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About one numerical algorithm for the
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Abstract. In this work the wave equation is analytically solved in the variational form and the analytical expression is found
for the gradient of the functional. Also solving the inverse problem with respect to the potential the analytic expression for the
optimal potential is obtained. The numerical algorithm for theconsidered problem is given.
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1. Introduction

As known, one of the main objectives in theoretical physics since the early years of Quantum Mechan-
ics (QM) is to obtain an exact solution of the wave equation for some special physically important poten-
tials [2,5,9]. Since the wave function contains all necessary information for full description of a quantum
system, an analytical solution of the wave equation is of high importance in non-relativistic and relativis-
tic quantum mechanics. Therefore, the analytical and numerical solutions of the Schrodinger equations
are of great importance. From this point of view one of serious problems of the applied mathematics,
and applied physics are the calculation of energy spectrums and optimal control of their dependence on
quantum numbers. Especially in the external magnetic fields, finding the analytical solutions of the wave
equations and on the basis of this construction of the optimal solutions depending on quantum numbers
is important and interesting [6–8]. There are few potentials for which the wave equation can be solved
explicitly for all n and l quantum states [1,11].

The solution of the problem in the studied practical examples appears in various intermediate points of
the considered area. The main goal of this problem is finding such potential concerning which the solu-
tion of the considered problem would satisfy these conditions. Here the indicated problem is reduced to
the variational problem and from this solution the optimality conditions and the formula for the gradient
of the functional are found.
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2. Problem statement

It is known that the motion of a particle in a central field is described by the following equation

− a

r2
d

dr

(
r2
dR

dr

)
+
bR

r2
+ q(r)R = ER, (1)

here a > 0 and b – are given numbers, q(r) – is the energy of interaction. If we multiply the Eq. (1) by
the r2 and introduce such substitution

Q(r) = b+ q(r)r2,

we obtain the following:

−a d
dr

(
r2
dR

dr

)
+Q(r)R = Er2R. (2)

The analytical solution of the Eq. (2) for different potentials is very interesting. But it is not always
possible to obtain the analytical solutions.

In addition, the solution of Eq. (2), finding the potential Q(r) with respect to the energy eigenvalues,
i.e., solution of the inverse problem is also very interesting.

Assume that

R(r0) = z0, R(r1) = z1, R(r2) = z2, . . . , R(rn) = zn, (3)

here

0 < r0 < r1 < . . . < rn;n > 2.

We consider the Eq. (2) on the interval [r1, rn]. In the work the primary aim is finding the potential
Q(r) in the interval [r1, rn]. We also need to show that the solution of the Eq. (2)R(r) – function satisfies
the Eq. (3).

We will assume that the solution of the Eq. (2) is R(r) and the condition
∫∞
0 R(r)dr < +∞ is

satisfied. Then the solution of the inverse problem is finding the potential Q(r), which it is necessary
that by r > 0, the function Q(r) would be continuously differentiable.

Now we will find the minimum of the following functional

J(Q) =

n−1∑
i=1

[R(ri)− zi]2 → min, (4)

from the Eq. (2) we obtain the following conditions:

R(r0) = z0, R(rn) = zn. (5)

Assume that

U = {Q = Q(r) ∈ L2(r0, rn) : Q0 6 Q(r) 6 Q1, ∀r ∈ [r0, rn]}. (6)

Here 0 6 Q0 < Q1 – are given numbers.
We suppose that the function ψ = ψ(r) is solution of the following equation:

−a d
dr

(
r2
dψ

dr

)
+Q(r)ψ − Er2ψ = −2

n−1∑
i=1

[R(r)− zi]δ(r − ri), (7)

ψ(r0) = 0, ψ(rn) = 0. (8)
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Applying the traditional technique [3], one can show that the functional Eq. (4) is differentiated and
the formula for the gradient

J ′(Q) = ψR (9)

is true. If R = R(r), ψ = ψ(r), Q = Q(r), then the formulae Eq. (5) is the solution of the Eqs (2), (5),
(7) and (8).

3. An algorithm for solving the inverse problem

Algorithm.
(1) Consider the arbitrary initial potential Q0 6 Q(r) ∈ U .
(2) Found the solution of the Eqs (2) and (5) with the potential Q0(r), denote this solution R0 =

R0(r).
(3) Substituting the solution R0 = R0(r) to the sweep problem Eqs (7) and (8), solving this problem

we find the function ψ0 = ψ0(r).
(4) Using the solutions R0 = R0(r) and ψ0 = ψ0(r), we found the gradient of the functional Eq. (4).
(5) Minimize the linear functional

I0(Q) =

∫ rn

r0

ψ0(r)R0(r)Q(r)dr → min (10)

in the set U and find the helper function Q̄0 = Q̄0(r).
The new potential is constructed as follows:

Q1(r) = αQ0(r) + (1− α)Q̄0(r), 0 6 α 6 1.

(6) The accuracy criterion is checked. It may be either such
max

r06r6rn
|Q1(r)−Q0(r)| < ε,

or such |J(Q1)− J(Q0)| < ε. In the 6th step the parameter α should be chosen thus that the
obtained new values of functional with corresponding α were smaller than previous one

J(Qk+1) 6 J(Qk) or J(αQk + (1− α))Q̄k 6 J(Q).

(7) These conditions are called the monotoncity conditions. From the monotoncity conditions can be
seen that finding the parameter α from the condition

J(αQk + (1− α)Q̄k)→ min, 0 6 α 6 1

is advantaged.
However, finding α from these conditions creates additional difficulties. Therefore it is important to

give another method, which is important from a practical point of view.
We assume α = 1

2 and check the monotoncity condition. If the monotoncity condition is satisfied,
then the corresponding α iteration is continued. Otherwise, assuming α = 1

4 ,
1
8 , . . . the monotoncity

condition is checked.
Another way to give iteration formula for each α. We can write such as

αk > 0, αk → 0,

∞∑
k=1

αk =∞.

For example we can take α as αk = 1
k+1 .
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Now let’s pay attention to the algorithm’s doing different operations. As seen from second and third
processes in each iteration either basic Eqs (2) and (5) problem or addition Eqs (7) and (8) problems
must be solved. It is not always possible to do it on analytic form so it is convenient to do it by the
numerical method. If delta function has entered to the Eqs (7) and (8) problems, it solution require
special approximation. However for solving problems Eqs (2), (5), (7) and (8) modern programs such as
MATLAB can be used.

From the algorithm can be seen that on each 5th step of iteration the linear functional is minimized
in the set U . The set U has a simple structure and it is solution doesn’t create the difficulties. There-
fore, the functional Eq. (10) is discredited and is operated within constraints to the linear function of
minimization, in other words is reduced to the linear programming problem.

Now let’s do one simple problem for demonstration this algorithm.

4. Numerical solution

Suppose that the equation

− d

dr

(
r2
dR

dr

)
+Q(r)R = r2R, 1 6 r 6 3, (11)

and the boundary condition

R(1) = 2, R(3) = 10 (12)

has been given [4]. It means in this case α = 1, E = 1. Our aim is from the set

U = {Q = Q(r) ∈ L2(1; 3) : 2 6 Q(r) 6 16},

to find such potential Q∗ = Q∗(r), and according to its R = R(r) function, which is the solution of
Eqs (11) and (12).

We require the satisfying the condition

R(2) = 5. (13)

It seems that additional condition is just one condition. In variational form we can write it as

J(Q) = |R(2)− 5| → min . (14)

If we solve the problems Eqs (11), (12) and (14) by the suggested algorithm method (in this case we
use MATLAB), we can find the values for potential

R(r) = r2 + 1, (15)

Q∗(r) =
Gr2

r2 + 1
+ r2. (16)

The computing experiment for various values of parameters N and k on the example is carried out. It
should be noted that the parameter N shows the splitting number of the difference scheme, and k – the
number of iterations. The results of the calculations are given as comparative graphics. The solution of
the problem Eqs (11)–(13) is taken as the model problem. We can easily verify that the solution of this
problem as follows

R(r) = r2 + 1,
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Fig. 1. Identification problem – R solution.

Fig. 2. Identification problem – Q potential.

Fig. 3. Identification problem – R solution.
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Fig. 4. Identification problem – Q potential.

Fig. 5. Identification problem – R solution.

Fig. 6. Identification problem – Q potential.
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and the corresponding potential has following form

Q ∗ (r) =
Gr2

r2 + 1
+ r2.

In the experiment three cases were considered [10,12]. The solutions and the approximate values of
potential were compared with the exact values. The result of the values of parametersN = 6, k = 7 were
given in Fig. 1 (R-solution) and Fig. 2 (Q-potential) respectively. The graphs show that the approximate
solution sufficiently differ from the exact solutions, and therefore they should not be taken as the solution
of problem.

Computational experiments carried out for the value N = 30, k = 40. As can be seen in Figs 3 and 4
the approximate solutions are closer to the exact solution.

At last, in the case N = 60, k = 70 the results of the calculation show the sufficient accuracy of the
realization (Figs 5 and 6).

5. Conclusion

The problem of analytical solution of wave equation is reduced to the variational problem one from
this solution the optimality conditions and the formula for the gradient of the functional has been is
found.

The numerical algorithms for solution of the potential inverse problem have been suggested and the
indicated problem has been solved with gradient projection method.
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