of this work, a comparison is made with the
study of Mekhtiev [2], who using the homogeneous solutions method
solved the problem of homogeneous transversely-isotropic spheres of
small thickness. The asymptotic expressions (2.3.2), (2.3.3) and (2.3.5)-
(2.3.7) are obtained for displacements and stresses of the homogeneous
transversely-isotropic sphere of small thickness in the work [2] (See,
Chapter 2 in the ref. [2]). If the b;(p) are constant, from asymptotic
formulas (15), (16), (19), (21), (35) and (36) for the displacements and
stresses in the present work, we obtain corresponding expressions for
the homogeneous transversely- 1sotrop1c spheres in the study [2], in the
particular case. The symbols u,, ug, 0y, 0s 0p, T for displacements
and stresses are used in [2]. For numerical calculations are used the
following data:

AD =513 x 101, AD =121 x 10, AD = 4.81 x 101, AY
=442%x 101, AD =1.85x 10, £=02.

The above transversally-isotropic material properties are related to
the cadmium material (Cd) and are taken from study [40]. As can be
seen from the results presented in Table 1, these results are in very good
agreement with the results obtained in the study of Mekhtiev [2]. That
is, the stress values of a homogeneous transversely-isotropic sphere are
very close in time to each other in both studies.

In addition, when the Young's moduli b;(p) are constant and
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Table 1
Comparision the values of stresses of H transversely-isotropic sphere with the
results of Mekhtiev [2].

L Orr J88 96
Present study

1.06 — 144.297 -2.361 193.342
1.12 - 231.428 - 2.682 302.981
1.18 — 269.941 - 2952 351.596
1.24 - 273.367 -3.192 353.682
1.30 — 248.854 - 3.401 319.912
1.36 - 197.933 - 3.58 254.477
1.42 - 126.338 -3.721 162.133
r Study of Mekhtiev [2] .
1.06 — 144.298 - 2.363 193.344
1.12 — 231.427 - 2.681 302.982
1.18 — 269.943 - 2.954 351.596
1.24 — 273.366 -3.193 353.683
1.30 — 248.852 — 3.404 319.914
1.36 - 197.934 — 3.582 254.476
1.42 - 126.337 =3.723 162.134

by, = by; = 2G + 4, by; = by3 = A and by, = G are taken into account,
from the formulas for displacements and stresses of the present study,
all results for homogeneous isotropic spheres of small thickness are
obtained in the Ref. [7].

6.2. New computations and analysis for the stresses of RINHTIHSs

As an example, let us consider the problem of the SSS of radially
inhomogeneous and homogeneous transversely-isotropic spheres with
the small thickness. We study the following two cases:

Case 1. The region occupied by the sphere is
I'={refl, 15], 6€[3, 801, ¢ € [0, 27]}. The small parameter,
€, characterizing the thickness of the sphere is equal to 0.2, i.e., ¢ = 0.2.

Case 2. The region occupied by the sphere is
r={rell, 1.04], 6e[3, 8], ¢€[0, 27]} and e = 0.02.

We assume that the lateral surface of the sphere is stress free, and
the boundary conditions are given on the conical sections as:

Ogg = Krzsin(g), 0,6=0, when6 =73

oge =0, op=Kr? [cos(%) - 1], when 6 = 80°

where K is the parameter and the value in the accounts is taken as equal
to one.

We assume that for RINHTIHSs the Young's moduli change by
quadratic laws along the radially coordinate, r [5]:

An = ADP, A =A0OF, Ap = 40P, Ay =An0F, Ay

= Ay O R,
where A{”(Pa), (i,j=1,2,3,4) are the material properties of the
homogeneous transversally-isotropic sphere. The Cadmium (Cd) is used

as homogeneous transversally-isotropic material and properties defined
as:

AD =513x10", AD =121x10%, AP =481 x10%, AP
=442x 10", AQ =185x 10"

The properties of Cadmium material (Cd) are taken from the study
of Huntington [40]. In all the figures examined below, the values of
stresses (Pa) are taken as o X 10%.

The following expression is used in the calculation of the percen-
tages: &Z;_g_’i X 100%.

Let us consider the Case 1. The stress distributions through the
thickness of radially inhomogeneous (INH) and homogeneous (H)
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versus the r with e = 0.2.
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Table 2
Distribution of stresses of H and INH transversely-isotropic spheres versus r for
e=02.

r Orr Trg T8
Homogenous sphere

1.0 0 0 —-2.018
p 51 — 208.767 274.726 - 2578
12 — 274.613 357.445 - 3.039
18 — 248.854 319.912 - 3.401
1.4 - 151.679 196.092 - 3.679
15 0 0 - 3.849
r Inhomogeneous sphere

1.0 0 0 - 3.128
1.1 1.588 161.475 -3.295
1.2 - 23.938 209.893 - 3.417
1.3 — 53.536 176.196 - 3.439
1.4 - 56.022 94.815 - 3.276
15 0 0 - 2.822

Table 3

Distribution of stresses of H and INH transversely-isotropic spheres versus r for
€= 0.02.

13 I Or6 068
Homogeneous sphere
1.000 0 0 —2.1884
1.005 - 0.545 3.531 - 2.1862
1.010 - 0.903 6.019 —2.1835
1.015 - 1.092 7.456 - 2.1805
1.020 - 1.132 7.925 - 2.1769
1.025 - 1.029 7.376 -2.1729
1.030 - 0.795 5.867 - 2.1686
1.035 - 0.445 3.375 - 21637
1.040 0 0 - 2.1588
r Inhomogeneous sphere
1.000 0 0 -2273
1.005 - 0.308 0.41 - 2252
1.010 - 0.501 0.786 - 2229
1.015 - 0.66 1.048 - 2.206
1.020 - 0.692 1.211 —2.183
1.025 - 0.679 1.208 —2.158
1.030 -0.533 1.043 -2133
1.035 - 0.334 0.664 —2.108
1.040 0 0 - 2.081

transversely-isotropic spheres depending on the radial coordinate are
shown Figs. 2-4, respectively, at € = 0.2.

In Figs. 2-4 and Table 2 show the distributions of stresses for H and
INH transversally-isotropic spheres versus the radial coordinate, r.
Figs. 2-4 are described stress distributions only along the thickness of
the spheres. It can be seen from Fig. 2 that at a distance of 0.06 from the
inner surface, the stress o,, for INH spheres assumes the largest value.
The distribution of o, for INH spheres at a distance of 0.16 from the
inner surface varies almost in accordance with the quadratic law and at
r = 1.36 it assumes the smallest value. The distribution of g, for INH
spheres occurs according to a quadratic law and at r = 1.2 reaches its
maximum value (Fig. 3). The distributions of gz for INH spheres to a
distance of 0.06 from the outer surface vary almost quadratic law
(Fig. 4). It can be seen from Fig. 2 that g,, for H spheres varies according
to a law close to a square parabola and assumes the smallest value, at
r = 1.22. The distribution of o, for H spheres occurs according to a
quadratic law and reaches its maximum, at r = 1.22 (Fig. 3). The dis-
tribution of oz for H spheres occurs according to the law of inverse
proportionality from distances (Fig. 4). It is seen from Fig. 4 that the
stresses ogg the inner spherical surface in the case of the homogeneous
material are greater than the inhomogeneous material, and on the outer
spherical surface it is smaller. It is seen from Table 2 also that the most
pronounced effect of inhomogeneity is the value of the o,, when
compared to other stresses. For example, when the inhomogeneous
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transversely-isotropic spheres is compared with the homogeneous
transversely-isotropic sphere, the greatest influence of the in-
homogeneity; on the value of o,, is about (-100%) for r = 1.1, on the
values of g, is about (+55%) for r = 1.0 and on the gy is about
(-51.65%) for r = 1.4. When the values of gy for the inhomogeneous
transversely-isotropic spheres are compared with the values of oy of the
homogeneous transversely- isotropic sphere, the influence of the in-
homogeneity on the minimum and maximum values of ggs are about
55.01% and 26.68%, respectively.

Let us consider Case 2. The stress distributions for H and INH
transversally-isotropic spheres, at € = 0.02 are presented in Figs. 5-7
and Table 3. From Fig. 5, we see that the distributions of ¢;, for H and
INH transversally-isotropic spheres occur according to the quadratic
law and the branches of the parabola are directed upward. At r = 1.023,
the stress o,, takes the lowest value. The distribution of g, for H and
INH transversally-isotropic spheres occur according to the quadratic
law and the branches of the parabola are directed downward. At the
r = 1.02, the stress o, takes the greatest value (Fig. 6). The distributions
of the stress, g for H and INH transversally-isotropic spheres at the
distance of 0.02 from the inner surface vary almost linearly (Fig. 7). In
the case of ¢ = 0.02, the distributions of the stresses oy and o,, for H and
INH transversally-isotropic spheres are qualitatively different (Table 3).

7. Conclusions

In this study, the three-dimensional problem of the theory of elas-
ticity for radially inhomogeneous transversally-isotropic thin hollow
spheres is investigated using the asymptotic integration method. First,
the basic relations and equilibrium equations for radially in-
homogeneous transversally-isotropic thin hollow spheres are formed.
After obtaining inhomogeneous and HSs, the nature of the constructed
HSs is studied. On the basis of the theoretical analysis, it is shown that
the SSS in a radially inhomogeneous transversely-isotropic hollow
sphere consists of three types: a penetrating stress state, a simple edge
effect, and a boundary layer. From the analysis of numerical results it
follows that the inhomogeneity of the material can have a significant
effect on the SSS.
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